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Transient Backlog in LTE Networks
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Stationarity

Consider an service process S(t). The process is stationary, if
P[S(1,t) <] = P[S(t+6,t +9) < z], (1)

forany 7,t,6 > 0, i.e. the probability to see a certain amount of service in an
interval does not depend on the time instance at which the interval starts but
only on the duration of the interval.
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Deterministic Sleep Scheduler

» Consider a transmitter and a receiver that if idle go to a sleep state
according a defined protocol.

» Wake up is scheduled deterministically, 7" time units after entering sleep
state.

» The transmission rate in sleep state is zero and otherwise it is R.




Backlog progression for time-variant vs. time-invariant service

200 250,
bound, time—invariant service [Chang ’00]
200
@ 2 150)
= 4
S
8
- bound, time—variant service § 100
T
50 50
200 400 600 800

0 200 400 600 800 1000 0 .
time

time
time-variant vs. time-invariant T ={0,25,...,150}

Leil
Nico Becker | IKT LUH | Performance Analysis of Transient Phases | Minster, 06.04.2016 | 5/18

Universitat
Hannover

1000



Random Sleep Scheduler

» Consider a transmitter and a receiver that if idle go to a sleep state
according a defined protocol.

» Wake up is scheduled randomly 7" time units after entering sleep state,
i.e., T is geomatrically distributed with parameter p.

» The transmission rate in sleep state is zero and otherwise a Bernoulli
increment process with parameter q.
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Transient backlog and delay of random sleep scheduling
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Non-stationary Service Curves [BF ’15]

Let S(r,t) be a bivariate random service process. Then,
any function S¢(7, t) that satisfies

P[S(r,t) > S*(1,t), VT € [0,t]] > 1 —¢,

is a non-stationary service curve
for all ¢ > 0, where € € (0, 1] is the underflow probability.
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Non-stationary service curves of random sleep scheduling
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Measurement-Based Estimation

[m]

=

{
1094 | Hannover Nico Becker | IKT LUH | Performance Analysis of Transient Phases | Manster, 06.04.2016 | 8/18



Rate Scanning [LFV 10, LFL '14]

» Uses constant rate probes A(t) = rt, for a set of probes r € R

» S(r,t) > I7I"1€a]1§( {r(t—7)— B(r,t)}

» Repeat measurements and take backlog quantile BE(r, t)

> Se(7,t) = meaﬂic {r(t —7) — B&(r, t)}
»c=> &  (Unionbound)

reR
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Rate Scanning [LFV 10, LFL '14]

» Example for the random sleep scheduler, with p = 0.1 and g = 0.5.
» For every rate r € {0.05,0.1,...,0.5} we get 10° backlog samples.
» {=10""*sothate=), o £=10"°
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Rate Scanning [LFV °10, LFL ’14]
» Example for the random sleep scheduler, with p = 0.1 and g = 0.5.
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Rate Scanning [LFV 10, LFL '14]

» Example for the random sleep scheduler, with p = 0.1 and g = 0.5.
» For every rate r € {0.05,0.1,...,0.5} we get 10° backlog samples.
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The service curve cannot recover the non-convex part of the analytical results
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Burst Response

A(r) = b(r) ="

» Uses canonical probes for system identification, i.e.,
forT =0,

e.¢]

for 7 > 0.
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Burst Response

A(r) = b(r) ="

» Uses canonical probes for system identification, i.e.,
forT =0,

e.¢]

for 7 > 0.
» D(t) = inf g0 q{d(7) + S(7,t)} = S(0,1)
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Burst Response

» Uses canonical probes for system identification, i.e.,

0 forT=0,

oo forT > 0.

» D(t) = inf ¢po,q{(7) + S(7,t)} = S(0,t)

» For additive service processes: S(7,t) = S(0,t) — S(0,7)

A(r) =46(7) =
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Burst Response

v V. vyYy

Uses canonical probes for system identification, i.e.,
0 forr=0
A(r)=46(7) = ’
(7) (™) oo forT > 0.
D(t) = inf‘rG[O,t]{é(T) + S(T7 t)} = 5(07 t)
For additive service processes: S(7,t) = S(0,t) — S(0,7)
Repeat measurements to get the set of all feasible sample {2

Remove the worst-cases and compute from the remaining set W the
non-stationary service curve

Siy(r.1) = inf {Su(r. 1) @
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Service curve estimates
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Service curve estimates

80

estimate burst probing

estimate rate scanning

0 50 160 150 200

» Burst probes cause non-linear behavior of certain systems.
» Preempt other traffic, resulting in a too optimistic service estimate.




Super-additivity of ®

For additive and univariate
service S* (i = 1,2,...n)

Sret(rt) =S ®S? @ - @ S™(1,t)

Lemma (Super-additivity of ®)

Given two bivariate functions f(s,t) and g(s,t) for ¢t > s > 0 where
f(t,t),g(t,t) =0forallt > 0. Define h(s,t) = f ® g(s,t).

If f and g are super-additive, then £ is super-additive.
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Super-additivity of ®

For additive and univariate
service S (i = 1,2,...n):
Sret(rt) =St ®8?®- - @ S"(r,1)

Lemma (Super-additivity of ®)
Given two bivariate functions f(s,t) and g(s,t) for ¢t > s > 0 where
f(t,t),g(t,t) =0forallt > 0. Define h(s,t) = f ® g(s,t).

If f and g are super-additive, then £ is super-additive.

= S"t(r,t) < S"H0,t) — S0, 7)

Note, that it includes additive processes, as well!
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Minimal Probing

» We seek to find the minimal probe that satisfies for a fixed ¢
D(t) = inf‘re[o,t]{Amp(T> + S(T, t)} = S(O, t),

» i.e., the minimal probe that allows estimating the service from
observations of the departures.

» The minimal probe is A,,, (1) = S(0,t) — S(7,t).
» For any other larger or smaller probe it leads to a lower service.

» We do not know S(7,t) in advance
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Two Phase Service Estimation Method

1. Compute the burst response estimate , i.e., S}, (7, t)
2. Use S;,.(7,t) to compute the minimal probe, i.e.,

Amp(T) = 55,(0,t) = S;,.(7,1) (4)

and repeat the measurements to get the service for the minimal probe,
Sep(T,1).

i1 || Leibniz
1 0j 2 Universitit
1094 ] Hannover Nico Becker | IKT LUH | Performance Analysis of Transient Phases | Munster, 06.04.2016 | 15/18



Accuracy of Minimal Probing

For A (1) = S5, (0,1) — S5,.(7,t) we conclude that B¢ (t) observed by
minimal probing is a measure of accuracy that separates the conservative
estimate of minimal probing from the possibly too optimistic estimate of burst
probing, i.e.,

S (T t) = S5.(7.t) — BE(1) (5)
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LTE Service Curve Estimates
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Conclusion

» Analysis of non-stationary service curves

» Evaluated the effect on transient phases (also in comparison to
stationary service curves)

» Devised a novel two-phase method to obtain an accurate service curve
estimate

» Simulation results confirmed the fidelity of the approach

» Measurements in LTE show that the method is applicable in practice.
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Minimal probing
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Figure: Network of n systems with random sleep scheduling in series. (a) The
network service process deviates from additivity. (b) Minimal probing achieves small
backlogs, corresponding to a high accuracy of the estimate.
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Stationarity

Consider an service process S(t). The process is stationary, if
P[S(1,t) <] = P[S(t+6,t +9) < z], (6)

forany 7,t,6 > 0, i.e. the probability to see a certain amount of service in an
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Stationary vs. Non-stationary Service Curves

Let S(7,t) be a bivariate random service process. Then,

i. any function S¢(t) that satisfies
P[S(r,t) > S(t —7), VT €[0,]] > 1 — ¢,

is an e-effective service curve

ii. any function S¢(7, t) that satisfies
P[S(7,t) > S¢(7,t), VT € [0,t]] > 1 —¢,

is a non-stationary service curve
for all t > 0, where ¢ € (0, 1] is the underflow probability.
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Sample path selection
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