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Abstract—Due to the omnipresence of caching in modern
computing and networks, characterizing the performance of
caches is an important aspect of system performance and
scalability analysis. While even analytical models for single caches
proved to be challenging, nowadays, many configurations already
encompass hierarchies of caches. Time-to-live (TTL) based caches
have recently been proposed as a general approach to simplify
performance analysis of caching networks. Previous work has
used approximation and recursion techniques to characterize the
inter-miss process which is essential to study this setting. This
work introduces an appropriate mathematical abstraction of the
cache model as a martingale representation. We derive explicit
bounds on all moments of the inter-miss time of a TTL-based
cache and report preliminary simulation results. Our approach
does not rely on recursion techniques but is still general enough
to capture different previously introduced TTL-based caching
models.

I. INTRODUCTION

Characterizing the performance of caches is an important
aspect of system performance analysis given the omnipresence
of caching in modern computer systems. Caches are deployed
to transparently store a subset of frequently accessed data
items close to customers and processing units in order to
decrease access delay while reducing load to a central instance.
Computer networks present particular application cases with
today’s scalability of domain name and content delivery
resolution being critically dependent on caching technology.

Despite its relevance, caching was exposed to be a hard
problem from a modeling perspective. The most commonly
studied policy, the Least-Recently-Used (LRU) policy, was
first analytically studied in [1]. Due to the high computational
complexity of this exact result, [2] suggested an approximation
and today, approximations for LRU caches are established
methodology [3]. Similar cases can be made for other popular
policies like the First-In-First-Out (FIFO) and the Random
Replacement (RR) policy [4], or the Move-to-Front eviction
strategy [5]. With the proposal of integrating caching more
tightly with a future Internet’s architecture [6], [7] networks
of caches need to be analyzed to assess these system design
proposals. Characterizing performance metrics in this setting
increases modeling difficulty even for small networks [8] and
further work on approximations appears to be required [9],
[10].

Time-to-live (TTL) based caches have recently gained
attraction due to their reported capability to mimic metrics
of interest for LRU, FIFO and random cache models [10].
Fofack et al. [10] propose their TTL-based model of networks

of caches as a generalization which appears simpler to analyze
than networks of LRU or FIFO caches. Additionally, TTL-
based caches exhibit great relevance for real-world applications
such as the domain name system or content delivery [11]–[13].

TTL-based caching evicts an object from the cache after
a corresponding timer has expired. After eviction, the next
request constitutes a miss, the object enters the cache again,
and the TTL timer is reset. Similar to the independent reference
model used to analyze LRU, FIFO, or RR caches [1], TTL-
based cache models assume inter-query times to be given as a
series of identically independent (iid) random variables.

For a constant TTL, Jung et al. [12] find that “hit and
miss rates have a complicated distribution” which, however,
simplifies to a single point mass when considering the limit of
time-intervals (0, t] where t→∞. Under this assumption they
derive limit results on the average hit and miss rates. In [14]
this limiting hit rate result is generalized to include delays in
download time and consistency measures. Recently, Fofack et
al. [10] attended to the general case of TTLs being assumed
to be iid random variables. This is important in order to model
characteristics of other cache models as their representation
may require TTLs to be random variables. The authors give
exact results on the hit rate, miss rate, and cache occupancy,
and derive a recurrent integral equation for the inter-miss time
distribution. In an approximated form this result can be applied
to the analysis of caching networks for exponential TTLs.
However, delivering an exact equation comes at the cost of
complexity which makes both iteration and the case of general
arrival and TTL distributions hard to analyze.

Previous work exploited mainly renewal properties of both
arrival and miss processes. In this work we describe a new
mathematical representation of a TTL-based cache which makes
martingale results applicable. Given a martingale representation,
we are able to draw results from this mathematical framework,
in particular Wald’s fundamental identity [15], to develop upper
and lower bounds on all moments of the inter-miss process of
a TTL-based cache.

The inter-miss process is particularly relevant for a networks-
of-caches scenario. For this application, the miss-process of
a cache in layer n represents the arrival process of a cache
in layer n + 1, and thus a characterization of the inter-miss
process is requisite to this analysis. Additionally, the moments
of the inter-miss process characterize the traffic flow exiting
some cache which, for a cache deployment, may be used to
bound the amount of traffic reduction obtained by the cache



or the exit-flow’s standard deviation.
Martingales have been considered before in the analysis

of computer networks. For example [16] and [17] adopted a
martingale to derive results in queueing theory, or [18] used
a martingale in the domain of effective bandwidths. Recently,
martingale theory has been applied to the domain of network
calculus [19]. We seem to be the first to suggest a martingale
for the analysis of cache networks.

The rest of this paper is structured as follows. The next
section, Section II, introduces and formalizes both cache
models. In Section III we give our main result, the bound
on the miss-process’s moment generating function. Section
IV contains an application example to Poisson arrivals and
exponential TTLs and we assess the tightness of our bounds
briefly with simulation results. We conclude in Section V.

II. CACHE MODEL

Similar to the independent reference model [1], we consider
a given arbitrary data item and query arrivals which are
independent and identically (iid) distributed. The simplification
of iid requests may be conservative [12] as burst-arrivals to
the same item would yield a higher hit rate. This issue applies
to the lower bound presented here only, and Jung et al. find
that under this assumption, the hit rate is still predicted well
[12]. Additionally, our approach does not depend on a specific
distribution, and, for example, a long-tailed Weibull distribution
which is reported to provide a good fit for TCP session arrivals
[20] can be plugged into our bounds.

From a user’s perspective, obtaining an answer from a cache
may be considered beneficial compared to waiting longer for
an answer from a central entity, encouraging further requests.
We do not consider any such feedback to the user.

In the literature, two different descriptions of TTL-based
caching have appeared. The two models differ in when the
TTL is reset; informally, they can be outlined as:
A.) renew the TTL after a miss (and a miss occurs for the

first request to the object after the TTL has expired)
B.) renew the TTL at each request to an object, being either

a miss or a hit (and a miss occurs once any request took
longer than the current TTL)

The former model, denoted by A.), is used in many real-
world applications (e.g. DNS, caching of web objects) and has
been assumed in both [12] and [14] to develop hit rate equations.
Additionally, this model guarantees weak consistency [13] as
for a single cache, any object is at least as recent as the maximal
TTL value.

The second model, denoted by B.), was introduced re-
cently [10] due to its favorable mathematical properties: each
request constitutes a regeneration point. In particular, any TTL
spans at most the time window of one inter-request random
variable so that miss probabilities do not depend on a sum of
inter-request random variables. According to renewal theory,
it is then sufficient to analyze properties of the first request
window to characterize the full process.

We formalize the caching models as two stochastic processes.
Assume {Xi}i≥1 (the inter-arrivals) and {Ti}i≥1 (the TTLs)

to be independent series of real-valued iid random variables
with corresponding CDFs F (z) and G(t) and densities f(z),
g(t), respectively.

Definition 1 (Caching Models).

A.) TTL renewal after miss

Yn := X1 + · · ·+Xn (1)

τ := inf{i :

i∑
k=1

Xk > T1} (2)

B.) TTL renewal at each request

Yn := X1 + · · ·+Xn (3)
τ := inf{i : Xi > Ti} (4)

Because the overall miss process defines a renewal process
in both cases, the stopping time of the first miss characterizes
the miss process. In particular, the inter-miss distribution is
characterized by the distribution of Yτ in both cases. The second
model, model B.), is simpler because τ does not depend on
the sum

∑
Xk of random variables.

Observe that τ is a stopping time in both cases if the
corresponding filtration includes Xis and Tis, for example,
let Ft := σ((X1, T1), . . . , (Xt, Tt)).

At its surface, this problem resembles a first hitting time
problem of a continuous time random walk (CTRW). However,
the fact that we are interested in Yn (the actual time of the
first miss) and not simply τ (the index of the first miss) deter-
mines a dependency between the time and the jump altitude
of the random walk which prevents the usual decoupling
(decoupled CTRW) approach [21]. Likewise, consider the
usual conditioning approach P(Yτ ≤ y) = P(

∑τ
i=1Xi ≤

y) =
∑∞
t=1 P(

∑τ
i=1Xi ≤ y|τ = t)P(τ = t). Although

P(τ = t) is straightforward to compute, the dependency
of Xis and τ prevents any decoupling of the conditional
P(
∑τ
i=1Xi ≤ y|τ = t).

For the reason of decoupling we propose a martingale
abstraction to the caching model in the next section. This
work is general and our bounds apply to both models; however,
for simplicity of demonstration, the application example and
simulation results in Section IV are limited to three particular
configurations of model B.) .

III. BOUNDS ON THE MOMENT GENERATING FUNCTION

We define a martingale with respect to the cache process
Yn of both models and use results on stopped martingales to
derive our bounds in this section. The two models will only
differ by their respective stopping times. For this reason, both
upper and lower bound are uniform for both models and only
when evaluating the bounds for specific parameters F (z) and
G(t) will the difference in τ come into play.

Martingales are a class of stochastic processes, such as
Markov processes or stationary processes. At some time t in a
martingale model, the expected value for time t+1 is the same
as the present value. In particular, the process’s next expected



value is still the present value given knowledge about all past
events. We omit an introduction to martingales and stopping
times as formal knowledge about this theory is not required
to follow our argumentation1. A martingale model helps to
exploit the observation that τ is a stopping time. Additionally,
martingale properties may yield high-level insight into the
problem.

Definition 2 (A Martingale for Cache Models).

Zn :=
eωYn

(E [eωX1 ])n
(5)

Checking that this definition fulfills the martingale definition
is straightforward given that the arrival process is a renewal
process and thus in every step the moment generating function
(MGF) of the arrivals E

[
eωXi

]
is equal to E

[
eωX1

]
. We

use the common symbol φ(ω) to denote the MGF of the
inter-arrival process. Then, the martingale definition becomes
Zn = eωYn (φ(ω))

−n.
This martingale2 is due to Wald [15] and the same work also

contributed an identity which is instrumental to analyze Yτ
if τ is a random walk barrier, i.e. the first time Yn leaves
some interval (a, b). For this bounded stopping time, Wald
proves that Zn = 1 which is instrumental to approximate
the distributions P(Yτ ≤ −a) and P(Yτ ≥ b) [22], [23]. Our
stopping time, however, is more general, and in particular not
bounded. We employ standard martingale theory to obtain
an appropriate generalization which requires only practical
conditions as shown in Section IV.

Proposition 1 (Optional Stopping Identity).
Assuming τ <∞ almost surely, and Zn uniformly integrable,

then it holds:

E [Zτ ] = E [Z1] = 1 (6)

Proof: This is an application of a special form of the
optional stopping theorem which can, for example, be found
in section 12.5 on optional stopping in [22]

The assumption of an almost surely finite stopping time is
feasible for most realistic caching configurations. In particular,
given space constraints of a cache and at least a positive
probability of arrivals, the number of arrivals between misses
intuitively stays finite with probability one. The second
condition restricts the weight of the tails of Zn’s distribution
uniformly over the whole family, i.e., independent of n.

Using Proposition 1 it is now possible to derive upper and
lower bounds on all moments of the miss process:

Lemma 1 (Lower Bound on Yτ ). For p ∈ (1,∞), and under
the assumptions of Proposition 1:

E
[
eθYτ

]
≥

( ∞∑
k=1

(φ(θ/p))
−kp
p−1 P (τ = k)

)1−p

(7)

1An interested reader may consider textbooks about stochastic processes
for an introduction. As an example, we consider chapter 12.5 in [22] about
optional stopping to be particularly relevant.

2The martingale in Definition 2 is often called “Wald’s Martingale” and the
corresponding identity is “Wald’s fundamental identity” [15], [22], [23]

Proof: Apply Hölder’s inequality to split the martingale
from Definition 2. Given p, q > 1 and p−1 + q−1 = 1:

1 = E [Zτ ] ≤ (E
[∣∣(eωYτ )p

∣∣]) 1
p (E

[∣∣(φ(ω)−τ )q
∣∣]) 1

q (8)

And thus, by raising to the power of p and setting ω := θ/p.

(E
[
(eωYτ )p

]
)

1
p ≥ (E

[
(φ(ω)−τ )q

]
)

−1
q (9)

E
[
eθYτ

]
≥ (E

[
(φ(θ/p)−τ )q

]
)

−p
q (10)

Finally, we set q := p
p−1 to obtain a single optimization

parameter fulfilling the Hölder conjugate constraint and replace
the expectation by its definition. This is possible because
Φ(θ/p) is constant and thus independent of τ .

Observe that although the identity in Proposition 1 decouples
the dependencies of Yn, the result is still insufficient for
straightforward evaluation. In textbook examples [22], [23]
the remaining dependency is usually broken by finding a ω
such that Φ(ω) = E

[
eωX

]
= 1. However, already for Poisson

arrivals there is no non-trivial ω which fulfills this property.
Moreover, even given existence of such an ω, setting ω to a
fixed value prevents the optimization of p to obtain a tight
bound on E

[
eθYτ

]
: θ needs to be a real-valued parameter and

was obtained by setting ω := θ/p.
In our approach, the dependency between the stopping time

and the cumulative arrivals remains and we solve this issue by
relaxing the problem to stochastic bounds instead of an exact
analysis.

Slightly extending the technique from Lemma 1, we derive an
upper bound on the moments of the miss process in Lemma 2.

Lemma 2 (Upper Bound on Yτ ). For p ∈ (1,∞), and under
the assumptions of Proposition 1:

E
[
eθYτ

]
≤

( ∞∑
k=1

(φ(θp))
k
p−1 P (τ = k)

) p−1
p

(11)

Proof: We use a simple reverse of Hölder’s inequality
(proof in the appendix, Lemma 3) to derive:

1 = E [Zτ ] ≥
(
E
[∣∣∣(eωYτ )

1
p

∣∣∣])p (E [∣∣∣(φ(ω))
−τ(−1)
p−1

∣∣∣])−(p−1)
(12)

Similar to before, taking the p-th root and setting ω := θp
gives a bound for the MGF of Yτ :

(E
[
e
ω
p Yτ
]
)p ≤

(
E
[∣∣∣(φ(ω))

τ
p−1

∣∣∣])(p−1) (13)

E
[
eθYτ

]
≤
(
E
[∣∣∣(φ(θp))

τ
p−1

∣∣∣]) p−1
p

(14)

Observe that we need P(τ = k) in both lemmas. This
probability mass function is actually convenient to derive in
many cases due to the cache process’s renewal properties. For
example for cache model B.), the stopping time distribution is



Fig. 1. Simulation vs. upper and lower bounds for different cache configurations. In all cases, we see that the bounds work well for |θ| near to zero, which is
the range most important to derive the miss process’ moments. The lower bound is tight for even a larger range of θ. Left: for a somewhat typical case of an
arrival rate (λ = 9) which is considerably larger than the deterministic TTL (T = 2), the bounds work particularly well. This is the case for all configurations
with lambda considerably greater than T . For corner cases, where the two are close together, the tightness degrades: the central plot shows λ = 2.1, and the
left plots shows λ = 2.01 with T = 2 in both cases.

geometric:

P(τ = k) =(P (X1 ≤ T1))k−1P (X1 > T1) (15)

=

(∫ ∞
0

F (t)dG(t)

)k−1(
1−

∫ ∞
0

F (t)dG(t)

)
(16)

Together with Lemmas 1 and 2, this gives us a simple way to
access principal properties of the miss process, i.e., its moments,
via the corresponding moment generating function (MGF).

IV. APPLICATION CASES AND SIMULATION RESULTS

In this section we seek to show the applicability of the
results obtained in the previous section. For this reason we
focus on the case of Poisson arrivals. More realistic inter-
arrival distributions like the Weibull distribution [20] also
possess an MGF transform, and thus are candidates which
can be considered with our approach. Nevertheless, for the
example of Weibull distributed inter-arrivals, the analysis is
more involved as the MGF is usually not available in closed
form, although some progress has been obtained for special
cases of the Weibull MGF [24].

To be able to apply Proposition 1 which is a necessity for
the bounds, we need to fulfill the corresponding conditions.
Firstly, we shall prove the less common of the two conditions,
uniform integrability, for the case of Poisson arrivals.

Proposition 2. For Poisson arrivals, the caching martingale
Zn is uniformly integrable for an ε-environment around zero:

P(Zn1{Zn>a})→ 0 as n→∞ (17)

Proof: We first employ Hölder’s inequality for p, q = 2
and then Markov’s inequality:

P(Zn1{Zn>a}) (18)

≤ E
[
(Zn)2

] 1
2 E
[
(1{Zn>a})

2
] 1

2 (19)

≤ E
[
(Zn)2

] 1
2
E [Zn]

a
(20)

Because E [ZN ] = 1 and because E
[
(Zn)2

]
=

E
[
e2ωYn/(Φ(ω))−2n

]
, it is always possible to find ω′ < ω

with |ω′| > 0 so that E
[
(Zn)2

]
is bounded.

Instead of the last argument, it is also possible to use
the Erlang density to algebraically verify the claim of the
proposition. This is omitted for brevity.

Next, we derive bounds for two exemplar caching configura-
tions, using both caching models, as well as both deterministic
and random TTLs.

Example 1 (Poisson Arrivals, Det. TTLs, and Model A.)).
Assume caching model A.), Xi ∼ exp(λ), and Ti = T ∈ R+.
Then p > 1 can be optimized on the bounds:

E
[
eθYτ

]
≥ cpe(1−p)(c

−p
p−1−1)λT (21)

E
[
eθYτ

]
≤ d

1
p e

p−1
p (d

1
p−1−1)λT (22)

where c := λp
λp−θ , and d := λ

λ−θp .

Proof: As a first step, we derive the probability mass
function for the stopping time. It is clear that P(τ < 1) = 0,
and P(τ = 1) = P(X1 > T1) = e−λT . For P(τ > 1) we use
1. a conditioning trick known from random walk theory, 2. the
Renewal properties of the arrivals, and 3. the property that the
sum of k−1 exponential random variables is Erlang distributed
with shape parameter k − 1 and the same rate.

P(τ = k) = P(

k−1∑
i=1

Xi ≤ T,
k∑
i=1

Xi > T ) (23)

=

∫ T

0

P(z +Xk > T |
k−1∑
i=1

Xi = z)P(

k−1∑
i=1

Xi = z)dz (24)

=

∫ T

0

(
e−λ(T−z)

) λk−1zk−2e−λz
(k − 2)!

dz (25)

=
λk−1e−λT

(k − 2)!

T k−1

k − 1
=
λk−1e−λTT k−1

(k − 1)!
(26)

Observe that this formula is general and includes the case of
τ = 1.

It holds that P(τ <∞) = 1 because

P(τ <∞) =

∞∑
k=1

P(τ = k) =

∞∑
k=1

(λT )k−1

(k − 1)!
e−λT (27)

= e−λT+λT = 1 (28)



Fig. 2. Simulation vs. upper bounds on a log scale for the arrival rates as considered in Figure 1: λ = 9 (left), λ = 2.1 (center), λ = 2.01 (right). Again,
this plots show that for θ close to zero, the bound are tight and capture the simulation’s gradient closely.

Together with Proposition 2 this proves that the assumptions
of optional stopping hold in this case, and that Lemmas 1 and
2 are applicable.

A closed form of the exponential MGF is known as Φ(ω) =
(1− ω/λ)−1. For the lower bound, ω = θ/p by definition. To
shorten the derivation, we abbreviate Φ(θ/p) by c as introduced
in Example 1. Next, we plug the probability mass function of
τ into the bounds and algebraically reformulate to the series
representation of the exponential function.

E
[
eθYτ

]
≥

( ∞∑
k=1

c
−pk
p−1

λk−1e−λTT k−1

(k − 1)!

)1−p

(29)

=

c −p
p−1 e−λT

 ∞∑
k=0

(
c

−p
p−1λT

)k
k!

− 1




1−p

(30)

= (c
−p
p−1 e−λT ec

−p
p−1 λT )1−p = cpe(1−p)(c

−p
p−1−1)λT (31)

The derivation of the upper bound follows the same scheme
with changed exponents and a different constant d as now
ω = θp as defined in Example 1.

E
[
eθYτ

]
≤

( ∞∑
k=1

d
k
p−1

λk−1e−λTT k−1

(k − 1)!

) p−1
p

(32)

=

(
(d

1
p−1 e(d

1
p−1−1)λT

) p−1
p

(33)

Example 2 (Poisson Arrivals, Exp. TTLs, and Model B.)).
Assume caching model B.), Xi ∼ exp(λ), and Ti ∼ exp(µ).
Then p can be optimized on the bounds:

E
[
eθYτ

]
≥
(
µ

λ

c1
1− c1

)1−p

(34)

E
[
eθYτ

]
≤
(
µ

λ

c2
1− c2

) p−1
p

(35)

given that the following constraints are fulfilled:

• c1 :=
(

pλ
pλ−θ

) −p
p−1 λ

λ+µ < 1

• c2 :=
(

λ
λ−θp

) 1
p−1 λ

λ+µ < 1

• 1 < p, and θ < λ.

Proof: Assume Xi ∼ exp(λ), and Ti ∼ exp(µ). The
probability mass function of the stopping time can be derived
as previously suggested in Equations (15) and (16):

P(τ = k) =

(∫ ∞
0

(1− e−λx)µe−µxdx

)k−1
(36)∫ ∞

0

e−µxλe−λxdx (37)

This is easy to solve, as both integrals translate into the
definition of the MGF of exponential random variables.

P(τ = k) =

(
1− µ

λ+ µ

)k−1
µ

λ+ µ
(38)

=
µ

λ

(
1− µ

λ+ µ

)k
(39)

As in the previous example, it holds that P(τ < ∞) =∑∞
k=1 P(τ = k) =

∑∞
k=1

µ
λ

(
λ

λ+µ

)k
= 1 and we can use

Proposition 2 to show that the requirements of the bounds are
fulfilled. Given the equation for P(τ = k), both upper and
lower bound are immediate because φ(ω) = λ

λ−ω :

E
[
eθYτ

]
≥

µ
λ

∞∑
k=1

((
pλ

pλ− θ

) −p
p−1 λ

λ+ µ

)k1−p

(40)

E
[
eθYτ

]
≤

µ
λ

∞∑
k=1

((
λ

λ− θp

) 1
p−1 λ

λ+ µ

)k 
p−1
p

(41)

We denote the constants of the two geometric series by c1
for the lower bound and c2 for the upper bound, as defined
in Example 2. Both constants must be strictly less than 1.
Furthermore, 1 < p, and θp < λ, and thus θ < λ.

A. Simulation Results on the MGF

Comparing simulation results to the bounds on a moment
generating function may not appear straightforward as the
interpretation of the values of an MGF E

[
eθYτ

]
for various

parameters θ is not obvious. However, we know that in order



Fig. 3. Left: simulation vs upper and lower bound for both exponential arrivals and timers, λ = 2.1 and µ = 2. Here, the lower bound’s tightness is worse
than for deterministic TTLs, but still both bounds capture the process’s dynamics closely. For other configurations the tightness behaves comparable to the case
of deterministic TTLs. Center: log-scale plot of the same configuration. Right: the Chernoff bound on the CCDF of Yτ for a particularly bad configuration: the
upper bound is impractically loose.

to obtain the i-th moments from an MGF, we take the i-th
derivation and evaluate for θ = 0. Thus, a bound needs to
capture the gradient of the MGF at θ = 0, in the best case for
the first few orders of derivations.

By simulation we found the bounds to be sensitive to the
ratio λ/µ. For this reason we compare different configurations
of λ and µ. For small ratios between λ and µ, the bounds are
only tight for a small environment of θ around zero. This
environment expands for greater ratios, and, for what we
consider a realistic configuration, λ = 9 and µ = 2, the
range of θ where the bounds appears tight increases visibly.
Corresponding plots of an empirical MGF obtained from
simulation are compared to our bounds in Figure 1 (for a
deterministic TTL, Example 1) and in Figure 3 (for exponential
TTLs, Example 2).

We show the bounds on logarithmic scale in Figure 2 and
find that for deterministic TTL the upper bound matches the
MGF’s slope at θ = 0 in all cases. In particular, the lower
bound is tight in all cases, while the upper bound can get
loose for θ far from zero. For exponential TTLs, and even
for unfavorable conditions (small ratio of λ and µ), the upper
bound is tighter than for deterministic TTLs, but the lower
bound deteriorates slightly (cf. Figure 3).

B. Simulation Results on First and Second Moment

In this section, we show how to derive an upper bound on the
first and second moment for two configurations of exponential
timers in the caching model B.) as this derivation is shorter
than others and the bounds do not match as well as for other
configurations. For example, the mean for deterministic TTLs
matched our simulation results with three digits in all cases.

Thus, assume the bounds from Example 2 and let us first
consider the configuration λ = 9 and µ = 2. For simplicity we
omit any optimization of the parameter p in the former case,
fix p = 2, and obtain from Lemma 2:

E
[
eθYτ

]
≤

2

9

1
1

( 9
9−2θ

9
11 )
− 1

 1
2

= 3

√
1

9− 11θ
(42)

Next we obtain the first derivative and evaluate at θ = 0 to

obtain the first moment of Yτ :

d

dθ

(
3

√
1

9− 11θ

)
=

33

2

(
1

9− 11θ

)3/2

(43)

E [Yτ ] ≤ 33

2

(
1

9

)3/2

=
11

18
(44)

From corresponding simulations we obtain E [Yτ ] ≈
0.6104813 and this compares to the upper bound of 11

18 = 0.61̄
with a relative error of less than one percent.

In the same way, we compute the first moment for what we
previously found to be a worst-case corner case: λ = 2.1 and
µ = 2. This time we fix a better p which is the smallest p
such that c2 < 1, cf. Fig. 3. We obtain:

d

dθ

 2

2.1

1
1(

( 2.1
2.1−1.01θ )

1
0.01 2.1

2.1+2

) − 1


0.01
1.01

(0) = 0.97619

(45)

which still compares to a simulation result of E [Yτ ] ≈
0.9761672 with a relative error of less than one percent.

However, the tightness of our bound on the second moment
is already very loose. Comparing the upper bound

d

dθ

33

2

(
1

9− 11θ

) 3
2

=
1089

4

(
1

9− 11θ

) 5
2

(46)

sd(Yτ ) =

√
1089

4

(
1

9

) 5
2

=

√
121

108
(47)

to the simulation result gives a relative error of more than fifty
percent.

C. Simulation Result on a Classical Chernoff Bound

In principle it is possible to use classical inequalities to
bound the distribution of the process Yτ . The upper bound
from Lemma 2 can be plugged into a Chernoff bound [25] to
obtain:

P (Yτ > y) ≤ inf
0<θ

(
E
[
eθYτ

]
e−θy

)
(48)



Then, under previous assumptions and similar constraints
on p and θ it holds:

P (Yτ > y) ≤ inf
0<θ


µλ 1

1(
( λ
λ−θp )

1
p−1 ( λ

λ+µ )
) − 1


p−1
p

e−θy


(49)

However, simulations show that this bound is impractical
even for simple cases such as Poisson arrivals. In Figure 3 we
show a particularly bad result for a small ratio between λ and
µ. This result constitutes a clear limitation of this approach.

V. CONCLUSION

In this work we propose a martingale approach to the
modeling of TTL-based caching systems. We are able to derive
tight bounds on the first moment of the inter-miss process. Our
approach is sufficiently general to capture moments of even
more general caching models as the model B.) introduced in
Section II because it requires only humble renewal-property
assumptions. However, we observe the results presented to
have severe limitations, too. Considering the case of cache
networks, even a simple line of cache evades our analysis as
we are not able to bound the miss process itself (but only its
lower-order moments). In particular, using stochastic bounds
on the miss probability distribution such as a Chernoff bound
leads to loose results which prevent repeated application.

To address the limitations of this work, we consider further
abstractions from the process to be most promising. Defining
different martingales which do not exhibit the dependency as
in our martingale definition may yield tighter bounds or finally
exact results on this problem.
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APPENDIX

Lemma 3.∫
|fg|dµ ≥

(∫
|f |

1
p dµ

)p(∫
|g|

−1
p−1 dµ

)−(p−1)
(50)

Proof: Set q = p
p−1 .

With Hölder’s inequality we obtain∫
|fg|

1
p |g|

−1
p dµ ≤

(∫ (
|fg|

1
p

)p
dµ

) 1
p

(51)(∫ (
|g|

−1
p

) p
p−1

dµ

) p−1
p

(52)

=

(∫
|fg|dµ

) 1
p
(∫
|g|

−1
p−1 dµ

) p−1
p

(53)

Raising this equation to the power of p gives:(∫
|f |

1
p dµ

)p
≤
∫
|fg|dµ

(∫
|g|

−1
p−1 dµ

)p−1
(54)


