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The Problem. System Performance Analysis

_______________________________________________________________________

(Input) (with resources)
Performance?
e Examples

— The system: a network, a data center, the power grid, a cache

— The resources: bandwidth, processors, batteries

— The load: bits, jobs, energy demand/supply

— The performance: reliable transmission, completion time, matching

e Problem formulations
— Load + resources - performance




Formalizing “the System”: A Queueing Model

—

Customers —— NS W N
(the load) ’

Queue

_______________________________________________________________________________________________

e Input

— statistical descriptions on the load and server, e.g., How do
customers arrive? How quickly are they served?

— other factors, e.g., queue size, scheduling
e OQutput

Pload, s_rate (delay > 37) =7

Battery Size s.t. P(Load =~ Demand) =1 —¢




The Resource Allocation Problem. The Reality

e (Constraints

— Traffic is “complex” (i.e., non-Poisson, subject to short(long)-term
correlations

— Networks are complex
— The underlying network/transport protocols add more complexity

e The goal: controllable delay/latency tails
— Latency tail-tolerant systems
— Internet at the speed of light, Tactile Internet

e Can it be done?
— Yes: by overprovisioning, measurements, more overprovisioning, etc.
— In some better way?




The Invention of Q. T. (A. K. Erlang, 1910’s)

Remote Village Telephone Lines Regional Office

(Customers) (Server)

Problem: given the number of phones and a target probability for getting a busy
tone, determine the number of required telephone lines.




Q. T. for the Internet. The Rise (60’s)

o Packet switching technology: all flows share the available bandwidth
by interleaving packets

_______________________________________________________________________________________________________________

Customers —

. — > IS W . I e
= flows (of pkts) —— i

Queue (Buffer)

_______________________________________________________________________________________________________________

e Raison d'étre: statistical multiplexing gain?

Bandwidth needed to support <N Bandwidth needed to support
X
service for N flows service for 1flow

1Liebeherr et al., 2001




Modeling Internet Traffic (60’s)

o Alike the Telephone Network traffic
— Packet arrivals: Poisson process
— Packet sizes: exponential

e But ... packets must change their size (?!) downstream

Buffer

_________________________________________________________________________________________________

System 1 System 2

e This convenient assumption was numerically justified, but ...
it leads to incorrect scaling laws of, e.g., e2e delays!

©(n) vs. ©(nlogn)

1Burchard/Liebeherr/Ciucu, ToN 2011




Audio/Video Internet Traffic (80’s)

e New models

— Markov Fluid (MF)
M

o

A
P

— Markov Modulated Poisson (MMP)
7

C1 A Co

e And techniques (spectral decompositions, Wiener-Hopf factorization)

e Exact results but numerical complexity blows up




Bellcore Ethernet Traces (90’s)
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Q. T. for the Internet. The Decline

e Ak.a. the failure of Poisson modeling

e Applying classical results to modern Internet traffic can be very
misleading

e New models (heavy-tailed, self-similar, alpha-stable) and
techniques

— capture the exact scaling behavior, e.q.,

— but inaccurate in finite regimes

— ... few scheduling, and overly-sophisticated (mathematically)
— ... the network case (?)
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Alternatives. Effective Bandwidth (late 1980s-90s)

e Setting: multiplexing many flows (MF, MMP, FBM)

— I N Link=C

e Lindley’s equation

= Sup{z A;(t) — Ct}

t>0

e The tail (?)

(Sup{z A;(t) — Ct} > :c)

t>0
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Computations and Main Result

e Union Bound

P (SuptZO{Zi A;(t) — Ct} > :1:)
<> PO Ai()—Ct>x)

e Large deviations

P(X;1+Xo+4 -+Xy>NE[X]+2)<...

o Effective bandwidth approximation (for loss)

P(Q>x)~e ™
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Numerical Accuracy? An Admission Control
Problem

e Given a total capacity C' how many flows should be admitted?

Al(n)\
. —— I . Link=C

Ay

e ... subject to the constraint

i <.

loss
e Answer: as many as long as
E C; <C
i

o It (the effective bandwidth approximation) only “makes sense
for Poisson flows; too conservative otherwise

n

N. Shroff and M. Schwartz, Improved Loss Calculations at an ATM multiplexer, IEEE Transactions on Networking, 1998
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The “Killing” Evidence
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Another Alternative: Stochastic Network Calculus
(1990s- ?)

e Extends the (deterministic) network calculus methodology in a
probability space

e Essentially, it's a mix of
Effective Bandwidth P (Q > z) = e "

+

Scheduling A(n)—é—L»--

_________________________________________

+

Multi-Node




Key Property 1: Scheduling Abstraction

e Consider the following real system (from the perspective of A(n2))
which is not linear

A(n)

A(n)

e The transformed virtual system is “ somewhat’ linear
D(n) > ming<p<p {Ak) + S(k,n)} VA




Key Property 2: Convolution-Form Networks

o Consider a concatenation of systems with known service processes

... where S(k, n) is the (min,+) convolution of the others
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Why Do Some Work on It?

e An admission control problem: How many type 1/2 flows can be
admitted at some link subject to some latency constraints?
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... but on a Closer Look
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Moving Forward: How to Account for Correlations?

e ... and avoid the “killing” step

P (sup;>o{>_; Ai(t) — Ct} > x)
<>, P Ait) - Ct>x)

e Insight #1: in queueing systems

E [buffer change | history] <0

due to: average rate < capacity (Loynes’ condition)
e A supermartingaleis a process X,, such that for each n € N
E|Xpq1—Xn| X1,...,Xn| <0

(the expected increment is negative)




Dealing with the Actual Queueing Problem

P (SuPtZO{Z@‘ A;(t) — Ct} > 33)

e Defining the stopping time

11'1f{ ZA(t Ct>x}

e ... we need to compute
IP’(T < oo)

e Insight #2: (bounded) stopping times preserve martingale properties

E[X)] = B[X,]
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Martingale-Envelope

e Idea: assign to a queueing system a suitable supermartingale My,
(“Martingale-Envelope™)

e | Definition:

For 6 > O and A monotonically increasing, the flow A admits a
(h, 8, C")-martingale-envelope if for n > m

My, := h(ayn)e?(Almn)=Cln-—m))

is a (super-)martingale

— ('is the allocated capacity
— 6 and h capture the correlation structure of A




Operation 1: Multiplexing

o If two independent flows A1 and A, admit martingale-envelopes
(h1,0,C1) and (h»o,6,C>) then the aggregate A; + A> admits
the martingale-envelope

(h1 ® ho,0,C1 + C>2)
where

hi1 ® ho(n) ;= Ogﬁﬂign hi(m)ho(n —m) ((min, x) — convolution)

e Why? (independent martingales are “closed” under the operation of
multiplication)




Operation 2. Scheduling

o If M(n) captures A(n) and M.(n) captures A.(n) then for a
switching time £ then

~ | Mc(n) n <k
M(n) = { Mo ()YM(n) n> k
iS @ martingale.
e Construct a service martingale

Mg p = hs(sp)ef (C(n—m)=5(m,n))




Example 1: Markov On-On Processes

e two state Markov chain a;.
e stationary distribution = = (p i i i q)
e arrival process A(n) =3 a;

e Transform the transition matrix

. 1—-p p . 1—p  pefhi
( q 1—9) ’ ( ¢ (1-q)e"

e Let \(9) spectral radius and (vg, v1) eigenvector

e | If ¢ and ¢ satisfy A\(9) = /C then

My, = vq, ?(AM=C1) is 5 martingale.

-> A admits a (h, 0, C)-martingale-envelope (!), where

h(0) :=vg and h(R) := vy




Example 2: Autoregressive processes

o Z1,Z5,...~ Ny1" Gaussian White Noise” 1,0 >0, 0 < p < 1

e Autoregressive process:

ant1 = pan + (1 —o)u+ (1 — p)oZy,

e Let 0= QC_Q'M and h(t) := eT 70t
o

e Then M(n) := h(a,)e’ ™% s a martingale

e > Aadmitsa (h,0,C)-martingale-envelope




Application #1. Per-Flow Delay

e For several scheduling algorithms

FIFO : P(W > d) < 4" %
SP: P(W >d) <~"e
EDF: P(W >d) < A" Y

e Notes:

- 0<y<1
— previous exponential prefactors >1




Simulations. EDF
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Application 2. Per-Flow Delay (access + queueing)

o A flow (Markov-Modulated, etc.) is competing at a wireless channel

MAC

L — 1 (other) sources

k 4
k 4

e MAC: Aloha or CSMA/CA
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The Continuous Case. Markov Additive Processes

e Definition

A bivariate process (A(t), M;): is a Markov Additive Process if and
only if

1. the pair (A(t), M) is a Markov process in R,
2. A(0) =0 and A(t) is nondecreasing,

3. the (joint and conditional) distribution of (A(s,t), M; | A(s), M)
depends only on M.

e Examples
— Markov Fluid
— Markov Modulated Poisson Process (MMPP)
— Markov Arrival Processes (MAP)
— etc.
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Example 1. Markov Fluid (MF)

=

Then the process

Let

h(Mt)eg(A(t)_tC)

is a martingale.

32




Example 2. Markov Modulated Poisson Process (MMPP)

111

For 6 > 0, let Ty denote the following 2 X 2-matrix:

T, — ()\169 — [ — A1 1 )
' f42 Aoe? — o — o)

Further, let A\(f) denote its spectral radius. Pick # > 0 such that A(0) = 6C,
and let h = (h1, he) denote an eigenvector corresponding to Ty and A(#). Then

the process
h(Mt)eﬂ(A(t)—tC)

is a martingale.
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Example 3. Markov Arrival Process (MAP)

For 6 > 0, let A(#) denote the spectral radius of the matrix
Do +¢e’Dy
If A(#) = 0C, and h is a corresponding eigenvector, then the process
h(M,)?AD—C)

is a martingale.
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Multiplexing MAPs

In the situation with two MAPs, for # > 0, let A(f#) and \'(#) denote
the spectral radii of the matrices

Do+¢€’°D; ,and D} + €D} ,

respectively. If A\(6) + X' (6) = 6C and h a corresponding eigenvector,
then the process

h(Mt)ee(A(t)+A’(t)—tc)

is a martingale.
(!) No blow-up of numerical complexity.
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The Take-Aways

e Modern (queueing) systems are complex

e Stochastic Network Calculus (SNC) started as a very promising
approach (broad arrivals, scheduling, multi-node)

o Need for improvements/alternatives
— Martingale approach (?)
— Copula analysis (?)
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