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Abstract: We define the minimal interleaved regulator, which generalizes the Urgency Based Shaper that was
recently proposed by Specht and Samii as a simpler alternative to per-flow reshaping in deterministic networks
with aggregate scheduling. With this regulator, packets of multiple flows are processed in one FIFO queue; the
packet at the head of the queue is examined against the regulation constraints of its flow; it is released at the
earliest time at which this is possible without violating the constraints. Packets that are not at the head of the
gueue are not examined until they reach the head of the queue. This regulator thus possibly delays the packet
at the head of the queue but also all following packets, which typically belong to other flows. However, we show
that, when it is placed after an arbitrary FIFO system, the worst case delay of the combination is not increased.
This shaping-for-free property is well-known with per-flow shapers; surprisingly, it continues to hold here. To
derive this property, we introduce a new definition of traffic regulator, the minimal Pi-regulator, which extends
both the greedy shaper of network calculus and Chang's max-plus regulator and also includes new types of
regulators such as packet rate limiters. Incidentally, we provide a new insight on the equivalence between min-
plus and max-plus formulations of regulators and shapers.

[Le Boudec 2018] Le Boudec, Jean-Yves, “A Theory of Traffic Regulators for Deterministic Networks with
Application to Interleaved Regulators”, arXiv preprint arXiv:1801.08477.



1. FIFO Per-Class Networks

FIFO per class are commonly used in Time Sensitive Networking (IEEE
802.1 TSN, IETF Detnet).

Computing backlog and delay bounds is hard [Boyer et al 2012]
[Bouillard-Stea 2015][Bondorf et al 2017].

Example: [Le Boudec-Thiran 2001, Section 6.4]

input flow f
leaky bucket

leaky bucket
constraint ry, b]% constraint ¢, b}
S FIFO System S | [1[1[1[][] S frof

output flow f
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frr = rate latency service curve



Burstiness Cascade

Burstiness of every flow increases at

every hop as a function of other flows’ iy et~ output fow !
. . constraint 77, by FIFO System § constraint 77, b}
burstiness: —'{/_ e [

* bo_b
bf=bf+7”f(T+ = f), beot = i b;

Increased burstiness causes increased burstiness (cascade).

Good delay bounds depend on the topology and on the number of
hops. In non-feedforward nets, delay bounds are generally bad except
at low utilizations and small numbers of hop [Bennett et al 2002].



Avoiding Burstiness Cascade

Solution 1: re-shape every flow at every hop (per-flow shaping)
Solves the problem but defeats the purpose of per-class network.

good O
Solution 2: Interleaved Regulator nooad >

* FIFO queue of all packets of all flows in class

e packet at head of queue is examined versus traffic regulation of its
flow; this packet is delayed if it came too early

* packets not at head of queue wait for their turn to come

[Specht-Samii 2016] “Urgency Based Scheduler”, now called
“Asynchronous Traffic Shaping” at IEEE TSN



[Specht and Samii 2016] compute delay bounds for FIFO
networks with interleaved regulators, using trajectory
analysis.

Question 1: what can we say of worst-case delay due to
Interleaved Regulator ?



[Specht-Samii 2016] considers two types of traffic rules
1. Leaky Bucket rule : Arrival curve o(t) = rt + b (min-plus calculus)

2. LRQ-rule: A, > A, _, + 22

r
(A,,: arrival time of packet n, L,,: length of packet n)

LRQ-rule is a g-regulator as defined by C-S Chang (max-plus
calculus) [Chang-Lin 1998]

LRQ is not an arrival curve; arrival curve is not a g-regulator.

Question 2: can we make a theory of interleaved shaper that
applies both to arrival curve and g-regulator ?



2. Pi-Regulation

A single packet flow (4, L)

A= (A4, A,,...) packet arrival times, A € Fj,,,

L = (L4, L5, ...) packet lengths

[Ta mapping (4,L) = II(A,L) = (E{, E,, ...) € F (eligibility times)
This flow is II-regular & A > 11(4,L) i.e. A,, = E},

We require that Il is causal (E,, depends only on A4, ..., A,,_1 and

L4, ...,L,;), homogeneous (invariant by change of time origin) and
isotone (if A > A" then T1(4,L) = T1(4, L)).



Chang’s g-regularity

Flow (4,L) is g-regularo A, — A, =2 g(L,, + -+ L,,_1)
[Chang-Lin 1998] [Chang 2002]

This is II-regulation with
MM4,L), = max {4, +gL,, + -+ L,_1)}

1<sm<sn-—1

LRQ-rule is a special case:
MR (A, L), = A,,_1 +
MLRCM(4,L), = —oo

L1

r
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Max-Plus and Arrival Curve Constraints

We need a max-plus formulation of arrival curve constraints.

Min-plus / max-plus duality is solved by Liebeherr [Liebeherr 2017]
who shows the following equivalence:

Min-plus

Max-plus

Cumulative arrival function
R(t) = dn AnlAn<t

Arrival time function
T(x) = igf (An1L1+..+Ln>x)

Arrival curve o(t)
R(t) —R(s) < o(t)

Max-plus traffic enveloppe A(x)
T(y) —Tx) = Ay —x)

T=R"1=o0'
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Upper and Lower Pseudo-Inverses

f1(0) = sup {t,f(£) < x} f1@) = inf {t,f(1) 2 x)
3bt
7h , 2T . 2T
b —s T t
T 2t 37T o b 2b  3b ; i)
R

forx >0
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Recap

arrival curve can be expressed with max-plus traffic envelope

g-regulation (e.g. LRQ) uses max-plus but cannot be expressed
as arrival curve

the problem is not min-plus versus max-plus, but viewpoint:
observe flow at an arbitrary point in time (or bit) versus
observe at packet arrival time

13



Viewpoint Equivalence Theorem
max-plus formulation

Theorem: For a flow (4, L) the three conditions are equivalent
1. Flow has arrival curve constraint o

2. Lypy+ -+ L, <0c"(4,—A,;)
3. Ay — A, >0 (L, + - +L,)

ot(t) = S_l)itrglxa(s) (right-limit)
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Viewpoint Equivalence Theorem
max-plus formulation

For a flow (4, L) the three conditions are equivalent
1. Flow has max-plus traffic envelope 1

2. Ly, +-+L, <A(4,—A4,,)

3. A, —A, =212 (L, + -+ L,)

A7 (x) = lim A(y) (left-limit)

VoXx,y<X

Recall that 1 = o'. Furthermore A' = 6t,1~ = ¢*
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Arrival Curve as Pi-regulation

Arrival curve constraint o is equivalent to II-regularity with

(A, L) = max {A,+0c (L, ++L,)}

1s=m=sn-1

e.g. Leaky bucket constraint

MLBTb)(A L) = max {Am +

1<sm<sn-—1

Lyp+ -+ L,—b
r

e.g. Staircase arrival curve

MS¢@h)(4,L) = max {Am + 71 [

1<sm=sn-—-1

Lyp+ -+ L,—b
b
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I[EEE TSN Traffic Regulation Constraint

At most K packets in an interval of T seconds.
This is II-regularity with

n—m+1-—-K
]‘[TSN(T’K)(A, L) — . max 1{Am + T[ K l}
<ms<n-—

This is neither an arrival curve constraint nor g-regulation.

Other packet rate limits can be expressed as Pi-regulation (e.g. min
spacing between packets, e.g. affine constraints)
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Per-tflow Minimal Pi-Regulator

Flow (4, L)

> [I-Regulator
00

(D,L)st.D>A,D € F;,,and D = 1I(D, L)
S

0 0O

[I-Regulator is FIFO and transforms a flow into a II-regular flow.

There is one Minimal II-Regulator; it is defined by D; = A; and
D, = max{Ay, Dy,_1,11(D)y}

If regulation is “arrival curve constraint” the minimal II-regulator is
the packetized greedy shaper.

If regulation is “g-regulation” it is the minimal g-regulator.
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3. Interleaved Regulator

Multi-flow

Packet Sequence
(A, L, F)

Interleaved

00000 g Regulator

Multi-flow
Packet Sequence
(D,L, F)
s.t. Vf, flow f is I1/ - regular
>

gooo O

A, : arrival time of packet n; L,;: length; F,: flow id of packet n

An Interleaved regulator is a FIFO system such that every output flow

fis 1/ - regular

D/ >1/(D/, L))
where D7 is the subsequence of D obtained by keeping only dates

that correspond to packets of flow f
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Minimal Interleaved Regulator

Theorem: There is one minimal interleaved regulator (i.e. such that
D,, < D,, for any other interleaved regulator).

It is given by D; = A; and
Dy, = max {An: Dy_q, IT'n (DFn’ LFn)I(n)}

where I(n) is the index of packet n in its flow.
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Implementation of
Minimal Interleaved Regulator

Eligibility Time
D,, = max {An, D, _{ [1fn (DFn’ LFn) of packet at head

of queue

One FIFO queue for all packets of all flows.

Packet at head of queue is examined and delayed until it can be
released while satisfying the regulation of its flow.

Other packets wait until their turn comes.
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Interleaved Regulator Does Not Increase Worst Case Delay

Elnterleaved Regulatoré

Ap Dy,

E,

Every flow f is I1/ regular before input to S
Output of S is fed to interleaved regulator with regulator I1/ for flow f

Theorem: sup(D,, — A,) = sup(E,, — A,,)
n n

Interleaved Regulator is for free |



: :
: !
An Dy, En

Show by induction that E,, < A,, + d for any delay bound d on S. Fix
nandletf = F,,i =1(n)sothat4, = A{ and

E, = max {An, E,_, 11/ (E7, Lf)i} .Show eachtermis < A4, + d

1. A, <A, +dbecaused =0

2. E,_ 4 <A,_1+d(induction) < A4, +d

) \|\ fInterleaved Regulator
Proof Outline lj;j b bt

3. Ejf < A]]-C + d for j < i (induction) thus (I1/is causal, isotone,
f(rf f(af —nf(af
homog.) I/ (E/) < T/ (AS +d) =1/ (AS) +d
(A, L) is 1/ -regular = Hf(Af)l, +d < A{ +d=A4,+d
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FIFO Network With Interleaved Regulators

Interleaved Regulator

-
—>

-
3

One interleaved
regulator per class and
per input

[Specht-Samii 2016] places
one interleaved regulator
per input port before
output queue.

Output of interleaved
regulator has known
burstiness

= no burstiness cascade.
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Delay Computations icieaved Shaper
in IEEE TSN |_| %— J%%

Apply theorem where S = output scheduler at previous hop

Worst case end-to-end queuing delay can ignore interleaved
regulators. Delay bound at one interleaved regulator is absorbed
by delay at previous hop.

Queuing delay at every scheduler § (without shaper) can be
computed easily since traffic is regular.

Worst case delay at one node cannot ignore interleaved shaper.
= Worst case end-to-end delay is generally less than sum of per-
hop delays.
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Conclusions

Interleaved Regulators can be used to simplify and control FIFO
networks.

Shaping-for-free is known for per-flow networks. Also holds for FIFO
networks with interleaved regulators.

Pi-regulation generalizes arrival curves, g-regulation, packet rate
limitations.
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