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Weighted Round-Robin (WRR)

WRR Behavior

[ Scheduling Policy ]

T Each queue is given a weight.
[Communication [ Real-time ] )
Networks Systems ] An infinite loop of rounds to visit queues.

[ Networks On-Chip ] When a queue with weight w is visited.

|

It can send up to w packets

l

@[ Simple |
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Example of WRR Scheduling

Round 1
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>
Interleaved Weighted Round-Robin (IWRR) -
1 A Variant of WRR

>

A queue with weight w is visited w times in each round.

!

It can send up to one packet in each visit.
M. Katevenis, S. Sidiropoulos and C. Courcoubetis,

"Weighted round-robin cell multiplexing in a general-purpose ATM switch chip,”
in IEEE Journal on Selected Areas in Communications
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IWRR Offers a Smoother Service.
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Does IWRR Reduce Worst-case Delays?

We expect that IWRR would reduce the worst-case delays.

How can we capture that?

|

Using the Network Calculus framework.

|

Finding a service curve
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State-of-the-art: WRR Strict Service Curve

Theorem[Bouillard, Boyer, Le Corronc 2018, Section 8.2.4]:
The strict service curve guaranteed to flow i is

Bit) = (M @ vy, 1) (1B(E) — Q)

qi = w@,zgnin) QZ — Z 5,570 w]lmax Ltot = q; T Qz

! 1 Yh,T A1

! TR — —_—

| 1 : i

I I : I

: Other F|OWS WRR ﬂ(t) :i DY o_. I
| : i i

Flow j with{ . S :

1 weight w; . ! :

! lmaX _ :: : : :

: i ’ !

___________________________________________________________________________________

' Min-plus convolution:

! (9=
| inf{ f(s) + g(t = s)}

|s<t




Example WRR Strict Service Curve

weight w, = 7 Wl Bi(E) = (@ vy, nn) (18() — Q1))
[ — 9 % 512 bit

weights w; = {4,6,10}
X = {17,11,16} 512 bit =,
B(t) = ct with ¢ = 10Mbps 00|

140 -

WRR Strict Service Curve

80 -

bits (x512)

Flow i with:

1

1

|

1

! weight w; |\ Flow i
| lmin I_.
: l

|

|

1
|
|
1
|
1
1
1
Other Flows | \WRR v ) _ min
o Hows | WRR (g0 }— | ¢ = wil;
'Flow j Wlthi : ! 20 *Zj,j;éq; w . [ax
. :
|
1
1
1

60

1 H J J

| weight w; C
lmax 0 ol ! ! s p A ! ! ! ! ! !
] 0 10 20 30 40 50 60 70 80 90 100

Time (us)
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New Result: IWRR Strict Service Curve

Theorem 1: The strict service curve guaranteed to flow i is
Bi(t) = (M @ Us)(B(1))

w; —1
Uy(x) < Z Vimin, Lo ([f” - wi(kl]imin)r)

k=0
Ltot ,wzlmln + Z w]lmax
JJFl
def x max
J,J7#t ¢

[ a5 .
bs,5(x) e {JJ w; + [w; — wi]+ + min(z mod w; + 1, w;)

i ! Vh,T )\1 " Min-plus convolution: i

: :Im ....................... Q_. (f ® g)(t)— :

; Other Flows :'b, ___________ P ; 1nf{ f&)+gt—-s}

! - — IWRR | 5 (t) " : 1S < ,
:F|OW] with:_| " ; oo !

I weight w; — v ! . :

| max | - ! T R . [lllustratlon?]
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Example IWRR Strict Service Curve

weight w; =7
M — 9 % 512 bit
weights w; = {4, 6,10}

lmax

B(t)

ct with ¢

= {17,11,16} % 512 bit

= 10Mbps

bits (x512)

Flow i with:

weight w; | Flow i

ll_’l’llrl

Other Flows| \WRR

Flow j with: |

weight w;
lmax

160 |-

140 -

100 -

80 -

60 -

40 -

20 |-

Bi(t) = (M @ Us)(B(2))

IWRR Strict Service Curve

Zgzgl Vpmin Lo ([33 — b (k10| +>
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Sketch of Proof of IWRR Strict Service Curve

* (s,t]:flow of interest i is backlogged.
* p:number of complete services of flow i.

* number of services for other flow j < qb,-,]- (p)

o * ¢
p packets of flow i
Bt —s) < (R() = Ri() + Y Rt

I 7

< (R(1) — Ri(9)) + 3 dus (0™
J,J 71

RI(t) — R}

< (70~ B0 + 3 ony (|t ) e

7,371 v

A 7

Pi (R (1) —R7 (s))

IWRR

Flow i with:
weight w; | Flow i
lmin l
Other Flows
Flow j with: |
weight w;
lmax _

) (B is the strict service curve of server)
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Lower Pseudo Inverse Technique

Definition[Jorg Liebeherr 2017, Section 10.1] : f*(y) = inf{z|f(z) > y} = sup{z|f(z) < y}

Examp le: Traffic (bits)
e e e e et B T e ® Sketch of Proof of IWRR Strict Service Curve (cont.)

Teaffic R N T R B B Tim
(bits) | (ms)

7000 —

Property: ¥y < f(z) = o > fi(y)

6000 — 1.5

5000 —

B(t —s) < Y;(R;(t) — R;(s))(Last step of last slide)

(2

‘= Ri(t) = Ri(s) > 07 (B(t — 5)) = (M @ Up) (B(t — )
R/_/

0.5 IWRR strict service curve for flow i
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[Jorg Liebeherr 2017, Section 10.1]

T 1T T T T T T TTTTTTTTT T

0

12/26



Re-Cap 1
1. Strict Service Curve for IWRR.

* We find a novel strict service curve for IWRR.
* Using lower-pseudo inverse technique.

2. Comparison to WRR. | Strict Service Curves (IWRR Vs. WRR)?

3. Tightness.
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IWRR Strict Service Curve Always Improves Compared to WRR.

Theorem 2: The IWRR strict service curve is larger than or equal to the WRR strict
service curve for each flow i

Bi(t) = (A1 ® vg,,L.,) ([B(1) — Qi]T) < Bi(t) = (A @ Us)(B(7))
— —

WRR Strict Service curve IWRR Strict Service curve

—Delay bounds for IWRR are less than or equal to delay bounds for WRR.

E IWRR i
! Other Flows| o [ﬂ(t) >—’ :[ illustration? ]
IFlow j with: !

I weight w;
1 lnlaX
I J
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Strict Service Curve of IWRR Is always Larger Than or Equal to WRR

weight w; =7
M — 9 % 512 bit
weights w; = {4,6,10}
17 = {17,11,16} * 512 bit
B(t) = ct with ¢ = 10Mbps

bits (x512)

R e L L L e
:Flow [ with:

, weight w; | Flow i IWRR

: l‘migther Flows
| for \B(®)
IFlow j with:|

I weight w;
1 lmax
J

_________________________________

160

140

120 [

100

i Complicated? IWRR Strict Servicej,riel_IJ/
/

l

IWRR delay bound = WRR delay bound
7IWRR delay bound < WRR delay bound

WRR Strict Service Curve

|
0 10 20 30 40 50 60 70 80 90 100

Time (pus)
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All Non-dominated Rate-latency Strict Service Curves for IWRR.

Theorem 3: All non-dominated rate-latency service curves guaranteed to flow i,
among them [« 7+ is the one with the minimum latency and ﬁr,j*,T,:* is the one

with the maximum rate:

min
li

07 ) — ,(0)

and T(T = Zﬁz (O)

[ q:
E* = min{0 < k < w; : — >
0= e+ ) = G (R Ligy)
: . Jo* [min : :
Pt = =2 and Tp. = oy (kK 0in) — 2 Ellustratlon?]
LtOt Tki*

i If the strict service curve of the aggregate is a rate-
: latency ( B(t) = Ber) , then frr:(B(£))  and
: Other Flows IWRR|[S(¢t) :,8 (,B(t)) are also rate-latenc
iFIowj with:_| ! Ty, Tpx Y.
' weight w; — :




Example of Non-dominated Rate-latency IWRR Strict Service Curve

Possible case 1: One optimal non-dominated rate- Possible case 2: Set of non-dominated rate-
latency: latency service curves:

65| IWRR Service Curve

200 |-
o \

180 |-

I WRR Service Curve
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40 -
.| IWRR Service Curve

—_

Do

(=]
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bits (x1024)

100 |-

bits (x1024)

i WRR Service Curve 80| N\
20| 60 Minimum Latency
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Optimal Rate-latency 2

|
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Time (ps)

0 | | | | | | | | | | | | | | |
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| | | | |
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Re-Cap 2.1
1. Strict Service Curve for IWRR.

 We find a novel strict service curve for IWRR.
* Using lower-pseudo invers technique.
* We find all non-dominated rate-latency service curves.

2. Comparison to WRR.

* |WRR Strict Service Curve always improves compared to WRR.

3. Tightness. | Better Strict Service Curve?
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Our Strict Service Curve Is the Best Possible.

Theorem 4:[5; is the largest strict service curve that can be given for flow i.

Specifically, we show for all flows i, there exists a trajectory scenario such that:
ds > 0, (s,s + 7] is backlogged for flow i
and R (s +7) — R (s) = B;(7)

‘The same is also valid for the WRR strict service curve.
'(Theorem 5)

! Other Flows| \A/RR B(t) R”
\Flow j with:|

weight w;
lmax
J

19/26



Re-Cap 2.2

We have found the largest possible strict service curve.
| 7P
Automatically implies best delay bounds?

l

w0l )

Service curve is only an abstraction of the There might be a better service
service. The true thing is IWRR. curve that is not strict.

e

Tight delay bounds for constant packet size.




Obtained Delay Bound Is Tight, for Constant Packet Size.

Theorem 6:

Flow i only generates packets of size I (I = [MaX

[) arrival curve af, the network calculus delay bound is tight (i.e., worst case).

). Then, for every integer (multiple of

110 -

100 -

The same is also valid for the WRR strict service curve.

—

(Theorem 7) 0

80 |-

70 |-

Flow i with:

weight w; |Flow i
lmin ll_’

i " Other Flows| \WRR @_
iFIowj with: |

60 |-

bits (x512)

50 |-

40 |-
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20 |-

weight w;
lplax
J
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Re-Cap 3

1. Strict Service Curve for IWRR.

* We find a novel strict service curve for IWRR.
* We find all non-dominated rate-latency service curves.

2. Comparison to WRR.[ Numerical Example? ]

* |WRR Strict Service Curve always improves compared to WRR.

3. Tightness.
e Our Strict Service Curve is the best possible one.
* For a flow with constant packet size, we show that:
* Obtained delay bound is tight.
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bits (x512)

140 |-

120 -

100 -

®
<]

=)
=

'
S
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Improvement of Delay Bounds with IWRR.

Il Il Il Il Il il Il Il Il Il Il Il Il I}
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Time (us)

r Simulation Parameters:
8 input flows.
Weights = {22,27,28,30,34,41,45}
[MaX = [Min — 7119 bit,
. Constant bit rate server, 10 Mbps.
Token-bucket Arrival Curves:
Initial bursts: uniformly [1,20] packets.

L A rate of 0.5 Mbps.

WRR Worst-case Delay — IWRR Worst-case Delay (Time (ms))
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R |
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Better Improvement for Flows with Larger Weights.

larger weights.

Improvement Ratio =
Improvement

Median of WRR worst_case delay

r Simulation Parameters:

8 input flows.

Weights € [10, 50].

[max — min e 164 1522] byte.

Uniformly random.

. Constant bit rate server, 10 Mbps.
Token-bucket Arrival Curves:

Initial bursts: uniformly [1,20] packets.

A rate of 0.5 Mbps.

WRR Worst-case Delay—IWRR Worst-case Delay

(Percentage %)

Median of WRR Worst-case Delay

100 |-

90

80

70

60

50

40

30

20

10

Smallest to Largést Weiéhts ‘

—_

A —

—

_

0
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Conclusion

 We find a novel strict service curve for IWRR.
e Using lower-pseudo inverse technique.

e We show that:

* |tis the best possible one.
* |t always improves compared to WRR.

 We also find all non-dominated rate-latency service curves.

* We show that obtained delay bound is tight, for a flow with
constant packet size.

hossein.tabatabaee@epfl.ch
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