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Adaptive Resource Allocation in Cellular Uplink
Direction

Input metrics (LTE)
I Buffer status reports (BSR)
I Channel quality indicators (CQI)

Goal
I Statistical QoS guarantee
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I Arrival traffic A
I Buffer filling B

I Service S
I Scheduling epoch ∆
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Methods

I Exact analysis for Poisson traffic

I Analytical framework for general arrival and service processes
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Exact Analysis for Poisson Traffic
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Exact Analysis for Poisson Traffic

m(t)l

Model
I Single M/M/1 queue: fixed λ, variable µ(t)
I Given λ and the queue length at epoch start
I Epoch based resource allocation
⇒ Find µ(t) that provides a probabilistic bound on the queue length at the end of
the epoch
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Exact Analysis for Poisson Traffic

0 1 k... k+1 max
q

max
q +1 ......

1. Queue initially in state k

2. Fix µ(t) during ∆ such that
3. Probability that the queue at time ∆ is longer than qmax is less than ε

I Based on the transient behavior of the M/M/1 queue [Kleinrock].
Model parameters: λ, qmax , ε , ∆
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Exact Analysis for Poisson Traffic

I Required µ for various parameters

I Improvement w.r.t. the static system with equivalent µ̄
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(b) Static system parameterized with µ̄.

Parameters: λ = 10, ε = 10−2, ∆ = 1 and 104 epochs for (b).

6. April 2016 | KOM TUD | Amr Rizk | 7



Exact Analysis for Poisson Traffic

I Required µ for various parameters
I Improvement w.r.t. the static system with equivalent µ̄

0 5 10 15 20
0

10

20

30

40

50

state k

re
qu

ir
ed

   
μ

decreasing q
max

(a) qmax ∈ {5, 10, 15, 20}

0 5 10 15 20 25
10

−3

10
−2

10
−1

10
0

queue length at Δ

C
C

D
F

 

 

adaptive
static

q
max

=5

q
max

=15

q
max

=10

(b) Static system parameterized with µ̄.

Parameters: λ = 10, ε = 10−2, ∆ = 1 and 104 epochs for (b).
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Exact Analysis for Poisson Traffic

Utilization comparison:
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I Key relation of λ∆ to qmax for a given ε
I Initial queue length is less helpful if the unknown traffic amount in during the

epoch, i.e., λ∆, predominates qmax
→ Operation of queue-aware scheduling is non-trivial

I Resource savings in the adaptive case → Proof of concept
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Beyond the Poisson Model

Generalization w.r.t. service and arrival traffic models:
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Framework: Stochastic Network Calculus
I Cumulative arrivals A(τ) resp. departures D(τ) up to time τ
I Backlog at τ : B(τ) = A(τ)− D(τ)
I Service in (τ , t ] as random process S(τ , t)
I Assume strict service resp. adaptive service curve [Burchard et. al’06]
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Queueing Model
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I Evaluation requires a lower bound on the service process
P [S(u, t) ≥ S(t − u), ∀u ∈ [τ , t]] ≥ 1− εs

I To derive a lower bound on the departures D(τ + ∆)
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Wireless Channel Model

Basic block fading model for a wireless transmission [Fidler, Al-Zubaidy]

I Time slotted model with iid increments ci = β ln(1 + γi)
I Rayleigh fading channel: γi is exp distributed with parameter η
I Lower bounding function for the service process

S(t) = 1
θ

(
ln(εp)− t

[
η + θβ ln(η) + ln (Γ(1− θβ, η))

])
with θ > 0, incompl. Gamma fct. Γ and a violation probability εs = (t − τ)εp.

Derivation using Boole’s inequality, Chernoff’s bound and the Laplace
transform of the increments.
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Infrequent Adaptation
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I Bound on backlog at the end of epoch P
[

B(τ + ∆) ≤ bmax

]
≥ 1− εs

I Requirements on S(t): Allocate resources β during epoch ∆ such that the
follwoing holds

S(∆) ≥ B(τ) + A(τ , τ + ∆)− bmax, and (1)
S(τ +∆−u) ≥ A(u, τ + ∆)− bmax, ∀u∈ [τ , τ + ∆] (2)
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Multi-user Scheduling with Infrequent
Adaptation

Scenario:
I M homogeneous, statistically independent MS channels

I Base station decides on amount of resource blocks βj for MS j ∈ [1, M] based
on the infrequent adaptation technique

I Overall amount of resource blocks βs in epoch ∆
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Multi-user Scheduling with Infrequent
Adaptation

Scenario:
I M homogeneous, statistically independent MS

I Base station decides on amount of resource blocks βj for MS j ∈ [1, M] based
on the infrequent adaptation technique

I Overall amount of resource blocks βs in epoch ∆

I Three basic resource allocation algorithms:

1. “deterministic fair”: jth MS receives β̂j = min{βj ,βs/M}

2. “priority”: MS in class j receives β̂j = min{βj ,βs −
∑j−1

k=1 β̂k}

3. “proportional fair emulation”: Priority scheduler with priorities reordered every
epoch ∆ according to a score Sj(τ , τ + ∆)/(Dj(τ)/τ) similar to [Kelly, et al.
’98].

6. April 2016 | KOM TUD | Amr Rizk | 14



Multi-user Scheduling with Infrequent Adapta-
tion: Simulation
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(b) 90% utilization
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(c) 95% utilization

I Adaptive system retains statistical backlog bound depending on scheduling
algorithm

I Notable difference only at very high utilization
Parameters: M = 10, λ = 0.65, εs = 10−2, ∆ = 100 slots, bmax = 65, SNR 1/η = 3dB
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Key Takeaway Points

I Poisson case: Analytical results to quantify best-case resource savings.

I Model reveals important relation of λ∆ to qmax.

I Analytical framework identifies two regimes, one where adaptive scheduling is
effective and one where it is not.

I A mathematical treatment of queue-aware scheduling that is applicable to a
broad class of arrival and service processes.
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Related Models

1. Optimization of queueing service policies

2. Optimization of power and rate allocation in cellular systems

Difference to 1:
I online, epoch-based technique for general arrival and service processes

Difference to 2:
I dynamic programming to minimize a cost function of weighted power and

rate consumption
I sample path as input
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