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Outline

e Kingman’s bound (GI/G/1 queue - renewal input)

e new sufficient condition for martingales

extension 1: the >GI/G/1 queue (non-renewal / non-stationary)

e extension 2: queues with Markov input (non-renewal)



Goal: One Queue - One Method

e A “unified” method for non- renewal arrivals, e.q.,
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e ... Or non-stationary arrivals (e.qg., >2GI/G/1 queue)

Stream 1: | I I i I I
Stream 2: I I I ] I I

Stream 1+2: |
|

v

time

v

time

v

time



An an

alogy

A(t):ZX@'_'- -

N(t)

1=1

e Lindley/Reich’s equation

Q = sup{A(t) — Ct}

>0

e define

T:=inf{t: A(t) — Ct > o}

e then

P(Q = o)

P (T < o0)

Capacity=C
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Perfect Toasting Time?

There's an art of knowing when.
Never try to guess.

Toast until it smokes and then
twenty seconds less.

(Piet Hein)
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Stopping Time

e taker.wv.s X;, Xo, X3,...
— subscript is “time”
— X, encodes information (e.g., burning smells)

e| Astoppingtimeisarv. N :Q — {1,2,...}U{oc} such that
{N = n} depends on X7, Xo,..., X, only

o first passage/hitting time
N =min{n > 1| X,, € A}
— time to buy/sell a stock; time “it smokes”

. : an asymmetric random walk
X, ==x1 w.p. <0.5

N =min{n | X; +Xo+---+ X,, =1}



Stopping times are misleading ®

e takeiidr.v.'s X7, X5, X3, ..

e by definition
E[X,] = E[X4]

e however, if N is a stopping time, then in general

E[XnN| # E [ X4]

e e.g. X, areBernoulliand N := min{n | X,, = 1}



... but behave nicely for martingales

o Def: a sequence of r.v.'s X7, X5, X3,... is a martingale if
Ell X, |] < o
E[X’n—l—l | X17X27' . 7Xn] — Xn

@E[Xn—l—l — X, | Xl,XQ,...,Xn] =0

- intuitive properties
— it has “memory”
— ensures a “fair game”

e not everything is a martingale, e.qg.,
— an iid sequence (ignorance implies unfairness)
— a Markov process; requires some “transform”



Optional Stopping Theorem (OST)

e immediate property of a martingale X, Xs, X3,...

FE X, =F|X4]
e property preserved for stopping times, i.e.,

E[Xy] = F[Xi]

subject to
N 1s bounded

counterexample
Y, = £1 w.p. 0.5
N=min{n | Y1 +Yo+---4+Y, =1}
facts
X, =Y1+Ys+.---4+Y,
1 =E[Xy]# E[X1] =0



Kingman’s bound

e recall
Q = max{A(t) — Ct}

t>0
P(Q>0)=P(T'<o0), T:=min{t: A(t) — Ct > o}
e construct the martingale
X, := (A)-C1)
e apply the OST with n — o0
1=K [XO] =K [XT/\'n,] =E [XT/\angn] + E [XT/\'n, T>n]
= E [X717<p]

_F eG(A(T)—CT)1T<n}

2 QQUE [1T§n] — GHJP (T < n) .

e hence
P(Q2>0)<e

10



Towards “One Queue — One Method” goal

Def. A bivariate process (A(t), M;); is a Markov Additive Process iff
1. the pair (A(t), M;) is a Markov process in R?,
2. A(0) = 0 and A(?) is nondecreasing,

3. the (joint and conditional) distribution of

(A(s,1), M, | 2Xg), M.)

depends only on M.

e intuitive aspects:
— M; is a background/modulating Markov process

— A(t) is the additive component
» not necessarily Markov
» has conditionally independent increments

11



MAP Martingale

o few processes are both Markov and martingales, e.qg.,

— symmetric random walk
— Brownian motion

Lemma. For a Markov Additive Process (A(t), M), functions
h:rmg(M) — RT, y € rng(M), and C,0,s > 0, define

py(s) =E {h(MS)eQ(A(S)_SC) ‘ My = y} :
If d%goy(s)‘szo = 0 for all y € tng(M) C R?, then the process

h(Mt)ee(A(t)—tC)

18 a martingale.

seemingly obscure result ...
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a more general and intuitive result

Lemma. An (integrable) process X, with continuous E|X]
1s a martingale iff
I E [Xs—l—As — Xs I fs]
im

As—0 As

= (0 Vs

compare condition to
E[Xn+1 —Xn ‘ Xl,XQ,...,Xn] =0 Vn
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Extension 1. 2GI/G/1 queue

e (aggregate) arrival process not stationary
e start with one GI/G/1
e arrival points

e service times (z;);cz

e define the compound process —t 0
N(t) n
A(t) == Z x_j;, where N(t):= max {n e N | Zt_j < t}
J=1 j=1
e N(t) is inhomogeneous Poisson process with random rate A\(R(t))
= (s)

= 1 — s -— |i < —
R(t) =t ;tj, M(s):= lim P(s <ty <s+As|s<t) T F(s)
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GI/G/1 Martingale (time domain)

Lemma: Let 6 satisfying £ [e 91| E [¢*1] =1 and

1 — E 1] f(f e % f(s)ds |

M= T Fw)

Then the process
h(R(t))ee(A(t)_t)

is a martingale.

w1 t(s) :=E [h(Mt+S)69(A(t,t+s)—cs)

Proof: The martingale condition:

1

lim [/\(t)Am(O)E[e@ml}e—Mf (1= M)At + At)e 08¢ — h(t)} ~ 0

yields the ODE

I (t) = h(t) (A(t) + 0) — A()h(0)E[e""] .



GI/G/1 Martingales: time and space domains

Lemma: Let 6 satisfying £ |e 1| E [¢*1| = 1. Then

Xt = h(R(t))ee(A(t)—t) Xn - 69(331+..._|_$n_t1_____tn)

are martingales.

e both yield the same GI/G/1 bounds
Q = sup{A(¢) — t} max{z T; — Zt }

t>0 n>0

o only former works for the >GI/G/1 queue

2 =sp(2, A0~ 1) %%{272\ 2 thil}

— martingales are closed under multiplication
— need the same 6,i.e., hy(Ry(t))e?(AeB)—wst)
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Example 1: 3Weibull/G/1

Take P(t11 <t)=1-— e~t". A bound on the waiting time for each class is
P(W > o) < K(§)N"te 0N

where

K(6) = E [¢*No11] ¢ T erfe (g)

and 60 satisfies F [e_etl] FE [eQN“’l’l] = 1.
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Example 2: 2Erlang-k/G/1

A bound on the waiting time for each class is
P(W >o0) < K(@)N_le_‘chr :

where

and @ satisfies (1 + %)_
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Example 3: 2Weibull + Erlang-k/G/1

A bound on the waiting-time of a Weibull class is

P(W > O') < Kw(Q)Nl_lKE(Q)N2€_QU

Ny =1, No=4 Ny =4, No=1
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Extension 2. Markov Fluid (MF)

v}
t
A(t):/ Mds .
0
A P
et A 0C +
_ _ K _ H
V= 5o WP =

Then the process
h(Mt)GG(A(t)—tC)

is a martingale.

9

and h(0)=1.
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Proof

v
G O 0y(5) 1= E [h(M)e"AO=C) | 1y = ]
A
P
d
£90P(3) Y
| 0(A(As)—CAs) ‘ _ }
~ lim A—SE[h(MAS)e ~R(P)|My =P
o1 —0CAs OAs(P—C) )
= Al}slilo s ()\Ase + (1 — MAs)h(P)e h(P)

=\ — M(P) + W(P)I(P — C) =0
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Markov Modulated Poisson Process (MMPP)

M1

For 6 > 0, let Ty denote the following 2 x 2-matrix:

Ty = ()\169 — M1 — A1 H1 )
. {2 Aoe? — s — Ao )

Further, let A(6) denote its spectral radius. Pick 8 > 0 such that A\(8) = 6C,
and let h = (hy, ho) denote an eigenvector corresponding to Ty and A(f). Then
the process

h(Mt)eﬂ(A(t)—tC)
is a martingale.
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Proof

M1
py(5) i= B [R(M,)e" A= | 1y =
H2
A1 Ao
d
%@1(3) Y
1
1
= AE]EO s ((1 — 11 AS) M As hy ?07C89) (1 — 13 As) (1 — M\ As) hy e 9653

+u1 As (1 — A\ As) ho e 0CAs 4 o(As) — hl) =(
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Bounds vs Simulations
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A plot from the ‘90s
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Markovian Arrival Process (MArP)

A Markovian Arrival Process is defined via a pair (Dg, D) of n X n-matrices
such that:

d; j := Do (4, ')>0 i#j, di;=Di(ij)>0,

dii = Do(i,i)=—> dij—» d ;.
J

17

The background process M; is a Markov process with generator Dy + D¢ and
steady-state distribution 7. If a transition of M; is triggered by an element of
D1, a packet is generated and A(t) increases by 1 (active transitions); transitions
triggered by Dy do not increase A(t) (hidden transitions):

P(A(tat—'_ At) — OaMH—At :J ‘ Mt — Z) — DO(Zv.])At_'_ O(At) )
and

26



MArP Martingale

For 6 > 0, let A\(6) denote the spectral radius of the matrix
Do+ €Dy |
If A(#) = 6C, and h is a corresponding eigenvector, then the process
h(M,)eAM—C)

is a martingale.
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Multiplexing MArPs

In the situation with two MArPs, for 6 > 0, let A(f) and X' (0) denote
the spectral radii of the matrices

Do + €Dy and D, + €D/ |

respectively. If \(0) + M (0) = 0C and h a corresponding eigenvector,
then the process

h(Mt)ee(A(t)JrA’(t)—tO)

is a martingale.
(1) No blow-up of numerical complexity.
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Generalized MArP (GMATrP)

)\gl) )\:(32)

(0)

AP

Dy = — X\ — A3 — g

| M2
A 0]
D= 0 Ao
[0 A3
D2 = RV

23
—Ag — Ay — 12
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Bounds vs Simulations
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Conclusions

e Kingman'’s bound: inspect the queue at a stopping time and
extract information through a martingale

e 3 sufficient condition for martingale constructions from MAPs
(inhomogeneous + uncountable state space)

e two extensions of Kingman'’s bounds to queues with non-renewal
/ non-stationary input

e 31 extension (finite buffer queueing systems): inspect the queue
at two stopping times
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