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Abstract—Safety-critical systems require certification in order

to attain permission to operate. Nowadays, these systems rou-

tinely embed a communication sub-systems whose performance

must be formally verified for certification. Deterministic Network

Calculus (DNC) can be employed for this task. It provides a

mathematical framework to derive worst-case bounds on the

delay of data flows, i.e., deterministic delivery guarantees. Their

accuracy is decisive as even small improvements can change

the outcome of certification. In general, delay bound accuracy

depends on the accuracy of the network model. While previous

work assumed that a more accurate model will invariantly yield

more accurate delay bounds, we show that the opposite can

actually be true. In this paper, we examine a specific weakness of

DNC network analysis that leads to this counter-intuitive result.

We make use of this insight in a mitigation strategy called flow

prolongation. By prolonging the paths of flows, we let them

interfere with more other flows but may still get better results. An

evaluation in differently sized networks gives information about

its impact on delay bound accuracy as well as analysis effort.

I. INTRODUCTION

Deterministic Network Calculus (DNC) provides a mathe-
matical framework for the worst-case analysis of communica-
tion systems. These have become an integral part of larger
systems where they provide networking functionality. The
embedded network is used by different services in a shared
fashion. Among these services, there are usually safety-critical
ones that must satisfy certain deadlines. Formal verification of
delay guarantees is therefore a prerequisite for certification.
DNC can derive deterministic delay bounds and has already
been used in certifying the Ethernet-based backbone in cur-
rent Airbus aircraft, e.g., the A380. This paper investigate a
problem of DNC analysis that causes inaccurate delay bounds
and thus inevitably leads to overprovisioned networks.

DNC started as an analysis of single servers, deriving server-
local delay bounds that can be added up in order to attain a
specific flow’s end-to-end delay bounds. This procedure was,
however, superseded by the idea to take on the analyzed flow
(flow of interest, foi) in its entirety. As a flow of interest crosses
a sequence of servers from its source to its sink, the newly es-
tablished DNC analyses are known as tandem analyses. They
can be composed to a network analysis. From a conceptual
point of view, a DNC network analysis starts with the foi
and backtracks cross-traffic tandem-by-tandem – recursively
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applying a tandem analysis on each of these. There is a multi-
tude of DNC tandem analyses for various scenarios and with
varying accuracy. For example, in FIFO-multiplexing server
analysis, there is the Least Upper Delay Bound (LUDB) [1].
In this paper, we focus on arbitrary multiplexing, i.e., we
assume no knowledge about multiplexing and derive worst-
case delay bounds accordingly. For this setting, there are
multiple tandem analyses, too: Pay Multiplexing Only One
Analysis (PMOOA) [2], multi-dimensional convolution [3] and
the Optimization-Based Analysis (OBA) [4].

Previously, it was assumed that a more accurate network
model, i.e., as little pessimistic as possible, will result in more
accurate delay bounds. However, as we prove in this paper,
these DNC tandem analyses have a common fundamental
problem that can cause the opposite. A network model consists
of worst-case descriptions of service capabilities as well as
traffic arrivals. Whereas the service is shared by all flows
crossing a server, we aim to derive delay bounds for a single
foi, based on its respective arrivals. The analysis needs to
consider interference with cross-traffic correctly. I.e., in order
to account for demultiplexing before the foi’s sink correctly,
cross-traffic arrivals must be bound segregately [5]. This
creates worst-case assumptions in the network analysis that
cannot be attained simultaneously. DNC-derived delay bounds
loose accuracy and networks must be overprovisioned in order
to pass certification. In this paper, we contribute the following:
We prove that segregation’s negative impact on the assumed
cross-traffic burstiness can be alleviated by adding pessimism
to the network model – representatively in an analysis that
applies PMOOA on tandems. The strategy to add pessimism
is called flow prolongation as it extends the path of cross-
flows and thus their interference with the foi. Our evaluation
then extends this insight by an investigation of this counter-
intuitive method’s impact on delay bound accuracy as well as
the analysis effort.

The paper proceeds as follows: Section II presents the
related work and Section III provides the required back-
ground on Deterministic Network Calculus. In Section IV,
we introduce the concept of flow prolongation, prove that it
alleviates the segregation problem of DNC tandem analyses
and assess its costs. Then, Section V evaluates the addition of
flow prolongation to the DNC analysis, with respect to delay
bounds and analysis effort. Section VI concludes the paper.



II. RELATED WORK

Recent work investigated the composition of DNC tandem
analyses to a DNC analysis of feed-forward networks. This
work focussed on bounding of cross-traffic arrivals. In [5],
the authors propose to aggregately bound cross-flows and
show its superiority to the previous approach that segregated
flows before analyzing them. Aggregation was shown to be
the countermeasure to segregation as it reduces the amount
of worst-case left-over service computations. Applied to two
flows crossing the same server, their respective left-over oper-
ations create an unattainable worst-case – in total, segregation
is paid for more than once [6]. Improvements by enforcing an
aggregate analysis of cross-flows was also shown in [7]. The
backlog bound at a server holds for all flows crossing it; not
only those that interfere with the foi. This work shows that, due
to aggregation of all flows, this bound can be smaller than the
burstiness derived for cross-traffic only. Thus, aggregation’s
benefits can be used to cap cross-traffic burstiness.

The literature also reveals a potentially negative inter-
dependency between individual DNC tandem analyses that
are composed to a feed-forward network analysis [6]: The
prerequisite to segregately bound the arrivals of cross-flows
in order to account for demultiplexing correctly. Yet, it did
not formally prove that this leads to overly-pessimistic bounds
on cross-traffic arrivals. We provide this prove and show that
the proposed flow prolongation counteracts this segregation by
allowing for aggregation during the analysis.

Flow prolongation transforms the network model into a
more pessimistic one by assuming that cross-flows take more
hops than they actually do. This assumption can be found in
the DNC literature, yet for different reasons than reducing the
burstiness of cross-traffic. In [8], prolongation is presented as
a computational reduction technique for arbitrary multiplexing
networks. After prolonging, bounding the arrivals of a cross-
traffic aggregate is less costly in terms of computational effort
than bounding individual cross-flow arrivals. The potentially
positive effect on DNC accuracy is, however, not considered.
In previous work on FIFO multiplexing analysis, flow pro-
longation has been proven to potentially improve the delay
bounds [9]. Key is the aggregation of the flow of interest
with its cross-traffic. However, this is not possible in arbitrary
multiplexing as we show in Section III. The DNC literature
separately provides some insights on the benefits of aggregate
analysis of flows as well as on flow prolongation. We complete
this with a formal depiction of these aspects in conjunction
with the DNC network analysis for arbitrary multiplexing.

III. DETERMINISTIC NETWORK CALCULUS BACKGROUND

DNC is based on a simple network model [10] with its
operations cast in a (min,+)-algebraic framework [11], [12].

A. The Network Model
Data Arrivals and Forwarding Service: Flows are charac-

terized by functions cumulatively counting their data. They are
belong to the set F0:

F0 =

�
f : R! R+

1 | f (0) = 0, 8s  t : f (s)f (t)

 
,

R+
1 := [0,+1) [ {+1} .

We are particularly interested in the functions A(t) and
A

0
(t) cumulatively counting a flow’s data put into a server

s and put out from s, both up until time t. These functions
allow for a straight-forward derivation of flow delays.

Definition 1 (Flow Delay). Assume a flow with input A

crosses a server s and results in the output A0. The (virtual)
delay for a data unit arriving at time t is

D(t) = inf {⌧ � 0 | A(t)  A

0
(t+ ⌧)}.

Note, that the order of data within the flow needs to be
retained for the (virtual) delay calculation [13].

Network Calculus operates in the interval time domain, i.e.,
its functions of F0 bound the maximum data arrivals of a flow
during any duration of length d.

Definition 2 (Arrival Curve). Given a flow with input A, a
function ↵ 2 F0 is an arrival curve for A iff

8t 8d 0  d  t : A(t)�A(t� d)  ↵(d).

For example, flows periodically sending a maximum packet
size b with a minimum inter-arrival time t

�

are upper bounded
by the data arrival rate r =

b

t�
. Their arrival curve is commonly

referred to as token bucket and belongs to the set FTB ✓ F0:

FTB = {�
r,b

| �
r,b

(0)= 0, 8d > 0 : �

r,b

(d)= b+ r · d}.

A server’s forwarding service results in the output function
A

0
(t). This service is lower bounded in interval time as well.

Definition 3 (Service Curve). If the service provided by a
server s for a given input A results in an output A0, then s

offers a service curve � 2 F0 iff

8t : A

0
(t) � inf

0dt

{A(t� d) + �(d)}.

For instance, service offered by Ethernet connections can
be described by rate-latency curves from FRL ✓ F0:

FRL = {�
R,T

|�
R,T

(d) = max{0, R · (d� T )} .

A number of servers fulfill a stricter definition of service
curves. They guarantee a higher output during periods of
queued data, the so-called backlogged periods of a server.

Definition 4 (Strict Service Curve). Let � 2 F0. Server s

offers a strict service curve � iff, during any backlogged period
of duration d, its output is at least equal to �(d).

B. (min,+)-Algebraic Deterministic Network Calculus

Definition 5 ((min,+)-Operations). The main (min,+)-
algebraic DNC operations are for f, g 2 F0 are

aggregation: (f + g)(t) = f(t) + g(t),

convolution: (f ⌦ g)(t) = inf

0st

{f(t� s) + g(s)},

deconvolution: (f ↵ g)(t) = sup

u�0
{f(t+ u)� g(u)}.

The network model’s service curve definition then translates
to A

0 � A ⌦ �, the arrival curve definition to A ⌦ ↵ � A,
and performance characteristics can be bounded with the
deconvolution ↵↵ �:



Theorem 6 (Performance Bounds). Consider a server s that
offers a service curve �. Assume a flow f with arrival curve ↵

traverses the server. Then we obtain the following performance
bounds for f :

delay: 8t 2 R+
: D (t)  inf {d � 0 |(↵↵ �) (�d)  0} ,

output: 8d 2 R+
: ↵

0
(d)= (↵↵ �) (d),

where the delay bound holds independent of t and ↵

0 is an
arrival curve for A

0.

Graphically, delay bounding translates to the horizontal
deviation between ↵ and �. It assumes that there is no
reordering of data within the flow, i.e., FIFO. Bounding the
delay of a flow aggregate with the horizontal deviation thus
demands that flows in the aggregate a multiplexed FIFO, too.

Analyzing a single flow under arbitrary multiplexing is
enabled by the following theorem. With it, the foi can be
segregated from its cross-traffic by deriving a lower bound
on its share of service – a so-called left-over service curve.

Theorem 7 (Left-Over Service Curve). Consider a server s

that offers a strict service curve �

s

. Let s be crossed by two
flows f0 and f1 with arrival curves ↵

f0 and ↵

f1 , respectively.
Then f1’s worst-case residual resource share under arbitrary
multiplexing at s, i.e., its left-over service curve at s, is

�

l.o.f1
s

= �

s

 ↵

f0

with (�  ↵) (d) := sup0ud

{(� � ↵) (u)} denoting the
non-decreasing upper closure of (� � ↵) (d).

Simultaneously assuming f0’s respective left-over service
curve �

l.o.f0
s

establishes mutual worst-case interference that
cannot be attained by a realistic system [6].

The above left-over service curve operation is applicable to
single servers only. In its evolution towards the analysis of
tandems, multiple DNC tandem left-over service curves have
been established: PMOOA [2], OBA [4], multi-dimensional
convolution [3] or LUDB [1]. A recent overview over the
principles they implement can be found in [14]. For a tandem
of n servers hs1, . . . , sni with m cross-flows to be subtracted,
they compute a left-over service curve

�

l.o.
hs1,...,sni = � 

�
↵

f1
, . . . ,↵

fm
�

where ↵

fi , i 2 {1, . . . ,m} are the cross-flow arrival curves.
In this paper, we focus on the derivation of these curves.

C. Feed-Forward Network Analysis

DNC is able to derive end-to-end delay bounds for individ-
ual flows traversing a feed-forward network. From a high-level
point of view, the analysis consists of three parts:

1) Backtracking of flows to their respective sources where
their arrival curve is known. This step results informa-
tion about the interference between flows. DNC tandem
analyses recursively backtrack in a tandem-by-tandem
fashion. Higher recursion levels may enforce segregation
on lower ones. E.g., xf1 and xf2 in Figure 1a need to
be backtracked segregately instead of aggregately when
using the previously mentioned DNC tandem analyses.

(a) Original, accurate network model.

(b) Overly-pessimistic network model after xf1 was prolonged.

Figure 1: Sample network showing the basic setting where
flow prolongation can result in more accurate delay bounds.
Prolonging xf1 influences the backtracking step such that it
now operates on a flow aggregate instead of segregated flows.

2) Conversion of the previous step’s interference informa-
tion to a (min,+)-algebraic equation that bounds the
flow of interest’s delay. Part of this equation naturally
bounds the arrivals of cross-traffic. In the example of
Figure 1a, PMOOA computes cross-traffic arrivals as�
↵

xf1 ↵
�
�

s0  ↵

xf2
s0

��
+

�
↵

xf2
s0
↵
�
�

s0  ↵

xf1
s0

��
[5], i.e.,

it assumes unattainable mutual interference.
3) Solving the equation, e.g., by employing one of the

available DNC implementations [15], [16], [17].

IV. FLOW PROLONGATION

Flow prolongation transforms the network model into a
more pessimistic one by assuming that cross-flows take more
hops than they actually do. This is illustrated in Figure 1.

We depict the basic setting that enables flow prolongation
(Figure 1a). In a network analysis, the first DNC tandem
analyses is naturally applied to the foi. In order to correctly
account for demultiplexing of cross-traffic on the foi’s path,
cross-flows are segregated according to the (sub-)path they
share with the foi. I.e., arrivals of xf1 and xf2 are derived
segregately although they both share the same server just
before interfering with the foi. After flow prolongation, xf1

and xf2 share the same (sub-)path of the foi (Figure 1b). This
transformation crucially influences the backtracking step of
DNC analysis. The cross-flows be bounded aggregately as
[xf1, xf2] – segregation’s unattainable worst-case is circum-
vented. In this section, we briefly depict the added pessimism.
Then, we prove reduced cross-traffic arrival bounds and show
that they can result in more accurate delay bounds.

A. Additional Pessimism in the Network Model

Adding pessimism is decisive for the transformation by flow
prolongation in order not to invalidate the worst-case of the
original, accurate network model. Prolonging flows adds more
interference to the analyzed foi at servers where its left-over
service should actually be larger. This decreases the stability
region of the network as overloaded servers can lead infinite
delay bounds.



B. Improved Network Calculus Accuracy

Next, we show that the flow prolongation we propose is
capable of improving the accuracy despite the pessimism
added to the network model. We use the PMOOA tandem
analysis of [2] to represent the class of DNC tandem analyses
enforcing the flow segregation depicted above. Unlike [9],
we do not prove an improved foi delay bound directly and
specific to one multiplexing discipline. We rather prove the
more general notion of reduced cross-traffic burstiness.

Theorem 8 (Flow Prolongation). Flow prolongation changes
a DNC analysis’ backtracking, allowing for aggregate cross-
traffic arrival bounding that can improve the analyzed flow of
interest’s left-over service curve as well as delay bound.

Proof: We will prove this statement by constructing a
network with a foi whose delay bound become more accurate
when prolonging a flow. We strive for a basic flow interference
pattern on a tandem that can be found oftentimes in more
involved network models; i.e., the one depicted in Figure 1a.
Moreover, we instantiate this network model such that we can
argue exclusively over the proceedings of the PMOOA [2].
For simplicity, we assume that the network is homogeneous
with token-bucket arrival curves, ↵foi

,↵

xf1
,↵

xf2 2 FTB, and
rate-latency service curves, �

s0 ,�s1 ,�s2 2 FRL. Then, the
PMOOA’s left-over service curves for the foi are rate-latencies
as well: �

l.o.orig
hs1,s2i = �

R

l.o.
orig,T

l.o.
orig

2 FRL is the original one
of Figure 1a and �

l.o.FP
hs1,s2i = �

R

l.o.
FP ,T

l.o.
FP
2 FRL is the flow

prolongation one of Figure 1b. In this setting, these PMOOA
left-over service curves are derived as follows.

R

l.o.
orig =

�
R

s1 � r

xf1
s1
� r

xf2
s1

�
^
�
R

s2 � r

xf2
s2

�

T

l.o.
orig = T

s1 + T

s2 +

b

xf1
s1

+ b

xf2
s1

R

l.o.
orig

+

�
r

xf1
s1

+ r

xf2
s1

�
· T

s1 + r

xf2
s2

· T
s2

R

l.o.
orig

and

R

l.o.
FP =

⇣
R

s1 � r

[xf1,xf2]
s1

⌘
^
⇣
R

s2 � r

[xf1,xf2]
s1

⌘

T

l.o.
FP = T

s1 + T

s2 +

b

[xf1,xf2]
s1

R

l.o.
FP

+

r

[xf1,xf2]
s1 · T

s1 + r

[xf1,xf2]
s2 · T

s2

R

l.o.
FP

Due to homogeneity, we get Rl.o.
orig = R

l.o.
FP =: R

l.o.. Thus, the
difference between the respective left-over latencies, T l.o.

orig and
T

l.o.
FP , is decisive for DNC performance bounds. The backlog

bound mentioned in Section II is the maximum vertical devia-
tion and for rate-latency service, it is found at the latency term.
I.e., a smaller latency will result in more accurate backlog and
output bounds. The delay bound, i.e, the maximum horizontal
deviation, decreases with decreasing left-over latency which
that can be found in the fixed as well as cross-traffic-dependent
part of the derivations.

The left-over latency increases if larger cross-traffic bursti-
ness needs to be subtracted from the original service (see
Theorem 7). Therefore, we show that T l.o.

orig > T

l.o.
FP can occur;

depending on the way to bound the two cross-flows in our
basic example. Cross-traffic aggregation is superior to cross-
traffic segregation:

T

l.o.
orig > T

l.o.
FP

, T

s1 + T

s2 +

b

xf1
s1

+ b

xf2
s1

R

l.o.

+

�
r

xf1
s1

+ r

xf2
s1

�
· T

s1 + r

xf2
s2

· T
s2

R

l.o.

> T

s1 + T

s2 +

b

[xf1,xf2]
s1

R

l.o.

+

r

[xf1,xf2]
s1 · T

s1 + r

[xf1,xf2]
s2 · T

s2

R

l.o.

,
b

xf1
s1

+ b

xf2
s1

R

l.o. +

�
r

xf1
s1

+ r

xf2
s1

�
· T

s1 + r

xf2
s2

· T
s2

R

l.o.

>

b

[xf1,xf2]
s1

R

l.o. +

r

[xf1,xf2]
s1 · T

s1 + r

[xf1,xf2]
s2 · T

s2

R

l.o.

, (FTB rate aggregation == addition)
b

xf1
s1

+ b

xf2
s1

R

l.o. +

�
r

xf1
s1

+ r

xf2
s1

�
· T

s1 + r

xf2
s2

· T
s2

R

l.o.

>

b

[xf1,xf2]
s1

R

l.o. +

�
r

xf1
s1

+ r

xf2
s1

�
· T

s1 +

�
r

xf1
s1

+ r

xf2
s2

�
· T

s2

R

l.o.

,
b

xf1
s1

+ b

xf2
s1

R

l.o. >

b

[xf1,xf2]
s1

R

l.o. +

r

xf1
s1

· T
s2

R

l.o.

, (stability condition:
r

xf1
s1

R

l.o.  1)

b

xf1
s1

+ b

xf2
s1

R

l.o. >

b

[xf1,xf2]
s1

R

l.o. + T

s2

, (assume T

s2 = 0)

b

xf1
s1

+ b

xf2
s1

R

l.o. >

b

[xf1,xf2]
s1

R

l.o.

, b

xf1
s1

+ b

xf2
s1

> b

[xf1,xf2]
s1

Next, we need to compare the derivation of these cross-
traffic burstiness terms. The left-hand side derives both bursts
segregately:

b

xf1
s1

+ b

xf2
s1

=

�
↵

xf1 ↵
�
�

s0  ↵

xf2
s0

��
(0)

+

�
↵

xf2
s0
↵
�
�

s0  ↵

xf1
s0

��
(0)

=

�
↵

xf1
s0
↵ �

l.o.xf1
s0

�
(0) +

�
↵

xf2
s0
↵ �

l.o.xf2
s0

�
(0)

(service curves 2 FRL and arrival curves2 FTB)
=

�
↵

xf1
s0
↵ �

l.o.xf1
s0

+ ↵

xf2
s0
↵ �

l.o.xf2
s0

�
(0)

(arrival homogeneity: �l.o.xf1
s0

= �

l.o.xf2
s0

=: �

l.o.xf
s0

)
=

�
↵

xf1
s0
↵ �

l.o.xf
s0

+ ↵

xf2
s0
↵ �

l.o.xf
s0

�
(0)

(distributivity of ↵ w.r.t. + [18])
=

��
↵

xf1
s0

+ ↵

xf2
s0

�
↵ �

l.o.xf
s0

�
(0)

(arrival curves2 FTB)

=

⇣
↵

[xf1,xf2]
s0

↵ �

l.o.xf
s0

⌘
(0)

In contrast, the right-hand burstiness is derived aggregately
thanks to flow prolongation:



b

[xf1,xf2]
s1

=

⇣
↵

[xf1,xf2]
s0

↵ �

s0

⌘
(0)

Last, as we do not consider the trivial case of null arrivals, we
know that �l.o.xf

s0
< �

s0 . Thus, under the given assumptions, we
get bxf1

s1
+ b

xf2
s1

> b

[xf1,xf2]
s1 which leads to �

l.o.orig
hs1,s2i < �

l.o.FP
hs1,s2i

and finally to better performance bounds in the more pes-
simistic, flow prolonged network model.

In the above proof of concept, we constructed one specific
instantiation of the network model where flow prolongation
outperforms the original network analysis. The assumptions of
this instantiation might not always be fulfilled. However, flow
prolongation can still have a positive impact in many more
instantiations of the model given in Figure 1. We illustrate this
by an example where we break with the above assumptions..

Example 9. Take the following instantiations of the rate-
latency service curves and token-bucket arrival curves in the
networks depicted in Figure 1:

• �

s0 = �8,4, �
s1 = �13,5, �

s2 = �12,2, and
• ↵

foi
= �2,2, ↵xf1

= �3,8, ↵xf2
= �4,10

I.e., we have a heterogeneous network where flow prolongation
creates a bottleneck at s2 – unlike the flow prolongation
proposed in [8]. Nonetheless, using the derivations given in
the above proof, we get the following left-over service curves:

• �

l.o.orig
hs1,s2i = �6,27.75 and

• �

l.o.FP
hs1,s2i = �5,26.

In this example, �l.o.FP
hs1,s2i is not strictly smaller than �

l.o.orig
hs1,s2i,

both curves intersect. However, given the low arrival rate and
small burstiness of the foi, the smaller latency derived in the
flow prolongated network is still decisive as the bounds show:

• Delay bounds are D

orig
= 28

1
12 > 26

2
5 = D

FP and
• backlog bounds are B

orig
= 57

1
2 > 54 = B

FP.

Departing from the clear setting we used in the proof
might reduce the segregation’s impact but the potential for
improvement persists – even if the network is heterogeneous
or if flow prolongation creates a bottleneck that reduces the
entire path’s left-over service rate in the PMOOA derivation.

C. The Generic Flow Prolongation Scheme
In Figure 1, the tandem consisting of servers s1 and s2

represents the basic building block of flow prolongation. The
tandem of servers where flows might be prolonged is defined
by the analyzed flow in the current step of the feed-forward
network analysis (cf. Section III-C). In the depicted case, the
foi takes two hops and there is one flow that does not fully take
them with the foi to the end. This flow is then prolonged by one
hop. In general feed-forward networks, this scheme is extended
to cover all potential prolongations for all cross-flows. I.e.,
every flow not sharing the tandem to the end will be prolonged
hop-by-hop. For more involved flow interference patterns, this
scheme generates a large set of flow prolongation alternatives,
each of which results in a valid left-over service curve. These
need to be computed in order to later judge their impact on the
entire feed-forward analysis (Figure 1: aggregation of flows at
server s0) and the eventually derived performance bounds.

D. Effort Considerations

Previous work did not consider flow prolongation in the
compositional DNC analysis of feed-forward networks. This
consideration reveals that the search for the best flow prolon-
gation alternative is prone to combinatorial explosion. Dur-
ing the recursive tandem-by-tandem backtracking in a feed-
forward analysis, we additionally execute a hop-by-hop flow
prolongation for every cross-flow on every tandem. Espe-
cially the naive, exhaustive approach depicted in the previous
Subsection becomes infeasible easily. Therefore, we present
countermeasures to the combinatorial explosion problem that
do not impact the accuracy of our results. As we intend to
evaluate the potential impact of flow prolongation, we leave
the work on flow prolongation heuristics to future work.

From the network model itself, we cannot derive the best
flow prolongation alternative for every tandem in the entire
network analysis a priori. Neither can we simply derive the
involved parameters for the alternatives and decide on-the-fly
because every flow prolongation is followed by its specific
backtracking recursion deriving the required cross-traffic ar-
rival bounds (see Section III-C). However, we can counteract
the combinatorial explosion by excluding flow prolongation
alternatives that cannot increase aggregation of cross-flows:

1) We do not prolong flows entering the network at a server
on the flow of interest’s path. These flows’ arrival curves
are already known and cannot be derived differently –
neither aggregately nor segregately.

2) If a cross-traffic aggregate interferes with the foi, we do
not segregate flows from it and prolong them individ-
ually. I.e., already existing cross-traffic aggregates are
retained by flow aggregate prolongation.

3) Prolongation is not strictly done hop-by-hop but such
that aggregation is enabled during arrival bounding. This
rule considers the inlink cross-flows join the foi’s path
from. Different inlinks define different servers prior to
the interference and thus inhibit aggregation.

We also combine these theoretical countermeasures with prac-
tical improvements of the DiscoDNC tool we use for our
numerical evaluations [15]. We parallelized flow prolongation
as well as convolve and cache alternative intermediate arrival
bounds. With these efficiency improvements, we aim for an
exhaustive search for the best flow prolongation analysis.

V. NUMERICAL EVALUATION

In this section, we investigate the potential improvement as
well as effort of flow prolongation by numerical evaluation.

Evaluation Methodology: For our numerical investigation,
we created Internet-like topologies according to the general
linear preference (GLP) model [19]. We applied the default

Table I: Evaluated Network Sizes.

Devices Servers Flows
20 38 152
40 118 472
60 164 656
80 282 1128
100 364 1456



(a) Share of combinatorial explosions. (b) Share of improved delay bounds. (c) Maximum delay bound improvements.

Figure 2: Numerical evaluation of GLP networks of different sizes.

GLP parameter setting (m0 = 20, m = 1, p = 0.4695,
�GLP = 0.6447) and used the aSHIIP tool [20] to generate
these topologies. From DNC’s point of view, nodes of the
topology are network devices, each consisting of multiple
servers that forward data via a specific outlink of the device.
Therefore, this topology is converted to a server graph that di-
rectly connects the servers. The server graph is not necessarily
feed-forward, this is achieved by applying turn prohibition to it
[21]. Traffic was created with a fixed server-to-flow ratio of 1:4
to generate load – a server graph with flows is called network.
Flows are routed on the shortest server graph path between two
randomly chosen network devices. Table I shows the devices,
servers and flows for all of the GLP networks we evaluate.
Service curves correspond to 10Gbps Ethernet connections
(�10Gbps,0) and arrival are uniformly shaped to token buckets
with rate 5Mbps and bucket size 5Mb (�5Mbps,5Mb

).
Analysis Setting: The DiscoDNC [15] (version 2.2.6) auto-

mates the three steps of a compositional DNC feed-forward
analysis. It is written in Java, we ran experiments with Open-
JDK 8 on CentOS 7.2. Moreover, we extended the DiscoDNC
by parallelization of two analysis aspects: Delay bounding
of all flows in a network and the prolongation alternatives
on every tandem in the analysis. These adaptations naturally
increase the resource demand by creating numerous threads.
Therefore, we ran our evaluation on a Colfax Ninja Worksta-
tion with an Intel Xeon Phi 7210 CPU and 110GB RAM. The
CPU offers 64 multithreading-enabled physical cores, resulting
in 256 logical cores. We allocated 96GB to the Java heap, an
exhaustion of this large heap that, in turn, terminates the DNC
analysis signals a combinatorial explosion.

A. Delay Bound Improvements

We executed entire network analyses, i.e., for every network
size we attempted to compute the delay bound for every flow –
with and without flow prolongation. None of our networks
suffered from a bottleneck that impeded stability on a tandem
with prolonged flows. However, some flows suffered from
combinatorial explosion and thus we are not able to compare
delay bounds for all flows. The share of flows we were able

to analyze is between 81.6% and 100% (see Figure 2a and
Table II). Among these flows, we can see a considerable share
of improved delay bounds, especially in the networks smaller
than 100 devices. Figure 2b and Table II show that in these
networks, between 57.4% and 92.4% flows gained delay bound
accuracy improvements larger than 10

�12 (safety margin to
rule out double rounding errors). In the 100 devices network,
the share drops to 26.3%.

While the amount of improvements is considerable, our
numerical evaluation reveals that their magnitude is relatively
small. Figure 2c provides an overview over the maximum
delay bound improvements and Figure 3 extents this depiction
by two means: one taken over all flows and one taken over
the improvements only. Most of these three improvement
values are close together and well below 0.2% (see Table II).
The only exception is the maximally observed delay bound
improvement in the GLP network with 20 devices at just below
1.16%. Although the actual impact of these improvements can
vary vastly, depending on the analyzed network and the usage
of the analysis results, these observations suggest a low prob-
ability of decisive impact. Therefore, our numerical evaluation
shows that the problem counteracted by flow prolongation
does not have a severe impact in Internet-like topologies. If a
considerable improvement of certain delay bounds is required,

Table II: Overview of delay bounding results.

Devices Flows
Total Analyzed Improved

20 152 136 95
40 472 472 271
60 656 606 560
80 1128 1128 800

100 1456 1189 313

Devices Improvements of flow delay bounds [%]
Max Mean [Analyzed] Mean [Improved]

20 1.157184 0.1855357 0.265609
40 0.1167132 0.009803669 0.01707502
60 0.1079412 0.008994453 0.009733283
80 0.1243899 0.005160176 0.007275849
100 0.1673514 0.00360915 0.01374475



Figure 3: Comparison of delay bound improvements.

the network design needs to be improved instead of the DNC
analysis. Next, we investigate if the involved effort justifies
flow prolongation in the search for these small improvements
we could observe.

B. Computational Effort Observations

Concerning the computational effort to analyze every flow
of every network, we can report observations suggesting un-
predictability. The common DNC measure for computational
effort is analysis run-time [22] and most flow-prolongation
delay bounds in the smallest network were computed within
a day. However, we already experienced combinatorial explo-
sions preventing the analysis of 16 flows (see Figure 2a and
Table II). On the other hand, the GLP network with 40 devices
was completely analyzed after 7 minutes and 16 seconds. The
following network of size 60 was the first to require multiple
days of computations for one of the flows’ delay bounding,
yet without exhausting the provided 96GB of heap space.
This behavior carried forward to the final network with 100
devices. We ran its computations for two weeks straight before
experiencing exhaustion of the heap space. Again, most of the
individual flow analyses finished within a much shorter time
of a couple of days while some others were responsible for
this long computation time. Summing up, the computational
cost of flow prolongation cannot be predicted. However, these
observations suggest that our effort reductions presented in
Section IV-D make an analysis feasible for the majority of
flows.

VI. CONCLUSION

In this paper, we proved that a specific form of flow seg-
regation enforced by DNC tandem analyses can be alleviated
by flow prolongation – a technique transforming the network
model into a more pessimistic one that positively impacts the
DNC network analysis. Its impact is able supersede the added
pessimism such that DNC performance bounds, in particular
delay bounds, can be improved. Our numerical evaluation
shows that this situation appears very often in a network
analysis, yet, the observed delay bound reductions are small.
While effort of flow prolongation is mostly manageable, it
might suffer from combinatorial explosion that inhibits the
derivation of bounds. Having added these two insights to
the state-of-the art in DNC, we recommend to apply flow

prolongation in a subsequent analysis of selected flows whose
bounds require small improvements, e.g., to fulfill pre-defined
delay guarantees, in order to maximize its potentially decisive
impact while simultaneously minimizing the involved effort.
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