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Bounding Flow Arrivals
n Where do we need these bounds?

¨At the locations of interference with the flow of interest.
n How do we derive them?

¨That’s not that easy to answer.
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Cutting Down the Network
n The previous network is too complex to work with
n Cut down the network to the relevant part

¨Use output bounds, left-over service curves (arbitrary multiplexing), …
n Result:
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The Struggle: Segregation vs. Aggregation 
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Round 1: The Contenders Approach Each Other
n Pay Bursts Only Once

¨Subtraction before convolution
n Token buckets and rate latencies
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(a) Sample server graph.

s0

s02s01

s1foi

�l.o.xf1

�s01,s0� �l.o.xf2

�s02,s0�

s1foi

�l.o.xf1

�s01,s0� �l.o.xf2

�s02,s0�

�xf1 �xf2

� �

+

(b) Segregated flow arrival bounding.
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(c) Aggregate cross-tra�c arrival bounding.

Figure 2: Decomposition of a server graph (a) for cross-tra�c arrival bounding: (b) depicts the alternative to segregate the
cross-flows [4] and (c) illustrates our new approach that maximizes cross-tra�c aggregation during the arrival bounding.

This method calculates the arrival bound with the objective
to maximize aggregation of flows, in fact deviating from the
end-to-end analysis of cross-flows. Thus, the aggregate ar-
rival bounding method defines a di↵erent decomposition of
the server graph into left-over service curves than the state-
of-the-art procedure from [4]. Figure 2c and the following
algorithm depict our approach.

algorithm 1. (Aggregate Arrival Bounding) The foi’s
cross-tra�c arrival bound at server s is derived as follows.
Starting from s, paths of cross-flows are backtracked via links;
each link l connects a source server l

src and a destination
l

dest. The function dest(s) returns the set of links whose
destination is s, x (foi, l) returns the cross-flows of foi on l

and for a set of links L we define x (foi,L) =
T

l2L x (foi, l).
We get x (x (foi, l)) = F (lsrc) \x (foi, l). Note, that flow sets
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The recursion of Algorithm 1 is exemplarily unfolded to il-
lustrate the backtracking of interference in a feed-forward
network. Initially, the foi’s cross-tra�c ↵

x(foi)
s

is split into
the sum of flow arrivals from incoming links and those orig-
inating at s itself, ↵Fsrc(s)\x(foi). Next, the left-over service

curves at the sources of incoming links are derived in or-
der to separate the foi’s cross-tra�c to bound x(foi, l1) from
its cross-tra�c x(x(foi, l1)), i.e., there are two directions to
further backtrack flows by unfolding the term. Step 3 is to-
wards the sources of x(foi, l1) and step 4 towards x(x(foi, l1))
– the latter recursively starts an independent worst-case
cross-tra�c arrival bounding for x(x(foi, l1)). Both steps
require to track the flow paths for proper left-over service
computation in a feed-forward network. The backtracking
will eventually terminate at the flow’s sources.

Next, we prove that our aggregate arrival bounding method
outperforms the segregated cross-flow procedure.

Theorem 4. (Accuracy of Aggregate Arrival Bounding)
The aggregate arrival bounding method derives more accu-
rate bounds than the segregated flow arrival bounding proce-
dure for ↵ 2 FTB and � 2 FRL.

Proof. Without loss of generality (detailed explanation
follows after the proof), we prove this statement by showing
that there are no beneficial e↵ects of bounding long tandems
(Figure 2b) that are more advantageous than bounding both
flows aggregately on shorter tandems (Figure 2c).
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where n denotes the opposite cross-flow’s index, i.e., 1 = 2
and 2 = 1. Therefore,
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(b) Segregated flow arrival bounding.
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(c) Aggregate cross-tra�c arrival bounding.

Figure 2: Decomposition of a server graph (a) for cross-tra�c arrival bounding: (b) depicts the alternative to segregate the
cross-flows [4] and (c) illustrates our new approach that maximizes cross-tra�c aggregation during the arrival bounding.

This method calculates the arrival bound with the objective
to maximize aggregation of flows, in fact deviating from the
end-to-end analysis of cross-flows. Thus, the aggregate ar-
rival bounding method defines a di↵erent decomposition of
the server graph into left-over service curves than the state-
of-the-art procedure from [4]. Figure 2c and the following
algorithm depict our approach.

algorithm 1. (Aggregate Arrival Bounding) The foi’s
cross-tra�c arrival bound at server s is derived as follows.
Starting from s, paths of cross-flows are backtracked via links;
each link l connects a source server l

src and a destination
l

dest. The function dest(s) returns the set of links whose
destination is s, x (foi, l) returns the cross-flows of foi on l

and for a set of links L we define x (foi,L) =
T

l2L x (foi, l).
We get x (x (foi, l)) = F (lsrc) \x (foi, l). Note, that flow sets

might be restricted by location, e.g., ↵
x(foi)
s

x

= ↵

x(foi)\F (s
x

)
s

x

.

↵

x(foi)
s

=
X

l12dest(s)

⇣
↵

x(foi,l1)
l

src
1

↵ �

l.o.x(foi,l1)
l

src
1

⌘
+ ↵

Fsrc(s)\x(foi)

=
X

l12dest(s)

⇣
↵

x(foi,l1)
l

src
1

↵
⇣
�

l

src
1
 ↵

x(x(foi,l1))
l

src
1

⌘⌘
+↵

Fsrc(s)\x(foi)

=
X

l12dest(s)

((
X

l22dest(lsrc1 )

⇣
↵

x(foi,{l2,l1})
l

src
2

↵ �

l.o.x(foi,{l2,l1})
l

src
2

⌘
+↵

Fsrc(l
src
1 )\x(foi,l1) )

↵
⇣
�

l

src
1
 ↵

x(x(foi,l1))
l

src
1

⌘
)

+↵

Fsrc(s)\x(foi)

=
X

l12dest(s)

((
X

l22dest(lsrc1 )

⇣
↵

x(foi,{l2,l1})
l

src
2

↵ �

l.o.x(foi,{l2,l1})
l

src
2

⌘
+↵

Fsrc(l
src
1 )\x(foi,,l1) )

↵ (�
l

src
1
 X

l22dest(lsrc1 )

⇣
↵

x(x(foi,{l2,l1}))
l

src
2

↵ �

l.o.x(x(foi,{l2,l1}))
l

src
2

⌘
))

+↵

Fsrc(s)\x(foi)

The recursion of Algorithm 1 is exemplarily unfolded to il-
lustrate the backtracking of interference in a feed-forward
network. Initially, the foi’s cross-tra�c ↵

x(foi)
s

is split into
the sum of flow arrivals from incoming links and those orig-
inating at s itself, ↵Fsrc(s)\x(foi). Next, the left-over service

curves at the sources of incoming links are derived in or-
der to separate the foi’s cross-tra�c to bound x(foi, l1) from
its cross-tra�c x(x(foi, l1)), i.e., there are two directions to
further backtrack flows by unfolding the term. Step 3 is to-
wards the sources of x(foi, l1) and step 4 towards x(x(foi, l1))
– the latter recursively starts an independent worst-case
cross-tra�c arrival bounding for x(x(foi, l1)). Both steps
require to track the flow paths for proper left-over service
computation in a feed-forward network. The backtracking
will eventually terminate at the flow’s sources.
Next, we prove that our aggregate arrival bounding method

outperforms the segregated cross-flow procedure.

Theorem 4. (Accuracy of Aggregate Arrival Bounding)
The aggregate arrival bounding method derives more accu-
rate bounds than the segregated flow arrival bounding proce-
dure for ↵ 2 FTB and � 2 FRL.

Proof. Without loss of generality (detailed explanation
follows after the proof), we prove this statement by showing
that there are no beneficial e↵ects of bounding long tandems
(Figure 2b) that are more advantageous than bounding both
flows aggregately on shorter tandems (Figure 2c).
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where n denotes the opposite cross-flow’s index, i.e., 1 = 2
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Last, we show that the former arrival bound cannot be
smaller than the latter one, i.e., (2)  (1) always holds.
According to [3], Lemma 12, we can distribute the decon-
volution of token-bucket arrivals with a rate-latency service
curve over the aggregation. For (2), this means:⇣⇣
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We now compare each segregated cross-flow’s impact on the
final arrival bound. This gives us two sub-terms:⇣
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Next, we can apply the composition rule for ↵ ([13], The-
orem 3.1.12) and use ⌦’s commutativity to reformulate the
terms to
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These equations reveal that the crucial di↵erence between
both arrival bounding alternatives is the respective (left-
over) service curve at server s0. Only this single system ser-
vice curve defines the di↵erence between both arrival bounds;
end-to-end e↵ects cancel out entirely.

Finally, due to all curves being from F0, we know that
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i.e., a larger service curve leads to a smaller output bound.
Therefore, aggregate cross-tra�c arrival bounding outper-

forms segregated cross-flow arrival bounding.

Note, that equality between both arrival bounding alterna-
tives only holds for the trivial cases where the service �

s0 is
infinitely large, i.e., �+1,0, or ↵

xf

n

s0n
(↵xf

n) is zero.

Last, let us clarify why the seemingly simple scenario of
Figure 2a allows for our contribution’s generality. Any more
involved server graph can be decomposed into a combination
of variants of the graph shown in Figure 2a while retaining
Theorem 4’s validity:

Intermediate tandems instead of single servers
s0, s01, or s02 can be assumed to consist of multiple servers
in tandem that were convolved into single servers for analysis
(see Theorem 2). Then, the above proof as well as Algorithm
1 virtually move across the server graph tandem-by-tandem
instead of hop-by-hop.

Cross-traffic of cross-traffic
Aggregate arrival bounding compromises on the source-to-
interference view of segregated cross-flow arrival bounding.
Tandems are restricted to sequences of servers shared by all
flows in the respective cross-tra�c aggregate. If an aggre-
gate had its own cross-tra�c (see x(x(foi, l1)) above), an-
other left-over service curve derivation and thus an arrival
bounding (of x(x(foi, l1))) would be needed. This derivation
operates with its own worst-case assumptions for x(x(foi, l1)).
In the best case for segregated arrival bounding, when it
is able to derive the same ↵

x(x(foi,l1)) as aggregate arrival
bounding, Theorem 4’s proof remains unchanged. In any
other case, it even operates on worse left-over service curves.

Further cross-traffic with the same interference pattern
Assume another cross-flow (aggregate) xf3 merges with the
existing cross-tra�c {xf1, xf2} at server s0, entering from
a di↵erent server (or convolved tandem of left-over service
curves) s03. Then, equations containing the segregated flows’
impact on arrival bounds are expanded with xf3’s influence
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and a similar equation for xf3’s impact on the aggregate
arrival bound is added
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Neither adaptation impacts the proof’s core statement; s0
still constitutes the crucial bottleneck server where aggrega-
tion outperforms segregation.

Further cross-flows with different interference patterns
Assume s0, s01, and s02 actually consisted of tandems of
servers and there were further cross-flows of the foi, i.e.,
in x(foi), merging somewhere on these tandems. That is,
the server graph consists of a bigger, more complex feed-
forward network than depicted in Figure 2a. In this case,
the above reasoning would have to be repeated recursively
for every backtracking required – similar to cross-tra�c of
cross-tra�c. Therefore, each recursion level has its own bot-
tleneck server where aggregation outperforms segregation
and the e↵ect causing aggregation’s superiority is amplified.

3.3 Exhaustive Aggregate Arrival Bounding
Algorithm 1 defines a hop-by-hop method where left-over

service curves of individual servers are derived, similar to
the segregated arrival bounding procedure, yet, for cross-
tra�c aggregates. While this exploits the PBOO-e↵ect of
SFA, additional gains from the PMOO-e↵ect can only be
achieved if the left-over service curve is derived for tandems
of multiple consecutive hops, i.e., in a tandem-by-tandem
procedure. In this section, we extend our aggregate arrival
bounding to gain from both, the PBOO and the PMOO
e↵ect, in a single, exhaustive method.

The prerequisite for tandem analysis during aggregate ar-
rival bounding is that aggregated flows cross multiple con-
secutive hops. For instance, let s0 in Figure 2a be a system
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We now compare each segregated cross-flow’s impact on the
final arrival bound. This gives us two sub-terms:⇣
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Next, we can apply the composition rule for ↵ ([13], The-
orem 3.1.12) and use ⌦’s commutativity to reformulate the
terms to
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These equations reveal that the crucial di↵erence between
both arrival bounding alternatives is the respective (left-
over) service curve at server s0. Only this single system ser-
vice curve defines the di↵erence between both arrival bounds;
end-to-end e↵ects cancel out entirely.

Finally, due to all curves being from F0, we know that

�

s0 � �

s0  
⇣
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xf

n

s0n
↵ �

s0n

⌘
,

i.e., the aggregate arrival boundings service curve is larger,
and for 8�

s

x

,�

s

y

2 FRL and 8↵ 2 FTB in particular, we
know from [3] that

�

s

x

� �

s

y

) (↵↵ �

s

x

) 
�
↵↵ �

s

y

�
,

i.e., a larger service curve leads to a smaller output bound.
Therefore, aggregate cross-tra�c arrival bounding outper-

forms segregated cross-flow arrival bounding.

Note, that equality between both arrival bounding alterna-
tives only holds for the trivial cases where the service �

s0 is
infinitely large, i.e., �+1,0, or ↵

xf

n

s0n
(↵xf

n) is zero.

Last, let us clarify why the seemingly simple scenario of
Figure 2a allows for our contribution’s generality. Any more
involved server graph can be decomposed into a combination
of variants of the graph shown in Figure 2a while retaining
Theorem 4’s validity:

Intermediate tandems instead of single servers
s0, s01, or s02 can be assumed to consist of multiple servers
in tandem that were convolved into single servers for analysis
(see Theorem 2). Then, the above proof as well as Algorithm
1 virtually move across the server graph tandem-by-tandem
instead of hop-by-hop.

Cross-traffic of cross-traffic
Aggregate arrival bounding compromises on the source-to-
interference view of segregated cross-flow arrival bounding.
Tandems are restricted to sequences of servers shared by all
flows in the respective cross-tra�c aggregate. If an aggre-
gate had its own cross-tra�c (see x(x(foi, l1)) above), an-
other left-over service curve derivation and thus an arrival
bounding (of x(x(foi, l1))) would be needed. This derivation
operates with its own worst-case assumptions for x(x(foi, l1)).
In the best case for segregated arrival bounding, when it
is able to derive the same ↵

x(x(foi,l1)) as aggregate arrival
bounding, Theorem 4’s proof remains unchanged. In any
other case, it even operates on worse left-over service curves.

Further cross-traffic with the same interference pattern
Assume another cross-flow (aggregate) xf3 merges with the
existing cross-tra�c {xf1, xf2} at server s0, entering from
a di↵erent server (or convolved tandem of left-over service
curves) s03. Then, equations containing the segregated flows’
impact on arrival bounds are expanded with xf3’s influence
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and a similar equation for xf3’s impact on the aggregate
arrival bound is added
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.

Neither adaptation impacts the proof’s core statement; s0
still constitutes the crucial bottleneck server where aggrega-
tion outperforms segregation.

Further cross-flows with different interference patterns
Assume s0, s01, and s02 actually consisted of tandems of
servers and there were further cross-flows of the foi, i.e.,
in x(foi), merging somewhere on these tandems. That is,
the server graph consists of a bigger, more complex feed-
forward network than depicted in Figure 2a. In this case,
the above reasoning would have to be repeated recursively
for every backtracking required – similar to cross-tra�c of
cross-tra�c. Therefore, each recursion level has its own bot-
tleneck server where aggregation outperforms segregation
and the e↵ect causing aggregation’s superiority is amplified.

3.3 Exhaustive Aggregate Arrival Bounding
Algorithm 1 defines a hop-by-hop method where left-over

service curves of individual servers are derived, similar to
the segregated arrival bounding procedure, yet, for cross-
tra�c aggregates. While this exploits the PBOO-e↵ect of
SFA, additional gains from the PMOO-e↵ect can only be
achieved if the left-over service curve is derived for tandems
of multiple consecutive hops, i.e., in a tandem-by-tandem
procedure. In this section, we extend our aggregate arrival
bounding to gain from both, the PBOO and the PMOO
e↵ect, in a single, exhaustive method.

The prerequisite for tandem analysis during aggregate ar-
rival bounding is that aggregated flows cross multiple con-
secutive hops. For instance, let s0 in Figure 2a be a system

This round goes to aggregation [Valuetools2015]
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Evaluation of Round 1
n Network Models

¨Erdös-Rényi random graphs using topology generator aSHIIP
n flat and hierarchical
n n=32 nodes and p=0.1 link probability resulting in: 

number of servers: flat: 114, hierarchical: 73 
n all servers are 100 Mbps links

¨Token-buckets with rate 1 Mbps and burst 1 Mb
¨Random source and sink, routed on shortest path
¨Tool: DiscoDNC v2 [Valuetools2014]

n Network delay bound D: maximum delay bound over all flows

n Improvement factor:
D(segregated xf-bounding)

D(aggregate xf-bounding)
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Evaluation of Round 1
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Evaluation of Round 1
n Evaluation looks good
n Assumptions are limiting, yet crucial

¨Distributivity of deconvolution over addition [INFOCOM2015]

Limitation to token buckets and rate latencies means:
It is not a technical KO!
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Round 2: More General Curve Shapes2 Accuracy of Algebraic Network Calculus
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The second round is on,
It’s getting more intense
(excerpts on the left).

Limits of the approach
are reached fast.
à Segregation blocked

Future work:
à Don’t clinch,

Tackle from a different angle J
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Round 3: Pay Multiplexing Only Once
n Change of tactics: Convolve before Subtraction
n Advantageous for end-to-end analysis

Result of round 3? 
TBD, potentially the fight will continue …
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Another Boxing Ring: [MMB2016] (i.e., Yesterday)

n An unlikely place to aggregate: One hop “too early”
Use the Total Flow Analysis (TFA) to get s2’s backlog bound
¨ It aggregates all the flows, not only the one that really interferes at s2

¨Their backlog bound           can be smaller than
the single flow’s output burstiness

¨Cap the burstiness of xf if it exceeds          .
n Aggregation beats segregation … sometimes

¨This “sometimes“ happens if utilization is hight

BTFA
s1

bxf
s2

BTFA
s1

bxf
s2

BTFA
s1
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Evaluation
n Erdös Rényi Graph

¨Hierarchy retrofitted for bottlenecks (same as before) 
n See the aSHIIP topology generator (Supélec.fr)

¨ Increase amount and thus utilization
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Conclusion
n Nothing is decided yet.

n Invest more effort to just do both?
n It does not scale well with the network size.

n Rule of thumb:
Aggregate cross-traffic if you can,
segregate cross-flows if you must.



Steffen Bondorf – Bounding Flow Arrivals

Thank you for your attention
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