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In EU FP7 ﬁroject
far far awax, the young
modelers had to figh

a very large system
reluctant to any

precise analysis.
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Student project at ETHZ 2010:

Heterogeneous Communication System (HCS)
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| | | | | | |
Server
| | | | | | I
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|
Network traffic:
NAC Clock synchronization
Server « Audio streaming
DEV| [DEV| |DEV| |CAM « Event-based traffic (reading
[ [ [ light, ...)
DI|EV D||EV DI|EV Background traffic (network
More than 200 DEV| |IDEV! |DEV signalling)
individual [ [ ! |
components DEV| |DEV EADS‘F
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Small scale RTC Model (3 flows-of-intrests)
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Greedy Processmg Component (GPC),

bound on resource

availability without au . S ! .
*,17 *,1
resource demand of C, SRS S \ )
? l 1 delay |
bound on Oy 4 Oéi,* bound on ! baCk|°g| i

input __— TH%y C’L ———> output !
arrivals at C; from C. .:
5i,*l

bou'nd onresource — ; > A
ecouree demand of € A A+T
Flow equations of GPC, [Wandeler’06] backlog: < e {ori(@) = 0,40}
af, = min{(a},; @ B2;) © AL i Bit ) delayi < sup {inf{r >0 : a¥;(N\) <BL,(A+7)}}

Oé'li,*_mln{( *1,@5 )®5*z7 }
Z*:( }kb,i_ i,z)®0

f* = ( i@ A )®0 GPC analysis follows a Total Flow Analysis:

end-to-end delay computed from sum of
GPC-delays
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Problems

2) For large systems, the representation of the arrival and
services curves gets complex very fast, leading to:

* Long execution times

« Large memory consumption (“out of memory”’-errors)

Even with up-scaling of curves and
simplifications, the HCS model as a set of
standard GPCs could not be analyzed
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Envisioned Solution

- Safe “approximation” of arrival/service curves with
simpler curves

 Doing as less approximations as possible
— acquiring the most accurate result

* Doing approximation automatically — providing a
general framework instead of generating a use-

case-specific solution

Goal: Analysis of the entire HCS reference topology
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Source of the scaling problem

Many NC-based tools use pseudo-periodic curves, so does the MPA-toolbox

# events Start point of periodic part
A . (px0,py0) =(3,6)
9 | b (T
: |
-1 i r——
1 ] I
7--- | E Offsets of repetitions of
i (2,2,0) segments from periodic part
6-- ! dx,pdy) = (4,3
$0.0.0) i (pdx,pdy) = (4,3)
5___ . ' 1
' (2,5,0) The curve is defined by the two tuples:
4-1 @— |.  aperiodic part: {(0,3,0);(1,4,0);(2,5,0)}
E (1,4,0) ll. periodic tail : {(0,0,0); (2,2,0);
3"’3'3 0) | (px0, py0) := (3,6);
S | (pdx,pdy) := (4,3)}
_|. Aperiodic ! first repetition of
1 : . . : p
part ! Periodic part periodic part
— 5 ——7T

O 1 2 3 4 5 6 7 8 9 10
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Source of the scaling problem

(8,] (o] ~ oo
T T T

# events
an

# events
o - N w E-N a (0] ~ (o]
T T T T T T

At At

Stored segments of an
output curve to a RTC-
operation cover

hyperperiod of input 5r

i)
curves. 2 4
H
3 L
Hyperperiod: ,

least common multiple
of periods of input
curves. % 5 10 15

With co-prime periods of curves this yieldsAtcm exponential blow up of curves
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A first solution to the scaling problem
[Suppiger, Perathoner, Lampka, Thiele’10]
let constant c

# events  define the length
. of the aperiodic i The complex tail
] part, ;here c=3 i o you must eliminate
8. ; : and efficiency you
| : will find.
7. i
6__ I
a*(T)
3-- ®
4-- .’_: Replace complex periodic
3. : part by a single segment.
2. i
1.J. Aperiodic
part
: |
| T L : L :
0o 1. 2 3 4 5 6 7 8 9 10
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Conservative ¢ = pd0 + R - pda
approximation
A 5 |
9- original . r
g | aperiodic | original periodic E
part part - |
7.1 i \ | :
; o . explicitly added
6-- ; ' segments |
5. ! |
. o 5 <Let R be the number of
: : expansions of period into
3-- ._li (T aperiodic part
2. ’_' . <>Needs to be provided by
19— i . system designer
— T
o 1. 2 3 4 5 6 7 8 9 10
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Curve layout

A i :
7 new aperiodic part r |
8 _I€ i )i
7. ¢ : '
6 - | L

y | < This storage format is already
> a“(T) | supported in the MPA-toolbox,
4. ° ’ (no need to re-implement RTC
- I with finite curves)
2| p_- < Provides significant runtime
| 4 I savings C
| > T
C 1 2 3 4 5 6 7 8 9 10
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Use of conservative “conversion

5 - : Runtime of few
rule” (overapproximation) on the H(" _ “m= 20 &Y.
30F T T T T fCW minUTCS
Vodelline A ) . \C{ Why do they
odelling Approac run-time
05| . b?fher'?
piece-wise linear pseudo- 182 33 s Fa
periodic curves
20+ *
_f'g’ 15
S +
- Ty
10} e PR
, tEE ¥
5_
snlslabonie # + 1 + "
0 0.5 1 1.5 2
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Moderate runtime of HCS is misleading:

Server | NACg1 p=m=mmmmmmeemssmees NAC42 [===m=mmmmmmmemeeees NAC43 [---====mmmmmmmeees NAC44 Topline 4

e G e

‘ DEV4412‘ ‘ DEV4422‘ ‘ DEV4432‘ ‘ DEV4442‘

<> The HCS can be partitioned into 4 toplines DEVaa13 | DEVas23 | DEVaa3g [ DEVA43

‘ DEV4414l ‘ DEV4424l ‘ DEV4434l ‘ DEV4444l Y,

End device daisy chain

<> Each topline can be evaluated in isolation

<> Upscaled resolution of curves (increases pessimism
at the benefit of few number of segments)

Note: Quantitative evaluation methods might be
part of design space exploration techniques

=> we heed ko be fast as
possible
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Shortcoming of solution 1

%

DANGER

<> Losing accuracy.

new
backlog

< Tightness of the obtained
delay/backlog bound
becomes a function of the
length of the prefix and
thereby a function of R

—>

When done wrong (or arbitrary), unknown loss of
tightness has to be expected.
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Shortcoming of solution 1

I cannot accept
a deal with an

22 T T T T
unknown loss of
21+ precision.
201 o i © -
TN s
) 19’1“ A= | li -
> & R /{T“fa"‘
S N 7o =Y 1
8 18 —\:"._.‘- ~;} — (;!
o ~—~ :
@ ‘ \ NI\ / '
° N )
S 17+ ’*’& S/ .
/ By s — [~
RS =
% W AChony
16+ x R |
15+ XIWOE HKRKXXK X XX K o X b ¢
14 | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6

End-to-end delay of the F\{/ideo stream in the HCS plotted
for different values of R
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but......... at least we can bound the error by using
linear “under-approximation”

Under-approximation:

1 bound arrival from below
_____ - & service from above;
a, J _[ excludes behaviour (is
T not safe)
lower i)i
backlog
bound
— —>,
lower delay
bound
>

@ uuiT 417116 | #db



Uu/iT

Linear overapproximation of arrival and service

loz“ : Overapproximation, linear bound

*,7
from above and below:
A

[

% delay o/ la*(A) = max(0, N, + p- A) @QU(A)
Ju  backig 1A(A) = max(0, Ny +7- &) (£)8'(4)
| Bl
T | Backloq and dej.av

bound derived from
avempproxima&ious are
an upper bound ow the
actual values!

>
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Linear under-approximations of arrival and
service

Under-approximation, linear

Tau | bound from below and above:
A *,1
J ------ J_ -To/“’(A) = max(0, N, + p - A) @Oéu(A)
X B.
1 BHA) = max(0, N; + v - A)@BZ(A)
Zu backlog/
i > l oy Backloq and de.tav
delay / | bound derived from
v/ underapproximations
>1" are a Lower bound on

the actual values!
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Take-away message for solution 1

<> Linear overapproximation of periodic part (tail) speeds up
computation significantly

< When done correctly, i..e, with an aperiodic part (prefix)
of sufficient length no loss in precision has to be

expected
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Intuition for a rule to compute ¢ for a component

' Intersection of
overapproximated arrival

. and service curves bounds
' the stretch where backlog

. and delay bound reside

. (max. busy window, known
. from scheduling theory)

backlog

< delay — Cawn this be a
8 bound for c?

%,

325, bu& 14944944

T
S
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® b)(A) = infocr<ai{a(A —A) +b(A)}
@ b)(A) = supy>p{a(A+A) —b(A)}
b)(A) = supg<r<ata(D —A) +b(A)}
a@b)(A) =infy>o{a(A+ ) —b(N)}

<> Convolution operations (A< S implies0 <A< YS)
If the output curve needs to be defined up to S, input curve a
and b have to be defined only up to S too (problem solved).

S

® b
@ b

S

(
(
(a®
(

<> Deconvolution operations (A < S implies ?77?)

No trivial solution as no bound for A can be derived from the
definitions directly.

UUUUU



A second (GPC-based) solution  [Guan,Wang'13]

Ci = Ol B T i

9 -1 Explicitly stored segments (prefix)

<> S, Is the latest
i . : intersection value of
; . overapproximated arrival

>

6 - curve a and service
5.. ; . . curve b input to GPC C,
4. a"(T) ’ ’ Ci < K. is the prefix size
3 o . requested by the
| . down-streamed

2.1 e— :

| . component of C,
1-@— 5

!

0 14 2 3 4 5 6 7 8 10
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Execute analysis with overapproximations and
3, compute prefix lengths 8,

y
a1 —> GPC Cl 1,2 N GPC C2 S

>

< |CI000 K2 = SQ

propagation of prefix size along the transitive closure of the input relation
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Take away message for 2"d solution

(1 Computation of prefix sizes can be done efficiently
< System analysis based on linear overapproximations

<> back-propagation of prefix sizes along the input
paths

@ Size of prefixes resembles “busy window” approach
known from scheduling theory and proofs related to
the GPC and its input curves. How to be used with
other “component models” or NC-theorem like
PBOO, PMOO was unknown.

@ GPC-based system analysis does not reflect the
state-of-the-art (to slow & not tight)
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@ uunT

Running example from [Guan,Wang'13]

R1$5R1,1 R2fﬁR2,2 R3$BR3,3
Eq
— > ( GPC-based . end-to-end delay
ey 1 llﬁ " mefhods unime E,
1,4 ] .

Ey pseudo-periodic 315.975 o1
o > (O, O curves
Ces,d '| prefixed curves 0.24s 21
B ﬁ4,7 v o0 v o

3
Oy 7 C7 ar s> Cs Fagg> Co fag™ Tighthess of
= iﬁ?,m lﬂs,n iﬁg 12 resulks

4
*—> 010—) Cll —) 012 >
Qey 10 10,11 11,12 12

lﬁm « lﬂu « lﬁlQ,* 0

| \{?.
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Exploiting PBOO with running example

o Rli jo Rgf

—> (1 > methods runtime end-to-eEnd delay
| 4
Eo ¢ | pseudo-periodic
o> (4 || curves (GPC) 315975 21
refixed curves
Es Y 4P 0.24s 21
*—> 07 —> (GP(;) —
 pseudo-periodic
¢ curves (PBOO) 35.67s 19
024
v Can we do
X skill bQ&EQ'P % a

5 v e D
. » Cppoo ™ \i?
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Exploiting PMOO with running example

methods runtime end-to-eEr:d delay
Rli Ej?eds";gegg’f © 315.97s 21
’E_1> (pcrse;ié?d curves 0.245 01
Bt | | B ipacty | %5 o
p s | ves |
!
?4 » CpmM0o0O,2 [

!
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Towards a new solution
(&GPC-based)

= ini&arTRTC
with GPC~ with prefixed
style of curves we gain
analysis we si.gv\i.fh.:au!:tj
sighificantly S sFe.e.d n the
lose precision ' ahalysis

Finitary-RTC but with prefix
sizes derived for RTC~
operators (and not GPCs)

waalso simplifies proofs
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Problem definition:

e Let curves a and b be standard RT'C curves defined on the
interval [0, +00).

e Let curves a’ and b’ be their prefixed counterparts, i.e., they
are defined on the finite interval |0, k,| and |0, k3], where for
A €0,k,] :a(A) =a’(A) and for A € [0, k] : b(A) =b'(A)
holds.

e Let ® be an operator relevant for RTC, i.e.,

® €{®,®,min,+,—, @, @ }

For a finite constant £ we need to clarify the condition on the size
of k, and kp w.r.t.k and operator ® such that

VA € [0,k]: (a®b)(A) = (a/ @) (A)

@ uuiT 417116 | #db




Uu/iT

Recall: linear over- and underapproximations as
defined before:

0 - Underapproximation:
linear approx. from above | 3 ( )
18t linear approx. from below 1 a(A) =

Overapproximations
linear approx. from above | a(A) 7] ~

16

14 | linear approx. from below 1 5(A)

La(a)

10 +

Ta(A)
I B(A

T8(A)

—

upper arrival curve a(A)

2t lower service curve: 5(A) -

0 L 1 1 1
0 5 10 15 20 25

@ uuiT 417116 | #db




Uu/iT

Domain bounds with common RTC operators
Let the operators of group I be from the set {®, ®, min, +, —}.

w\pu!: curves staRr_lrcéard
@(Iength of ) operator ou’EPuE curve
bis k

@ 9@ length of@
@Iengt@ A (as before)

aisk
Satisfaction of the relatfon k < mm (kq, kp) Yyields that for
® € {®, ®, min, +, }an
(a ® b)( (" ®b")(A) holds

This directly arises from the definition of these RTC-operators, e.g.,

(CL X b)(A) = iIlfQS)\S@{CL(A — >\) + b()\)}
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Domain bounds with min-plus deconvolution

input curves
prefix length of Q"'EP“E curve
b is k, b
@ —)@ length of@
@Iength of N A (as before)
ais k,

There is no trivial solution, because:

(a @ b)(A) = supgspla(A +A) —b(A)}
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Recipe for deriving domain bound for min-plus
deconv.

@1 Compute lower bound on maximum vertical distance of a and b
(backlog bound with underapproximations)

@ Compute pseudo-inverse vdp of the lower vertical distance bound
but with respect to over-approximations of a and b.

Assuming that a is subadditive, b superadditive
and their longterm rates are not equal, i.e., the
backlog bound is finite

yields following property
sup {a(A+ ) —bAN)} > sup {a(A+XN) —bdN)}

0<A<wvdp A>vdp
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Lower bounding the max. vertical distance

A
a
< ib Step 1
Compute lower bound on maximum
— vertical distance of a and b (backlog
| Ta Tv(a,b) b bound with underapproximations)
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Pseudo-inverse of the lower bound on the max. vertical
distance

To

Step 2

Compute pseudo-inverse vdp of
lower bound on maximum vertical
distance but w.r.t.
overapproximations of a and b.

>
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When computing the min-plus deconvolution for a
specific A
sup {a(A+A) —b(A)} > sup {a(A+ X)) —bN)}

0<A<wvdp A>vdp

/ i jeqk we are downe!
—@ : >
Vdp QLMOS&«‘M
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Execute analysis with over- and
underapproximations to compute prefix lengths

vdp; ﬁ lB i Ki = Vdpjﬁ

- = B
Xi, K; = vdp, =
{01 node C; | Duuﬂ terminal
vdp, + K o node C;

)

< At an inner node C, we (back)propagate (the max.)
vdp; in the direction of a.; and vdp; + K;for (3.,

< At the terminal node of a path, it is sufficient to
back-propagate the max. vdp of that node.
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For the running example from

[Guan,Wang'13] Runtimes
(a) Run times and delay bounds
Linear RTC C;-finit | ©-finit
GPC 0.137s || 315.97s | 0.240s | 0.228s
PBOO || 0.140s 39.67s — 0.148s
PMOO || 0.035s 17.67s — 0.035s

@ uunT

Delay bounds linear: GPC ~72, PBOO ~57, PMOO = 23
Delay bounds others: GPC =21, PBOO =19, PMOO =15
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Running example from [Guan,Wang’13]
Prefix sizes

R1$531,1 32351—'@,2 R3$5R3,3

I
Qe, 1 Gl Fars™ 2 s~ Cs o
E2 vﬁl,él v52,5 v53,6
o> Ca a2 O Fan o>l Co rae
(b) Component-wise prefixes for the GPC analysis
Ry Ry Rs
C;-finit | ©-finit || C;-finit | O-finit || C;-finit | O-finit
Eq 98 81 90 61 74 35
Eo 90 31 78 61 59 39
Es 78 81 60 61 35 35
Ly 60 510 3D 3D 39 39
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Conclusion

< For large systems, the representation of the arrival and
services curves gets complex very fast as experienced with
the HCS model

< Function prefixing avoids this by limiting curves to finite
domains, HCS case study provided evidence but lacked formal
criterion on the prefix size.

<> Finitary RTC provided sucha criterion, but is
limited to GPC-models and their flow equations.

<> but, GPC-based system modelling is
unaccpetable, runtime and precision-wise.

<- This called for re-visiting of function prefixing,
but at the level of individual RTC-operators
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Thank you for your time



