Two Extensions of Kingman's GI/G/1 Bound

Florin Ciucu

Felix Poloczek

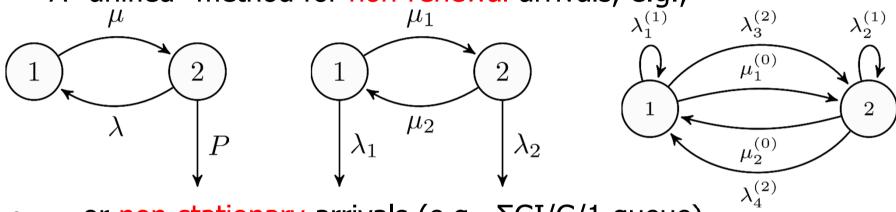
University of Warwick

Outline

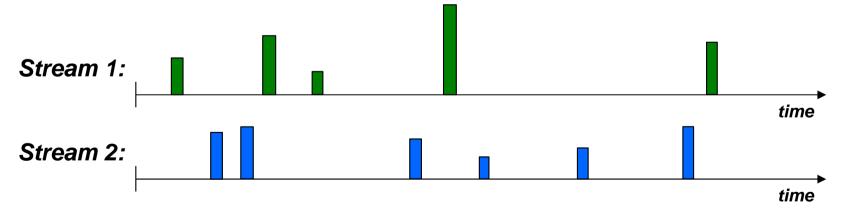
- Kingman's bound (GI/G/1 queue renewal input)
- new sufficient condition for martingales
- extension 1: the ΣGI/G/1 queue (non-renewal / non-stationary)
- extension 2: queues with Markov input (non-renewal)

Goal: One Queue - One Method

• A "unified" method for non-renewal arrivals, e.g.,



• ... or non-stationary arrivals (e.g., ΣGI/G/1 queue)



An analogy

$$A(t) = \sum_{i=1}^{N(t)} X_i \longrightarrow \bigcirc \bigcirc$$
 Capacity=C

Lindley/Reich's equation

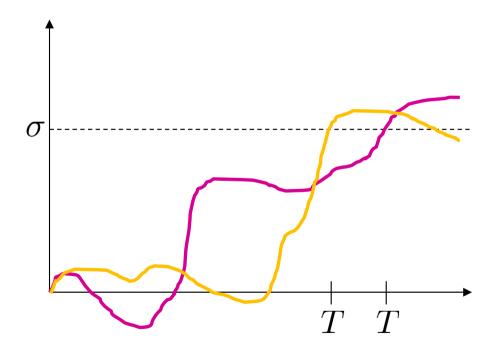
$$Q = \sup_{t \ge 0} \{ A(t) - Ct \}$$

define

$$T := \inf \{ t : A(t) - Ct \ge \sigma \}$$

then

$$\mathbb{P}\left(Q \geq \sigma\right) = \mathbb{P}\left(T < \infty\right)$$



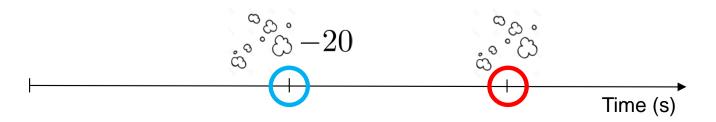
Perfect Toasting Time?

There's an art of knowing when.

Never try to guess.

Toast until it smokes and then twenty seconds less.

(Piet Hein)



Stopping Time

- take r.v.'s $X_1, X_2, X_3, ...$
 - subscript is "time"
 - $-X_i$ encodes information (e.g., burning smells)
- A stopping time is a r.v. $N:\Omega \to \{1,2,\dots\} \cup \{\infty\}$ such that $\{N=n\}$ depends on X_1,X_2,\dots,X_n only
- first passage/hitting time

$$N = \min\{n \ge 1 \mid X_n \in A\}$$

- time to buy/sell a stock; time "it smokes"
- $N=\infty$ w.p. >0 (?): an asymmetric random walk $X_n=\pm 1$ w.p. <0.5 $N=\min{\{n\mid X_1+X_2+\cdots+X_n=1\}}$

Stopping times are misleading ⊗

- take iid r.v.'s $X_1, X_2, X_3, ...$
- by definition

$$E\left[X_{n}\right] = E\left[X_{1}\right]$$

• however, if N is a stopping time, then in general

$$E\left[X_{N}\right] \neq E\left[X_{1}\right]$$

• e.g., X_n are Bernoulli and $N:=\min\{n\mid X_n=1\}$

... but behave nicely for martingales

• **Def**: a sequence of r.v.'s X_1, X_2, X_3, \ldots is a martingale if

$$E[|X_n|] < \infty$$
 $E[X_{n+1} | X_1, X_2, \dots, X_n] = X_n$
 $\Leftrightarrow E[X_{n+1} - X_n | X_1, X_2, \dots, X_n] = 0$

- intuitive properties
 - it has "memory"
 - ensures a "fair game"
- not everything is a martingale, e.g.,
 - an iid sequence (ignorance implies unfairness)
 - a Markov process; requires some "transform"

Optional Stopping Theorem (OST)

• immediate property of a martingale X_1, X_2, X_3, \ldots

$$E\left[X_{n}\right] = E\left[X_{1}\right]$$

property preserved for stopping times, i.e.,

$$E\left[X_{N}\right] = E\left[X_{1}\right]$$

subject to

N is bounded

counterexample

$$Y_n = \pm 1 \text{ w.p. } 0.5$$

 $N = \min \{ n \mid Y_1 + Y_2 + \dots + Y_n = 1 \}$

facts

$$X_n := Y_1 + Y_2 + \dots + Y_n$$

 $1 = E[X_N] \neq E[X_1] = 0$

Kingman's bound

recall

$$Q = \max_{t \ge 0} \{A(t) - Ct\}$$

$$\mathbb{P}(Q \ge \sigma) = \mathbb{P}(T < \infty), \ T := \min\{t : A(t) - Ct \ge \sigma\}$$

construct the martingale

$$X_t := e^{\theta(A(t) - Ct)}$$

• apply the OST with $n \to \infty$

$$1 = \mathbb{E} [X_0] = \mathbb{E} [X_{T \wedge n}] = \mathbb{E} [X_{T \wedge n} 1_{T \leq n}] + \mathbb{E} [X_{T \wedge n} 1_{T > n}]$$

$$= \mathbb{E} [X_T 1_{T \leq n}]$$

$$= \mathbb{E} \left[e^{\theta(A(T) - CT)} 1_{T \leq n} \right]$$

$$\geq e^{\theta \sigma} \mathbb{E} [1_{T < n}] = e^{\theta \sigma} \mathbb{P} (T \leq n) .$$

hence

$$\mathbb{P}\left(Q \ge \sigma\right) \le e^{-\theta\sigma}$$

Towards "One Queue - One Method" goal

Def. A bivariate process $(A(t), M_t)_t$ is a Markov Additive Process iff

- 1. the pair $(A(t), M_t)$ is a Markov process in \mathbb{R}^2 ,
- 2. A(0) = 0 and A(t) is nondecreasing,
- 3. the (joint and conditional) distribution of

$$(A(s,t), M_t \mid A(s), M_s)$$

depends only on M_s .

- intuitive aspects:
 - $-M_t$ is a background/modulating Markov process
 - -A(t) is the additive component
 - » not necessarily Markov
 - » has *conditionally* independent increments

MAP Martingale

- few processes are both Markov and martingales, e.g.,
 - symmetric random walk
 - Brownian motion

Lemma. For a Markov Additive Process $(A(t), M_t)$, functions $h: \operatorname{rng}(M) \to \mathbb{R}^+$, $y \in \operatorname{rng}(M)$, and $C, \theta, s \geq 0$, define

$$\varphi_y(s) := \mathbb{E}\left[h(M_s)e^{\theta(A(s)-sC)} \mid M_0 = y\right].$$

If $\frac{d}{ds}\varphi_y(s)\big|_{s=0} = 0$ for all $y \in \operatorname{rng}(M) \subseteq \mathbb{R}^2$, then the process

$$h(M_t)e^{\theta(A(t)-tC)}$$

is a martingale.

seemingly obscure result ...

a more general and intuitive result

Lemma. An (integrable) process X_t with continuous $\mathbb{E}[X_t]$ is a martingale iff

$$\lim_{\Delta s \to 0} \frac{\mathbb{E}\left[X_{s+\Delta s} - X_s \mid \mathcal{F}_s\right]}{\Delta s} = 0 \ \forall s$$

compare condition to

$$\mathbb{E}\left[X_{n+1} - X_n \mid X_1, X_2, \dots, X_n\right] = 0 \ \forall n$$

Extension 1: ΣGI/G/1 queue

- (aggregate) arrival process not stationary
- start with one GI/G/1
- arrival points

$$\cdots < -t_{-2} - t_{-1} < -t_{-1} < 0 < t_1 < t_1 + t_2 < \dots$$

- service times $(x_j)_{j\in\mathbb{Z}}$
- define the compound process

$$A(t) := \sum_{j=1}^{N(t)} x_{-j}, \text{ where } N(t) := \max \left\{ n \in \mathbb{N} \mid \sum_{j=1}^{n} t_{-j} \le t \right\}$$

• N(t) is inhomogeneous Poisson process with random rate $\lambda(R(t))$

$$R(t) := t - \sum_{j=1}^{N(t)} t_{-j}, \ \lambda(s) := \lim_{\Delta s \to 0} \mathbb{P}\left(s < t_1 \le s + \Delta s \mid s < t_1\right) = \frac{f(s)}{1 - F(s)}$$

GI/G/1 Martingale (time domain)

Lemma: Let θ satisfying $E\left[e^{-\theta t_1}\right]E\left[e^{\theta x_1}\right]=1$ and

$$h(t) := \frac{1 - E\left[e^{\theta x_1}\right] \int_0^t e^{-\theta s} f(s) ds}{e^{-\theta t} \left(1 - F(t)\right)}.$$

Then the process

$$h(R(t))e^{\theta(A(t)-t)}$$

is a martingale.

$$\varphi_{t,t}(s) := \mathbb{E}\left[h(M_{t+s})e^{\theta(A(t,t+s)-Cs)} \mid R(t) = t\right]$$
Proof: The martingale condition:

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[\lambda(t) \Delta t h(0) \mathbb{E}[e^{\theta x_1}] e^{-\theta \Delta t} + (1 - \lambda(t) \Delta t) h(t + \Delta t) e^{-\theta \Delta t} - h(t) \right] = 0$$

yields the ODE

$$h'(t) = h(t) (\lambda(t) + \theta) - \lambda(t)h(0)\mathbb{E}[e^{\theta x_1}]$$

GI/G/1 Martingales: time and space domains

Lemma: Let θ satisfying $E\left[e^{-\theta t_1}\right]E\left[e^{\theta x_1}\right]=1$. Then

$$X_t := h(R(t))e^{\theta(A(t)-t)}$$
 $X_n := e^{\theta(x_1 + \dots + x_n - t_1 - \dots - t_n)}$

are martingales.

both yield the same GI/G/1 bounds

$$Q = \sup_{t \ge 0} \{ A(t) - t \}$$

$$Q = \max_{n \ge 0} \{ \sum x_i - \sum t_i \}$$

only former works for the ∑GI/G/1 queue

$$Q = \sup_{t \ge 0} \{ \sum_{k \ge 0} A_k(t) - t \}$$

$$Q = \max_{k \ge 0} \{ \sum_{k \ge 0} x_{k,i} - \sum_{k \ge 0} t_{k,i} \}$$

- martingales are closed under multiplication
- need the same θ ,i.e., $h_k(R_k(t))e^{\theta(A_k(t)-w_kt)}$

Example 1: **ΣWeibull/G/1**

Take $\mathbb{P}(t_{1,1} \leq t) = 1 - e^{-t^2}$. A bound on the waiting time for each class is

$$\mathbb{P}(W \ge \sigma) \le K(\theta)^{N-1} e^{-\theta N\sigma} ,$$

where

$$K(\theta) := E\left[e^{\theta Nx_{1,1}}\right]e^{\frac{\theta^2}{4}}erfc\left(\frac{\theta}{2}\right)$$

and θ satisfies $E\left[e^{-\theta t_1}\right]E\left[e^{\theta Nx_{1,1}}\right]=1$.

Example 2: ΣErlang-k/G/1

A bound on the waiting time for each class is

$$\mathbb{P}(W \ge \sigma) \le K(\theta)^{N-1} e^{-\theta N\sigma} ,$$

where

$$K(\theta) := \frac{\lambda}{k} \frac{E\left[e^{\theta N x_{1,1}}\right] - 1}{\theta}$$

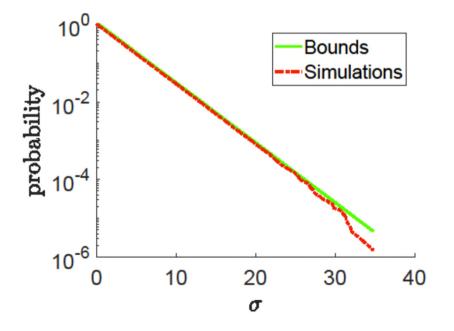
and θ satisfies $\left(1 + \frac{\theta}{\lambda}\right)^{-k} E\left[e^{\theta N x_{1,1}}\right] = 1$.

Example 3: ∑Weibull + Erlang-k/G/1

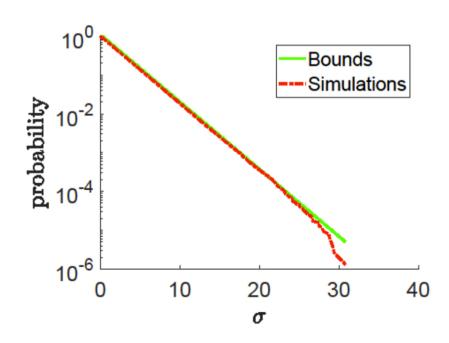
A bound on the waiting-time of a Weibull class is

$$\mathbb{P}(W \ge \sigma) \le K_W(\theta)^{N_1 - 1} K_E(\theta)^{N_2} e^{-\theta \sigma}$$

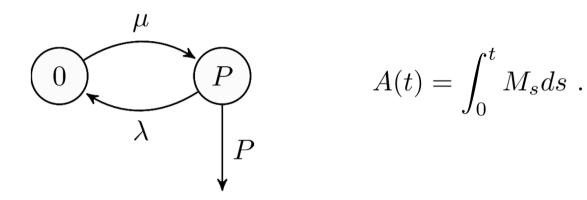
$$N_1 = 1, N_2 = 4$$



$$N_1 = 4, N_2 = 1$$



Extension 2. Markov Fluid (MF)



Let

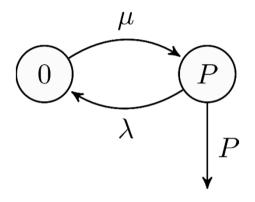
$$\theta = \frac{\lambda}{P - C} - \frac{\mu}{C}$$
, $h(P) = \frac{\theta C + \mu}{\mu}$, and $h(0) = 1$.

Then the process

$$h(M_t)e^{\theta(A(t)-tC)}$$

is a martingale.

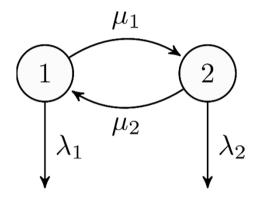
Proof



$$\varphi_y(s) := \mathbb{E}\left[h(M_s)e^{\theta(A(s)-Cs)} \mid M_0 = y\right]$$

$$\frac{d}{ds}\varphi_{P}(s)\Big|_{s=0}
= \lim_{\Delta s \to 0} \frac{1}{\Delta s} \mathbb{E}\Big[h(M_{\Delta s})e^{\theta(A(\Delta s) - C\Delta s)} - h(P)\Big|M_{0} = P\Big]
= \lim_{\Delta s \to 0} \frac{1}{\Delta s} \left(\lambda \Delta s e^{-\theta C\Delta s} + (1 - \lambda \Delta s)h(P)e^{\theta \Delta s(P-C)} - h(P)\right)
= \lambda - \lambda h(P) + h(P)\theta(P-C) = 0$$

Markov Modulated Poisson Process (MMPP)



For $\theta > 0$, let T_{θ} denote the following 2×2 -matrix:

$$T_{\theta} := \begin{pmatrix} \lambda_1 e^{\theta} - \mu_1 - \lambda_1 & \mu_1 \\ \mu_2 & \lambda_2 e^{\theta} - \mu_2 - \lambda_2 \end{pmatrix} .$$

Further, let $\lambda(\theta)$ denote its spectral radius. Pick $\theta > 0$ such that $\lambda(\theta) = \theta C$, and let $h = (h_1, h_2)$ denote an eigenvector corresponding to T_{θ} and $\lambda(\theta)$. Then the process

$$h(M_t)e^{\theta(A(t)-tC)}$$

is a martingale.

Proof

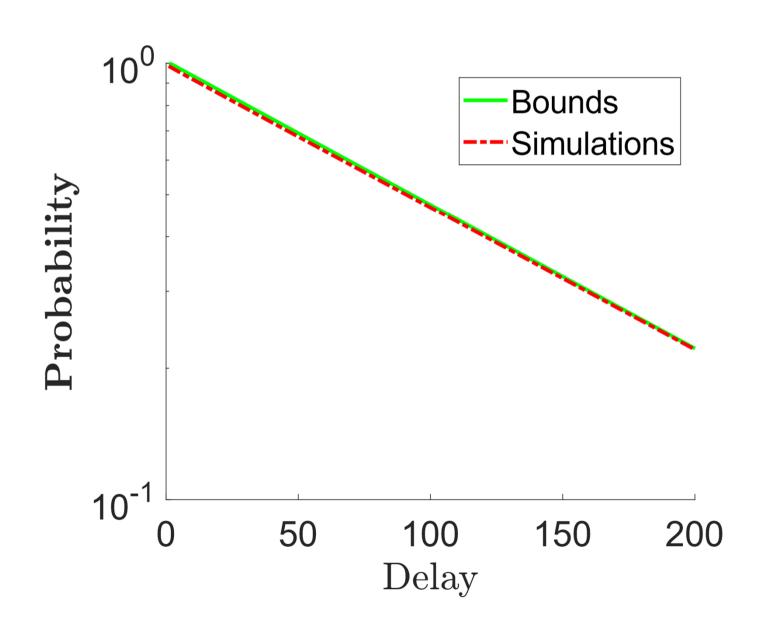
$$\begin{array}{c|c}
\mu_1 \\
\hline
1 & 2 \\
\lambda_1 & \lambda_2
\end{array}
\qquad \varphi_y(s) := \mathbb{E}\left[h(M_s)e^{\theta(A(s)-Cs)} \mid M_0 = y\right]$$

$$\frac{d}{ds}\varphi_{1}(s)\Big|_{s=0}$$

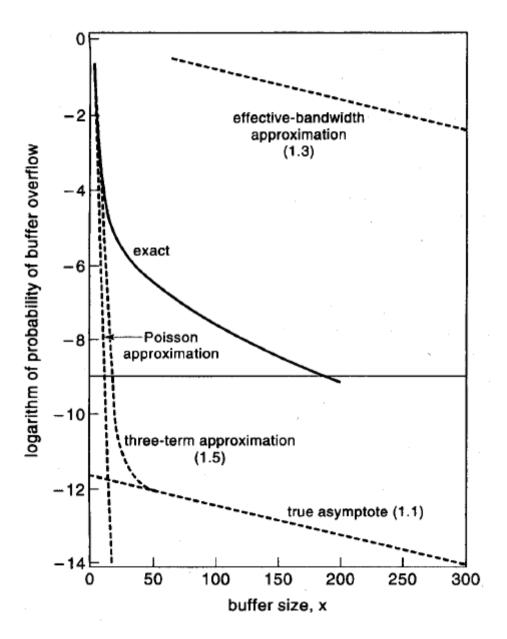
$$= \lim_{\Delta s \to 0} \frac{1}{\Delta s} \mathbb{E}\left[h(M_{\Delta s})e^{\theta(A(\Delta s) - C\Delta s)} - h_{1}\Big|M_{0} = 1\right]$$

$$= \lim_{\Delta s \to 0} \frac{1}{\Delta s} \left((1 - \mu_{1}\Delta s)\lambda_{1}\Delta s h_{1} e^{\theta(1 - C\Delta s)} + (1 - \mu_{1}\Delta s)(1 - \lambda_{1}\Delta s)h_{1} e^{-\theta C\Delta s} + \mu_{1}\Delta s (1 - \lambda_{1}\Delta s)h_{2} e^{-\theta C\Delta s} + o(\Delta s) - h_{1}\right) = 0$$

Bounds vs Simulations



A plot from the '90s



60 MMPP flows

$$(1.3) \mathbb{P}(Q > x) \approx e^{-\eta x}$$

$$(1.1) \approx \alpha e^{-\eta x}$$

$$(1.5) \approx \alpha_1 e^{-\eta_1 x} + \alpha_2 e^{-\eta_2 x} + \alpha_3 e^{-\eta_3 x}$$

(!)
$$\mathbb{P}(Q > x) \approx \beta e^{-N\gamma} e^{-\eta x}$$

Markovian Arrival Process (MArP)

A Markovian Arrival Process is defined via a pair (D_0, D_1) of $n \times n$ -matrices such that:

$$d_{i,j} := D_0(i,j) \ge 0 , i \ne j , \quad d'_{i,j} := D_1(i,j) \ge 0 ,$$

$$d_{i,i} := D_0(i,i) = -\sum_{i \ne j} d_{i,j} - \sum_j d'_{i,j} .$$

The background process M_t is a Markov process with generator $D_0 + D_1$ and steady-state distribution π . If a transition of M_t is triggered by an element of D_1 , a packet is generated and A(t) increases by 1 (active transitions); transitions triggered by D_0 do not increase A(t) (hidden transitions):

$$\mathbb{P}(A(t, t + \Delta t) = 0, M_{t+\Delta t} = j \mid M_t = i) = D_0(i, j)\Delta t + o(\Delta t)$$
,

and

$$\mathbb{P}\left(A(t, t + \Delta t) = 1, M_{t + \Delta t} = j \mid M_t = i\right) = D_1(i, j)\Delta t + o(\Delta t).$$

MArP Martingale

For $\theta > 0$, let $\lambda(\theta)$ denote the spectral radius of the matrix

$$D_0 + e^{\theta} D_1$$
,

If $\lambda(\theta) = \theta C$, and h is a corresponding eigenvector, then the process

$$h(M_t)e^{\theta(A(t)-tC)}$$

is a martingale.

Multiplexing MArPs

In the situation with two MArPs, for $\theta > 0$, let $\lambda(\theta)$ and $\lambda'(\theta)$ denote the spectral radii of the matrices

$$D_0 + e^{\theta} D_1 \text{ and } D'_0 + e^{\theta} D'_1$$
,

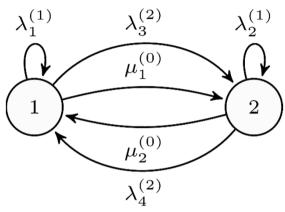
respectively. If $\lambda(\theta) + \lambda'(\theta) = \theta C$ and h a corresponding eigenvector, then the process

$$h(M_t)e^{\theta(A(t)+A'(t)-tC)}$$

is a martingale.

(!) No blow-up of numerical complexity.

Generalized MArP (GMArP)

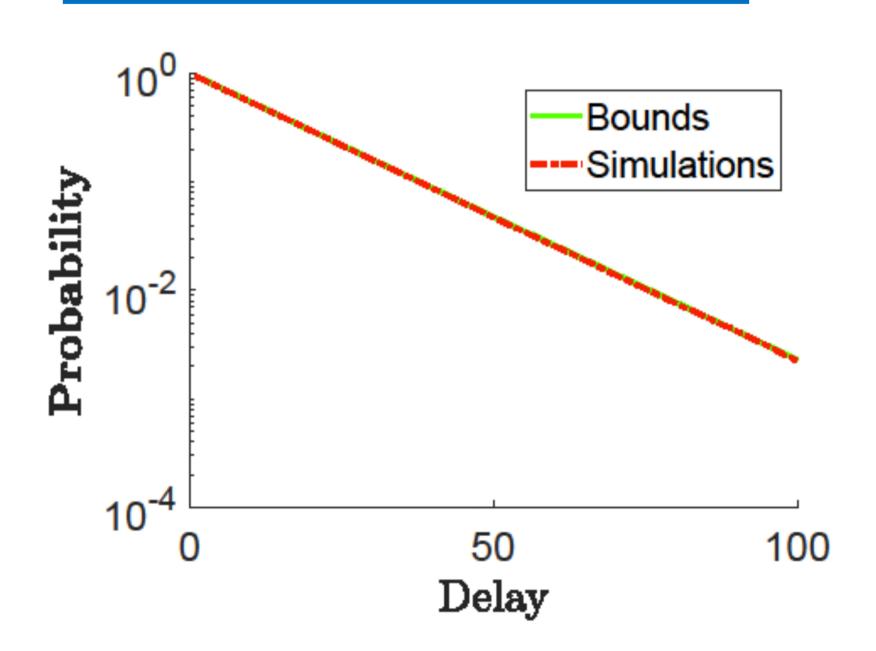


$$D_0 = \begin{bmatrix} -\lambda_1 - \lambda_3 - \mu_1 & \mu_1 \\ \mu_2 & -\lambda_2 - \lambda_4 - \mu_2 \end{bmatrix}$$

$$D_1 = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 0 & \lambda_3 \\ \lambda_4 & 0 \end{bmatrix}$$

Bounds vs Simulations



Conclusions

- Kingman's bound: inspect the queue at a stopping time and extract information through a martingale
- a sufficient condition for martingale constructions from MAPs (inhomogeneous + uncountable state space)
- two extensions of Kingman's bounds to queues with non-renewal / non-stationary input
- 3rd extension (finite buffer queueing systems): inspect the queue at two stopping times