
A Non-stationary Service Curve Model for
Performance Analysis of Transient Phases in

Cellular Networks

Nico Becker Markus Fidler

LEIBNIZ UNIVERSITÄT HANNOVER
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Backlog LTE

I Transient phase due to DRX
mode

I In DRX mobile devices enter
sleep phases to save energy

I Waking up causes additional
delays

I Trade-off between energy saving
and additional delay

I Relevant for safety-critical
applications
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Stationarity

Consider an service process S(t). The process is stationary, if

P [S(τ, t) ≤ x] = P [S(τ + δ, t+ δ) ≤ x], (1)

for any τ, t, δ ≥ 0, i.e. the probability to see a certain amount of service in an
interval does not depend on the time instance at which the interval starts but
only on the duration of the interval.
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Deterministic Sleep Scheduler

I Consider a transmitter and a receiver that if idle go to a sleep state
according a defined protocol.

I Wake up is scheduled deterministically, T time units after entering sleep
state.

I The transmission rate in sleep state is zero and otherwise it is R.
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Backlog progression for time-variant vs. time-invariant service
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Random Sleep Scheduler

I Consider a transmitter and a receiver that if idle go to a sleep state
according a defined protocol.

I Wake up is scheduled randomly T time units after entering sleep state,
i.e., T is geomatrically distributed with parameter p.

I The transmission rate in sleep state is zero and otherwise a Bernoulli
increment process with parameter q.
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Transient backlog and delay of random sleep scheduling

0 200 400 600 800 1000
50

100

150

200

time

b
ac

k
lo

g
 p = 0.1, q = 0.5

stationary service, q = 0.5

Backlog

Nico Becker | IKT LUH | Performance Analysis of Transient Phases | Münster, 06.04.2016 | 7/18



Non-stationary Service Curves [BF ’15]

Let S(τ, t) be a bivariate random service process. Then,
any function Sε(τ, t) that satisfies

P [S(τ, t) ≥ Sε(τ, t), ∀τ ∈ [0, t]] ≥ 1− ε, (2)

is a non-stationary service curve
for all t ≥ 0, where ε ∈ (0, 1] is the underflow probability.
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Non-stationary service curves of random sleep scheduling

0 100 200 300 400 500
0

50

100

150

200

 t−τ

 S
ε
(τ

,t
)

stationary service

 τ = 100

 τ = 0

 τ

τ = {0, 100, . . .}
(fixing τ )

0 200 400 600 800 1000
0

100

200

300

400

 t − τ

 S
ε
(τ

,t
)

 t = 400

 t = 300

stationary
service

 t

t = {0, 100, . . .}
(fixing t)

Nico Becker | IKT LUH | Performance Analysis of Transient Phases | Münster, 06.04.2016 | 8/18



Stationary vs. Non-stationary Service Curves
Deterministic Sleep Scheduler
Random Sleep Scheduler

Measurement-Based Estimation
Rate Scanning
Burst Response
Minimal Probing

Measurements in LTE

Nico Becker | IKT LUH | Performance Analysis of Transient Phases | Münster, 06.04.2016 | 8/18



Rate Scanning [LFV ’10, LFL ’14]

I Uses constant rate probes A(t) = rt, for a set of probes r ∈ R

I S(τ, t) ≥ max
r∈R
{r(t− τ)−B(r, t)}

I Repeat measurements and take backlog quantile Bξ(r, t)

I Sε(τ, t) = max
r∈R

{
r(t− τ)−Bξ(r, t)

}
I ε =

∑
r∈R

ξ ( Union bound )
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Rate Scanning [LFV ’10, LFL ’14]

I Example for the random sleep scheduler, with p = 0.1 and q = 0.5.
I For every rate r ∈ {0.05, 0.1, . . . , 0.5} we get 105 backlog samples.
I ξ = 10−4 so that ε =

∑
r∈R ξ = 10−3
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The service curve cannot recover the non-convex part of the analytical results.
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Burst Response

I Uses canonical probes for system identification, i.e.,

A(τ) = δ(τ) =

{
0 for τ = 0,

∞ for τ > 0.
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A(τ) = δ(τ) =

{
0 for τ = 0,

∞ for τ > 0.

I D(t) = infτ∈[0,t]{δ(τ) + S(τ, t)} = S(0, t)

I For additive service processes: S(τ, t) = S(0, t)− S(0, τ)

I Repeat measurements to get the set of all feasible sample Ω

I Remove the worst-cases and compute from the remaining set Ψ the
non-stationary service curve

Sεbr(τ, t) = inf
ψ∈Ψ
{Sψ(τ, t)} (3)
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Service curve estimates
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Service curve estimates
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estimate burst probing

I Burst probes cause non-linear behavior of certain systems.
I Preempt other traffic, resulting in a too optimistic service estimate.
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Super-additivity of ⊗

S1
S2

S3
S4

S5

For additive and univariate
service Si (i = 1, 2, . . . n):
Snet(τ, t) = S1 ⊗ S2 ⊗ · · · ⊗ Sn(τ, t)

Lemma (Super-additivity of ⊗)
Given two bivariate functions f(s, t) and g(s, t) for t ≥ s ≥ 0 where
f(t, t), g(t, t) = 0 for all t ≥ 0. Define h(s, t) = f ⊗ g(s, t).

If f and g are super-additive, then h is super-additive.
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f(t, t), g(t, t) = 0 for all t ≥ 0. Define h(s, t) = f ⊗ g(s, t).

If f and g are super-additive, then h is super-additive.

⇒ Snet(τ, t) ≤ Snet(0, t)− Snet(0, τ)

Note, that it includes additive processes, as well!
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Minimal Probing

I We seek to find the minimal probe that satisfies for a fixed t
D(t) = infτ∈[0,t]{Amp(τ) + S(τ, t)} = S(0, t),

I i.e., the minimal probe that allows estimating the service from
observations of the departures.

I The minimal probe is Amp(τ) = S(0, t)− S(τ, t).

I For any other larger or smaller probe it leads to a lower service.

I We do not know S(τ, t) in advance
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Two Phase Service Estimation Method

1. Compute the burst response estimate , i.e., Sεbr(τ, t)

2. Use Sεbr(τ, t) to compute the minimal probe, i.e.,

Ãmp(τ) = Sεbr(0, t)− Sεbr(τ, t) (4)

and repeat the measurements to get the service for the minimal probe,
Sεmp(τ, t).
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Accuracy of Minimal Probing

For Ãmp(τ) = Sεbr(0, t)− Sεbr(τ, t) we conclude that Bε(t) observed by
minimal probing is a measure of accuracy that separates the conservative
estimate of minimal probing from the possibly too optimistic estimate of burst
probing, i.e.,

Sεmp(τ, t) = Sεbr(τ, t)−Bε(t) (5)
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LTE Service Curve Estimates
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Conclusion

I Analysis of non-stationary service curves

I Evaluated the effect on transient phases (also in comparison to
stationary service curves)

I Devised a novel two-phase method to obtain an accurate service curve
estimate

I Simulation results confirmed the fidelity of the approach

I Measurements in LTE show that the method is applicable in practice.
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Minimal probing
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Figure: Network of n systems with random sleep scheduling in series. (a) The
network service process deviates from additivity. (b) Minimal probing achieves small
backlogs, corresponding to a high accuracy of the estimate.
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Stationarity
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Stationary vs. Non-stationary Service Curves

Let S(τ, t) be a bivariate random service process. Then,

i. any function Sε(t) that satisfies

P [S(τ, t) ≥ Sε(t− τ), ∀τ ∈ [0, t]] ≥ 1− ε, (7)

is an ε-effective service curve

ii. any function Sε(τ, t) that satisfies

P [S(τ, t) ≥ Sε(τ, t), ∀τ ∈ [0, t]] ≥ 1− ε, (8)

is a non-stationary service curve

for all t ≥ 0, where ε ∈ (0, 1] is the underflow probability.
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{Sψ(τ, t)}
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