A Unified Analysis of Markov Additive Processes

Florin Ciucu

University of Warwick

The Problem. System Performance Analysis

Performance?

Examples

- The system: a network, a data center, the power grid, a cache
- The resources: bandwidth, processors, batteries
- The load: bits, jobs, energy demand/supply
- The performance: reliable transmission, completion time, matching

Problem formulations

- Load + resources → performance
- Load + performance → resources

Formalizing "the System": A Queueing Model

Input

- statistical descriptions on the load and server, e.g., How do customers arrive? How quickly are they served?
- other factors, e.g., queue size, scheduling

Output

$$\mathbb{P}_{\mathsf{load}, \mathsf{s_rate}} \Big(\mathsf{delay} > x \Big) = ?$$

Battery Size s.t. $\mathbb{P}(\mathsf{Load} \approx \mathsf{Demand}) = 1 - \varepsilon$

The Resource Allocation Problem. The Reality

Constraints

- Traffic is "complex" (i.e., non-Poisson, subject to short(long)-term correlations
- Networks are complex
- The underlying network/transport protocols add more complexity
- The goal: controllable delay/latency tails
 - Latency tail-tolerant systems
 - Internet at the speed of light, Tactile Internet
- Can it be done?
 - Yes: by overprovisioning, measurements, more overprovisioning, etc.
 - In some better way?

The Invention of Q. T. (A. K. Erlang, 1910's)

Remote Village (Customers)

Telephone Lines (Server)

Regional Office

Problem: given the number of phones and a target probability for getting a busy tone, determine the number of required telephone lines.

Q. T. for the Internet. The Rise (60's)

 Packet switching technology: all flows share the available bandwidth by interleaving packets

Raison d'être: statistical multiplexing gain¹

¹Liebeherr et al., 2001 **6**

Modeling Internet Traffic (60's)

- Alike the Telephone Network traffic
 - Packet arrivals: Poisson process
 - Packet sizes: exponential
- But ... packets must change their size (?!) downstream

This convenient assumption was numerically justified, but ...
it leads to incorrect scaling laws of, e.g., e2e delays¹

$$\Theta(n)$$
 vs. $\Theta(n \log n)$

Audio/Video Internet Traffic (80's)

- New models
 - Markov Fluid (MF)

Markov Modulated Poisson (MMP)

- And techniques (spectral decompositions, Wiener-Hopf factorization)
- Exact results but numerical complexity blows up

Bellcore Ethernet Traces (90's)

Q. T. for the Internet. The Decline

- A.k.a. the failure of Poisson modeling
- Applying classical results to modern Internet traffic can be very misleading
- New models (heavy-tailed, self-similar, alpha-stable) and techniques
 - capture the exact scaling behavior, e.g.,

$$\mathbb{P}_{\mathsf{load}, \mathsf{s_rate}}(\mathsf{delay} > x) = x^{1-\alpha}, \ x >> 0$$

- but inaccurate in finite regimes
- ... few scheduling, and overly-sophisticated (mathematically)
- ... the network case (?)

Alternatives. Effective Bandwidth (late 1980s-90s)

Setting: multiplexing many flows (MF, MMP, FBM)

Lindley's equation

$$Q = \sup_{t \ge 0} \{ \sum_{i} A_i(t) - Ct \}$$

The tail (?)

$$\mathbb{P}\left(\sup_{t\geq 0}\left\{\sum_{i}A_{i}(t)-Ct\right\}>x\right)$$

Computations and Main Result

Union Bound

$$\mathbb{P}\left(\sup_{t\geq 0} \left\{ \sum_{i} A_{i}(t) - Ct \right\} > x \right)$$

$$\leq \sum_{t} \mathbb{P}\left(\sum_{i} A_{i}(t) - Ct > x \right)$$

Large deviations

$$\mathbb{P}\left(X_1 + X_2 + \dots + X_N > NE[X] + z\right) \leq \dots$$

Effective bandwidth approximation (for loss)

$$\mathbb{P}\left(Q > x\right) \approx e^{-\eta x}$$

Numerical Accuracy? An Admission Control Problem

Given a total capacity C how many flows should be admitted?

• ... subject to the constraint

$$\mathbb{P}^i_{\mathrm{loss}} \leq \varepsilon$$

Answer: as many as long as

$$\sum_{i} C_i \le C$$

 It (the effective bandwidth approximation) only "makes sense" for Poisson flows; too conservative otherwise

The "Killing" Evidence

60 MMPP flows

$$(1.3) \mathbb{P}(Q > x) \approx e^{-\eta x}$$

$$(1.1) \approx \alpha e^{-\eta x}$$

$$(1.5) \approx \alpha_1 e^{-\eta_1 x} + \alpha_2 e^{-\eta_2 x} + \alpha_3 e^{-\eta_3 x}$$

(!)
$$\mathbb{P}(Q > x) \approx \beta e^{-N\gamma} e^{-\eta x}$$

Another Alternative: Stochastic Network Calculus (1990s-?)

- Extends the (deterministic) network calculus methodology in a probability space
- Essentially, it's a mix of

Effective Bandwidth $\mathbb{P}(Q > x) \approx e^{-\eta x}$

Key Property 1: Scheduling Abstraction

• Consider the following real system (from the perspective of A(n)) which is not linear

The transformed virtual system is `somewhat' linear

$$D(n) \ge \min_{0 \le k \le n} \left\{ A(k) + S(k, n) \right\} \ \forall A$$

Key Property 2: Convolution-Form Networks

Consider a concatenation of systems with known service processes

NC transforms it to a single system

... where S(k, n) is the (min,+) convolution of the others

Why Do Some Work on It?

 An admission control problem: How many type 1/2 flows can be admitted at some link subject to some latency constraints?

... but on a Closer Look

Moving Forward: How to Account for Correlations?

... and avoid the "killing" step

$$\mathbb{P}\left(\sup_{t\geq 0} \left\{ \sum_{i} A_{i}(t) - Ct \right\} > x \right)$$

$$\leq \sum_{t} \mathbb{P}\left(\sum_{i} A_{i}(t) - Ct > x \right)$$

Insight #1: in queueing systems

E [buffer change | history] ≤ 0 due to: average rate \leq capacity (Loynes' condition)

• A *supermartingale* is a process X_n such that for each $n \in \mathbb{N}$

$$E\left[X_{n+1} - X_n \mid X_1, \dots, X_n\right] \le 0$$

(the expected increment is negative)

Dealing with the Actual Queueing Problem

$$\mathbb{P}\left(\sup_{t\geq 0}\left\{\sum_{i} A_{i}(t) - Ct\right\} > x\right)$$

Defining the stopping time

$$\tau := \inf \left\{ t : \sum_{i} A_i(t) - Ct > x \right\}$$

• ... we need to compute

$$\mathbb{P}(\tau < \infty)$$

• Insight #2: (bounded) stopping times preserve martingale properties

$$E\left[X_{1}\right] = E\left[X_{\tau}\right]$$

Martingale-Envelope

• Idea: assign to a queueing system a suitable supermartingale M_n ("Martingale-Envelope")

Definition:

For $\theta > 0$ and h monotonically increasing, the flow A admits a (h, θ, C) -martingale-envelope if for $n \geq m$

$$M_n := h(a_n)e^{\theta(A(m,n)-C(n-m))}$$

is a (super-)martingale

- C is the allocated capacity
- θ and h capture the correlation structure of A

Operation 1: Multiplexing

• If two independent flows A_1 and A_2 admit martingale-envelopes (h_1, θ, C_1) and (h_2, θ, C_2) then the aggregate $A_1 + A_2$ admits the martingale-envelope

$$(h_1 \otimes h_2, \theta, C_1 + C_2)$$

where

$$h_1 \otimes h_2(n) := \min_{0 \le m \le n} h_1(m)h_2(n-m)$$
 ((min, x) – convolution)

 Why? (independent martingales are "closed" under the operation of multiplication)

Operation 2. Scheduling

• If M(n) captures A(n) and $M_c(n)$ captures $A_c(n)$ then for a switching time k then

$$\tilde{M}(n) = \begin{cases} M_c(n) & n \leq k \\ M_c(n)M(n) & n \geq k \end{cases}$$

is a martingale.

Construct a service martingale

$$M_{s,n} := h_s(s_n)e^{\theta(C(n-m)-S(m,n))}$$

Example 1: Markov On-On Processes

- two state Markov chain a_k
- stationary distribution $\pi = \left(\frac{q}{p+q}, \frac{p}{p+q}\right)$

- arrival process $A(n) = \sum a_k$
- Transform the transition matrix

$$T := \begin{pmatrix} 1-p & p \\ q & 1-q \end{pmatrix} \rightsquigarrow T_{\theta} := \begin{pmatrix} 1-p & pe^{\theta R} \\ q & (1-q)e^{\theta R} \end{pmatrix}$$

- Let $\lambda(\theta)$ spectral radius and (v_0, v_1) eigenvector
- If C and θ satisfy $\lambda(\theta) = e^{\theta C}$ then

 $M_n := v_{a_n} e^{\theta(A(n) - Cn)}$ is a martingale.

 \rightarrow A admits a (h, θ, C) -martingale-envelope (!), where

$$h(0) := v_0 \text{ and } h(R) := v_1$$

Example 2: Autoregressive processes

- $Z_1, Z_2, \ldots \sim \mathcal{N}_{0,1}$ " Gaussian White Noise" $\mu, \sigma > 0, \ 0 < \varphi < 1$
- Autoregressive process:

$$a_{n+1} := \varphi a_n + (1 - \varphi)\mu + (1 - \varphi)\sigma Z_n$$

- Let $\theta=2\frac{C-\mu}{\sigma^2}$ and $h(t):=e^{\frac{\varphi}{1-\varphi}\theta t}$
- Then $M(n) := h(a_n)e^{\theta(A(n)-nC)}$ is a martingale
- \rightarrow A admits a (h, θ, C) -martingale-envelope

Application #1. Per-Flow Delay

For several scheduling algorithms

FIFO: $\mathbb{P}(W > d) \leq \gamma^n e^{-\theta \dots}$

 $\mathsf{SP}: \ \mathbb{P}\left(W > d\right) \leq \gamma^n e^{-\theta \dots}$

EDF: $\mathbb{P}(W > d) \leq \gamma^n e^{-\theta \dots}$

- Notes:
 - $-0 < \gamma < 1$
 - previous exponential prefactors >1

Simulations. EDF

Application 2. Per-Flow Delay (access + queueing)

A flow (Markov-Modulated, etc.) is competing at a wireless channel

• MAC: Aloha or CSMA/CA

CSMA/CA

The Continuous Case. Markov Additive Processes

Definition

A bivariate process $(A(t), M_t)_t$ is a Markov Additive Process if and only if

- 1. the pair $(A(t), M_t)$ is a Markov process in \mathbb{R}^2 ,
- 2. A(0) = 0 and A(t) is nondecreasing,
- 3. the (joint and conditional) distribution of $(A(s,t), M_t \mid A(s), M_s)$ depends only on M_s .

Examples

- Markov Fluid
- Markov Modulated Poisson Process (MMPP)
- Markov Arrival Processes (MAP)
- etc.

Example 1. Markov Fluid (MF)

Let

$$\theta = \frac{\lambda}{P - C} - \frac{\mu}{C}$$
, $h(P) = \frac{\theta C + \mu}{\mu}$, and $h(0) = 1$.

Then the process

$$h(M_t)e^{\theta(A(t)-tC)}$$

is a martingale.

Example 2. Markov Modulated Poisson Process (MMPP)

For $\theta > 0$, let T_{θ} denote the following 2×2 -matrix:

$$T_{\theta} := \begin{pmatrix} \lambda_1 e^{\theta} - \mu_1 - \lambda_1 & \mu_1 \\ \mu_2 & \lambda_2 e^{\theta} - \mu_2 - \lambda_2 \end{pmatrix} .$$

Further, let $\lambda(\theta)$ denote its spectral radius. Pick $\theta > 0$ such that $\lambda(\theta) = \theta C$, and let $h = (h_1, h_2)$ denote an eigenvector corresponding to T_{θ} and $\lambda(\theta)$. Then the process

$$h(M_t)e^{\theta(A(t)-tC)}$$

is a martingale.

Example 3. Markov Arrival Process (MAP)

For $\theta > 0$, let $\lambda(\theta)$ denote the spectral radius of the matrix

$$D_0 + e^{\theta} D_1 ,$$

If $\lambda(\theta) = \theta C$, and h is a corresponding eigenvector, then the process

$$h(M_t)e^{\theta(A(t)-tC)}$$

is a martingale.

Multiplexing MAPs

In the situation with two MAPs, for $\theta > 0$, let $\lambda(\theta)$ and $\lambda'(\theta)$ denote the spectral radii of the matrices

$$D_0 + e^{\theta} D_1$$
, and $D'_0 + e^{\theta} D'_1$,

respectively. If $\lambda(\theta) + \lambda'(\theta) = \theta C$ and h a corresponding eigenvector, then the process

$$h(M_t)e^{\theta(A(t)+A'(t)-tC)}$$

is a martingale.

(!) No blow-up of numerical complexity.

The Take-Aways

- Modern (queueing) systems are complex
- Stochastic Network Calculus (SNC) started as a very promising approach (broad arrivals, scheduling, multi-node)
- Need for improvements/alternatives
 - Martingale approach (?)
 - Copula analysis (?)