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ABsTrRACT. The stochastic network calculus (SNC) has become an attractive
methodology to derive probabilistic performance bounds. So far the SNC is
based on (tacitly assumed) exact probabilistic assumptions about the arrival
processes. Yet, in practice, these are only true approximately—at best. In many
situations it is hard, if possible at all to make such assumptions a priori. A more
practical approach would be to base the SNC operations on measurements of
the arrival processes (preferably even on-line). In this report, we develop
this idea and incorporate measurements into the framework of SNC taking
the further uncertainty resulting from estimation errors into account. This
is a crucial step towards a statistical network calculus (StatNC) eventually
lending itself to a self-modelling operation of networks with a minimum of a
priori assumptions. In numerical experiments, we are able to substantiate the
novel opportunities by StatNC.

1. INTRODUCTION

1.1. Motivation. Over the last two decades the stochastic network calculus (SNC)
has evolved as a valuable methodology to compute probabilistic performance bounds
[8]. It has found numerous and diverse usage in important network design and con-
trol problems: smart grid control [25], delay control in cognitive radio networks
[13], and as foundation for bandwidth estimation on Internet end-to-end paths [21],
to name a few recent examples.

SNC originated from its deterministic counterpart as conceived by Cruz [10, 11]
to provide stochastically relaxed performance bounds, mainly in order to capture
the statistical multiplexing gain as is characteristic for packet-switched networks.
Some of the earliest work on SNC can be traced back to [26, 5, 19]. In particular
Chang’s sigma-rho calculus based on moment-generating functions (MGF) received
much attraction in the field and was refined in [12| to match with the latest ad-
vances in the min-plus algebraic formulation of network calculus (alternative SNC
formulations can be found in [12, 4, 18], see [8] for some perspectives about these).
The core modelling abstractions of SNC are arrival envelopes and service curves.
Arrival envelopes provide probabilistic bounds on how much traffic arrives within
a time interval of a given length; service curves essentially do the same for the
amount of work done by a system serving those arrivals.

One of the strengths of SNC is its versatility with respect to traffic models
that can be treated, ranging from short-range dependent traffic with exponentially
bounded burstiness (see e.g. [7]) to long-range dependent traffic such as fractional
Brownian motion [24], or even heavy-tailed self-similar traffic [20]. Yet, all of these
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works start from “clean”; a priori and exact probabilistic assumptions. In practice,
however, the question arises: where do these assumptions come from? In most
cases the answer must be: observation of the past traffic behaviour, in the form of
measurements and subsequent statistical inference. However, statistical inference
involves errors and thus another source of uncertainty besides traffic variations
themselves. To the best of our knowledge, none of the existing work on SNC has
taken this uncertainty into account and integrated it into the SNC operations. We
take this missing first step, i.e., measuring the arrivals and making statistical infer-
ences, and integrate it into the SNC, thereby moving towards a statistical network
calculus (StatNC)'. Moving from SNC to StatNC can be viewed as going from sto-
chastic processes to time series. Of course, we still have to make assumptions for
the time series corresponding to past traffic arrivals with respect to the underly-
ing stochastic process, but we can adapt them dynamically (possibly on-line) and
some deviations from the assumptions may be tolerable (depending on the robust-
ness of our statistical estimators). Clearly, the goal of our StatNC framework is to
cope with as few assumptions as possible while still providing accurate performance
bounds.

To illustrate where a statistical network calculus can be very beneficial, let us
briefly sketch two application scenarios:

(1) Traffic engineering in an MPLS domain [2]: traffic is measured at
ingress nodes to an MPLS domain and label-switched paths are dynamically
dimensioned according to service level agreements based on StatNC; an
immediate benefit is that time-of-day effects or any other seasonal effects
are automatically taken into account.

(2) Self-modelling in wireless sensor networks: traffic is measured at
sensor nodes and the resulting estimates are delivered towards a sink (in
the simplest case) which can then base decisions such as, e.g., topology
control on the respective StatNC models; an immediate benefit is that no
a priori traffic description is necessary any more, which is very helpful in
many WSN applications as the behaviour of the physical phenomena to
be observed is often not well-understood before deployment and thus the
traffic induced by them is hard to predict.

Overall, we make the following contributions

e development of a uniform framework for a statistical network calculus which
allows to plug in a large class of traffic estimators (— Section 3);

e design of several traffic estimators with differing amount of presumed knowl-
edge and probabilistic assumptions (— Section 4);

e in numerical examples, the practicality, precision, and robustness of the
StatNC is investigated and contrasted against the performance of SNC
alongside with simulative results (— Section 5).

1.2. Related Work. In the SNC literature, there are only few papers that discuss
the fact that arrival envelopes could be derived from measurements: for example, [§]
provides a brief sketch how a measured packet trace could be fitted to a weighted

IThe term statistical network calculus has been used before to indicate that the SNC takes into
account statistical multiplexing gains [4], whereas here we use it to indicate the usage of statistical
methods instead of purely probabilistic reasoning.
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hyperexponential traffic envelope, while [20] even does it for a heavy-tailed self-
similar traffic envelope. Yet, none of these integrates the measurements with the
SNC operations such that the uncertainty resulting from estimation errors is fac-
tored into the stochastic bounds. In the report at hand, we perform this integration
in a rigorous and uniform manner (see Theorem 5 in Section 3). Furthermore, to
the best of our knowledge there is no previous work in the SNC literature about an
on-line estimation of the arrival envelope as it is enabled by our StatNC framework.

In a larger context, somewhat related work can be found in the domain of
measurement-based admission control (see e.g. [17, 15, 23, 14]]). However, be-
cause at that time the SNC was not yet fully developed, these works are restricted
to admission control rather than basing on a general performance evaluation frame-
work like SNC. Furthermore, they typically assume a known (deterministic) traffic
envelope and then measure to what extent this envelope is used and how statistical
multiplexing helps to reduce resource demands, whereas in our work we basically
start one step earlier by estimating the probabilistic arrival envelopes themselves.

Also slightly related is the work by Liibben et al. [21] on the identification of
stochastic service curves to represent Internet end-to-end paths. Clearly, measure-
ments (though active ones) play a central role here as well, yet the target is different
in our case as we deal with the uncertainty about arrival rather than service pro-
cesses.

On a very high level, the vision of autonomic networking (see e.g. [3] for a
prominent large-scale project in that domain) could be related especially to the
self-modelling aspect of the StatNC when used in an on-line fashion, yet no use of
SNC within this domain is known to us, although it appears to be a very promising
idea.

2. PRELIMINARIES ON STOCHASTIC NETWORK CALCULUS

In this report, we focus on the SNC formulation as originally presented in [6]
and later on generalized by [12], which is also known as (c(6), p(6))-calculus. In
this setup, time is discrete while data is allowed to be continuous (i.e., we deal with
infinitesimally small data units). For convenience, we make a few small modifica-
tions to definitions and notations from [6], and therefore repeat the most important
of them together with the main results needed in this report. Since, for brevity, we
focus on the backlog as performance measure in this report, we only present the
corresponding results. More results, concerning other performance measures (i.e.,
virtual delay and output bounds) and about reducing the complexity of networks
with multiple flows and service elements, can be derived in a similar fashion.

In SNC, data flows arrive at service elements and after processing leave them
again. To represent such flows, we define a real non-negative stochastic process
(ak)kez and the bivariate cumulatives

n
A(m,n) := Z ag.
k=m+1
We henceforth call the random variables aj increments of the flow A. Since the
basic idea of StatNC is to apply statistical methods on past observations, we think
of increments with time index k& < 0 as lying in the past (the so-far observed
time series of arrivals). The increments with index & > 0 are upcoming arrivals.
Performance bounds are always calculated for points in time lying on the positive
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time axis. Further, we assume a value ng < 0 such that a; = 0 for all k£ < ng, this
is the time when we started our observations.

The service element is also abstracted by a doubly indexed stochastic process S
with the properties:

0 < S(m,n) V'm,n € Ny
S(m,n) < S(m,n’)  Vm,n,n" € Ny and n < n’

Note that we define S only on Ny x Ny, which is—as we will see—sufficient. The
service process S, arrival flow A and the departure flow D of a service element are
linked with each other in the following way:

Definition 1. If for all n € Ny holds
> mi
D(0,n) > Ogggn{A(O, k) + S(k,n)},
we call the service element a dynamic S-server. Here D is defined as a flow with
ng = 0.

Before we can give stochastic bounds on the backlog of a system, we need some
bounds on the arrivals and the dynamic S-server. More precisely, we need bounds on
the moment generating functions (MGF) of the corresponding stochastic processes.

Definition 2. Let 6 > 0. An arrival is (c4(0), pa(f))-bounded if

Su%{E(HA(m,erk))} < ekaA(0)+00A(0) VkeN
me

A dynamic S-server is (0s(0), ps(#))-bounded if

Sl;%{E(efGS(m,mij))} < ek@ps(G)JrOos(G) VkeN

We are now able to give stochastic bounds on a service element’s backlog process
defined by ¢(n) := A(0,n) — D(0,n).

Theorem 3. Let A be an arrival flow served by a dynamic S-server and 6 >
0. Assume A is (c4(0),pa(0))-bounded and S is (c5(0), ps(0))-bounded. If A is
stochastically independent of S, the following probabilistic bound holds:

P(q(n) > 7) < e~07eHTa01+750) § kea®)+s(0)
k=0

If A is not stochastically independent of S we still have:
P(g(n) > z) < e P7el(0apd)+os(a0)) Z ek0(pa(p0)+ps(a0))
k=0

for some p and q such that p~* 4+ ¢~ =1 and A is (c4(pf), pa(pd))-bounded and
S is (0s5(qb), ps(qd))-bounded.

Proof. By definition of the dynamic S-server we have:
< o
o(n) < A(w) = min {A(0,) + (k)

= Orgn]?%(n{A(k, n) - S(k, n)}
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from which we can derive, using Chernoff’s inequality?:

P(q(n) > :L') < e—GmE(eemaxogkgn{A(k,n)—S(k,n)})

67993 Z E(GGA(k,n))E(efes(k,n))

n
< e 02 0(0a(0)+a5(0)) Z ek0(pa(0)+ps(9))
k=0
Where the independence of A and S has been used in the second line.
Now assume A and S are not stochastically independent and choose p and ¢
like above. We can then replace the independence assumption by using Hoélders
inequality instead:

n n

]E( 0 maxo<k<n{A(k,n)—S(k n)} Z GA(k n) 703(’6 n) Z epG(A(k n) 1/pIE(€ q0S(k, n))l/q

O

We see in this proof where problems arise, when we encounter uncertainties in
the description of the arrival flow A. If we do not know about the exact distribution
of the increments, we cannot calculate the expression E(e?4(*™)), which in turn pro-
hibits calculation of the backlog bound. Hence, we need the tools of mathematical
statistics to bound E(e?4(* ™)), which in effect replaces the (o4 (6), pa(#))-bound in
the above proof.

3. A FRAMEWORK FOR A STATISTICAL NETWORK CALCULUS

In this section, we present the framework of StatNC which operates on past
observations of the arrival process, i.e., calculates statistics on the sample a =
(Gngy---,a—1). Technically, this can simply be seen as a sufficient condition for
the employed statistics, which enables calculations of performance bounds while
dealing with uncertainties about the arrival process rising from estimations. For
brevity denote by ¢, () := E(e?20™™) the MGF of A(m,n) at point §. First,
we need a small lemma proving the monotonic behaviour of the backlog bound in
the MGF of A.

Lemma 4. Let ¢y (0) > dmn(0) for some 8 > 0 and all m,n € Ny with m < n.
Assume A being stochastically independent from S. Then

Pq(n) > z) < e "y dp n(O)E(e ")
k=0

for all n € Ng.
If A and S are not stochastically independent we still have:

n

P(q(n) > l‘) < 6—01 Z((ik,n(pe))l/pE(e—QGS(k,n))l/q
k=0

for some p and ¢ withp™ ' +¢ ' =1 and qgkyn(pG) > o (D9).

2Chernoff’s inequality states that for some real random variable X and every 6 > 0: P(X >
z) < e PTE(efX).
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Proof. From the proof of theorem 3 we know
P(q(n) > z) < e Z G (O)E(e 050y < =07 Zék,n(Q)E(e_es(k’”))
=0 k=0

the stochastically dependent case follows in the very same fashion.. (]
Define F to be the space of functions mapping from Ny x Ny x RT to Rar . In
expression, if f € F, then:
fZNQXN()XR-i_—)RSr

An already familiar example for a member of F is the MGF ¢,, ,(0) of the arrival
flow A.

We now provide a theorem how the uncertainties of using statistics can be com-
bined with the probabilistic bounds derived from SNC.

Theorem 5. Let 0% = sup{f : ¢,.n(0) < 0o} and & : RI™l — F be a statistic on
a = (Gpg,...,a_1) such that

sup P ®(a)(m,n,0) < dmn(0)) < a.
0e(0,0) U ) ( )>

Then for all n € Ny, 6 < 0*

m<n

Pg(n) > z) < a+e " i ®(a)(k,n, O)E(e~ 5k,
k=0

Proof. Fix some 6 > 0:

P(g(n) > z)
=P(qfn) > 201 | 2(a)(m.n,0) < 6,(6))
+IP>( >xmm<nﬂq> (m,7,6) > dpn( ))
§a+1P>( >x:<(n) Y11, 71,0) > G (0 ))
<a+P(g(n) > x| man@(a)(m, 7,0) = Gm.n(0))

n
Sa+e Y B(a)(m,n, O)E(e )
k=0
U

From the proof, the nature of the condition in the theorem becomes clearer. We
need the intersection of the events ®(a)(m,n,0) > ¢m.n(0) to leverage from the
monotonic behaviour of the backlog bound in terms of the MGF of A (—Lemma
4). We achieve this intersection by partitioning the event g(n) > z and hence
have to deal with the corresponding complement, which is the union appearing
in the second line of the proof. This union describes the event, that our statistic
delivers a value lying below the real MGF of A at least once. We bound this kind
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of (estimation) error by a confidence level of . The confidence level o can be seen
as a parameter of optimization.

Please note, that, for our theorem, we defined the statistic ® in the most general
way, i.e., being a function on the complete history a = (ay,,...,a—_1). This does not
mean, however, that one has to use all this information to construct a ® satisfying
the above condition. Assume a subsample a’ = (a;g)’ ...,a’_y) of a, such that:

a} = aj, for some index j; € {no,...,—1} and a statistic ® : RI"| — F on o'. If
@’ meets the assumption of Theorem 5 for a/, we can extend it canonically to a
statistic ®, by setting: ®(a) = ®’(a’) for all a, such that a;, = a} holds. This shows
that using only a part of the history a is just a special case of the above theorem.

Often one may want to give more recent observations a larger impact on the
sample and diminish the influence of observations as they get older, e.g., w;(a;) =
Blitta;, 0 < B < 1 (—exponential smoothing). Such transformations of the sample
are also covered by the above theorem: for some weighting function w : Rl™ol —
RI™| on the sample a, the concatenation ® ow(a) needs to meet the above assump-
tion in order to apply the statistic ® on the weighted sample.

Another typical and very practical way of subsampling would be to use a sliding
window of length [ on the observations, i.e., a} = a;, with ¢ € {—[,...,—1}. The
sliding window is particularly interesting for on-line estimation, since it allows the
statistical network calculus to dynamically adapt to changes in the arrivals’ char-
acteristics. In Section 5, we investigate how the versatility of this dynamic view
can be leveraged to achieve better bounds than the static ones of SNC.

For the rest of the report, we stick to the most general notation as in Theorem
5, unless otherwise mentioned.

4. PLUGGING IN THE STATISTICAL ESTIMATORS

As stated above, estimating the quantity ¢, () for an arbitrary 6 € (0, 6*) and
m < n € N is key for StatNC. In the following subsections, we present different
scenarios and their corresponding ¢, ,,(0)-estimations as examples how such statis-
tics can be constructed. The crucial point is to meet the condition from Theorem
5. We start with a fairly simple example (exponential i.i.d. increments) to illus-
trate the idea and then move on to more complex scenarios, which involve non-i.i.d.
behaviour of the increments a; and more advanced statistics.

4.1. Exponential Traffic. Assume the (ag)k>n, to be iid. exponentially dis-
tributed for some unknown parameter A\. The idea to construct ® in this scenario,
is to estimate A first. For this, note that a lower bound on the real distribution
parameter A\ with confidence level o can be computed by

s a(n)
T2 A(ng—1,-1)
where x2 (2|no|) is the one-sided a-quantile of a Chi-Squared distribution with 2|ng|
degrees of freedom (scaling A(ng — 1, —1) by 2 results in a random variable, which
is Chi-squared-distributed with 2|ng| degrees of freedom). Moreover, the MGF of
the exponential distribution is given by ¢(),0) = (525) = 1+ (525), for all 6 < \.
With the simple implication

>

A
>

2\ < _
ASA= ST
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we obtain for the case A < A that

®(a)(m,n,0) = (&)n_m > (AAg)n_m = Om.n(0)

holds for all 8 < A and m < n € Ny.
Hence we obtain

l—a=PA<N)

Or, equivalently

sup IP’( U ®(a)(m,n,0) < qum(ﬁ)) <a,

0c(0,)) m<n

which is exactly the condition of Theorem 5.

4.2. Bandwidth-Limited i.i.d. Traffic . Assume again the increments of A to
be i.i.d., now also adhering to a bandwidth limitation M, i.e., no more than M
data units per time slot can arrive. The latter is a valid assumption as any real
access link has such a restriction. In contrast to the previous subesection, we do
not have any further knowledge about the distribution of the increments ay. Yet,
it turns out that we still have enough information to construct a statistic ® fitting

Theorem 5. The Dvoretzky-Kiefer-Wolfowitz inequality [22] is very useful in this
setup:

Lemma 6. Let Fy, (x) := 1/|ng| Z,::lno 1fa,<2) be the empirical distribution func-
tion of the sample a = (an,,...,a—1) and F be the distribution of A . Then we
have for all € > 0 the following:

P( sup IFno(z)fF(x)léé‘)21—26*2'“0‘62.
z€[0,M]

Since the arrivals are bounded we can fix some arbitrary 8 > 0 for the rest of
this subsection. The next theorem constructs ®:

Theorem 7. Let € > 0. The statistic & defined by
®(a)(m,n,0) := (A+e(™ —1))" ™

satisfies the condition in Theorem 5. Here

-1
A= 1 Z edar,
|n0‘ k‘:’rbo

Proof. From the event in the Dvoretzky-Kiefer-Wolfowitz inequality (— Lemma 6),
we can derive successively:

F(z) > Fp(z) — ¢ Ve [0, M],
1-F(z)<1-F,(x)+e Vze€[0,M]
P (e’ >z) <1-F,, (Yolog(z)) +e  Vae[leM]
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eSIVI
]E(eeA)zl—i—/ ]P’(eeA>x) dzx
! oM

<1+ / 1— F,, (Yolog(x)) + e du.
1

Hence, we have for all § > 0:

oM

]P’(]E (e74) < 1+/16 1—Fp, (%log(z)) +sdx>

>P( s |Fule) — Fo) <e)
z€[0,M]

>1 — 2¢2Inole®,

This means we have constructed a one-sided confidence interval for E(e?4) with
72|n0|€2

significance level a = 2e , which is given by:

6M

0,1+ / 1—F,, (Yolog(x)) +edx
1

The appearing integral can be simplified by:

oM oM _1q

[ 1R folog) +ede = (14 = 1) =Yl [ 3 Ly
1 1 s

i:no
= (14 &) (€™ —1) — 1jng|(ePM — P%moD 4 4 M _ gbam)
=A—1+¢e(™ 1)
where a(;) is the i-th order statistic of the sample and A the sample mean of the
Oa;
e k2

Inserting the corresponding e for a significance level «, the confidence interval
becomes:

_ —log(%)
0,4+ | —282) omr |
o] Y

For the statistic ® we indeed have:

inf P( () ©(a)(m,n,0) = 6m.n(6))

_ inf]P( N II A+ -1= ] IE(A))
0 m,n k=m+1 k=m+1

> iréf]P’(f_l + 5(69M —1) > E(A))

>1—a.

Or equivalently:
sup P d(a)(m,n,0) < dpmn(0)) < a.
0p (an (a)( ) ()>_

Hence, again, now for bandwidth-limited i.i.d. arrivals, the statistic ®(a)(m,n,0) :=
(A +e(efM —1))"~™ satisfies the condition of Theorem 5 and can thus be used to
calculate the desired performance bounds. (I
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4.3. Markov-Modulated Arrivals. Next, we discuss a traffic class, in which the
i.i.d. assumption is dropped and for which multiple statistics are combined to
construct ®. For this consider a Markov-modulated arrival, with a Markov chain
(Yk)ke{no’,__} corresponding to the transition matrix

()
1—v v

and denote the first (second) state as On-state (Off-state). The increments of the
arrival A are now defined by:

0 if Yy is in Off-state
ar =
b rp if Yy is in On-state

where (Zr)ke{no,...} is a sequence of i.i.d. random variables bounded by the band-
width limitation M. Note that the increments aj are neither identically distributed
nor stochastically independent. This model generalizes the well-known and pop-
ular Markov-modulated On-Off traffic model [1], with the difference, that in the
On-state the arrivals are defined by a random process, instead of a constant rate.

Before we can construct @, we need a lemma, showing the monotonicty of ¢y, ., ()
with respect to the parameters p and v. For this define 0* = sup{f : E(e/**) < oc}.

Lemma 8. For the above model, all m < n € N and all 6 € (0,0%) it holds that

u>pn = E(eQA“,V(m,n)) < E(eeAﬁ,,,(m,n))’

and

v<i = E(fAurmmy <Eefhur(mn)y

Proof. We start with the first statement. Without loss of generality we assume
that the chain starts in the Off-state. We fix some m, n € N such that m < n

and use the notation Aj ,(m,n) =: A(m,n). First note, that it suffices to show
that P(O(n—m) > k) <P (O(n —m) > k:) holds for all £k = 1,...,n — m, where
O(m,n) denotes the number of times the signal Y is in the On-state during times
m+1,...,n. (O(m,n) is connected corespondingly to the signal of the altered
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chain.) Indeed we would have for some z € R* :
]P( 0A(m,n) > .’E)

= P(O(m,n) =k)P (eeA(m’") > 33‘ O(m,n) = k)

k=0

= 1 k
= Z P(O(m,n)=k)P ( (apht-tal) > x)

k=0

'« - 0) () (1-1)
= S e 0 =1 (P )4 o (o g ) <) )

k=0 =1
= P(O(m,n)=k)P (69'0 > )

k=0

+ P( 0agutt961) > 3 ) flaont+ao,™) < a:) > P(O(m,n)=k)
=1 k=l

=P(O(m,n) > 0)P (ee-o > 33)

4 l P (ea(agjl+...+ag?”) >z N flagh++ag, V) a:) P (O(m,n) > 1)
<P O(m,n) > O) P (ea.o > x)

+ P(ef’(agh +50) > g faonttagr ) o x) (O(m,n) > l)
=1

—P (eaﬁ(m,n) > l’)

and by the monotonicity of the integral:

E (eGA(m’”)> = /RIP’ (eeA(m’") > x) dx < /R}P’ (60A(m’") > :c) de =E (eeA(m’”))

To show P (O(n — m) > k) < P (O(n —m) > k:) forall k =0, ..., n—m, realize the
Markov chain in the following way: In each time slot k& we sample random variable
Uy, being i.i.d. uniformly distributed on [0, 1] and define the signal Y by:

On ifU, € (u,1] and Y, = Of f

)

(1, 1]

Viis = Off iU, € [0,u]and Y, =0Off

17 Yon iUy €]0,1] and Yy, = On
]

Off ifU,e€ (v,1] and Yy, = On

(the signal Y is realized in the same way, with u replaced by )
Denote now by Py, the set of all sequences [si]i=0,... n—m € {On, Of f}*~™ for
which holds

n—m

Z I{sl:On} =k

1=1
In words this just means, that if a trajectory of the signal space lies in Py, it visits
the On-state exactly k times up to timestep n — m. With the help of the above
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method of realizing the Markov chain, we can give for every trajectory P € Py a
cylinder-set Ap C [0,1]*~™, such that

n—m-—1
P(the signal follows P) =P ( H U e Ap)
1=0

It is important to note here, that the probability P (Hlnz_om_l UeA p) is invariant

with respect to permutations of the order of the random variables U;. L.e. for every
bijection o : {0,...,n—m} — {0,...,n —m} holds

n—m-—1 n—m-—1
]P’( 11 UleAp> :IE”< 11 Ug(l)eAp>.
1=0

=0

We will see, that for a fitting permutations we can conclude P ( 7:—0m—1 Usy € Ap) <

P (O(m, n) > k) To find this permutation define the following time-indices:

uy =min{l| U, € (u, 1]}
a4y =minl|U; € (i, 1]
Define as long as d;, u;, u; < n —m — 1 recursively
d; = min{l > u; | U; € (v,1]}
w; = min{l > d;—1|U; € (p, 1]}
@; = min{l > d;_1 | U; € (@, 1]}
and denote by I the largest subindex 7 for which u; < n—m—1. Note that @; < u;,

by the above structure of the transition matrix and the assumption that p > p.
Define a sequence of permutations [o;];<;:

oc)=n—-m-1+1—1y if u; <1<y

This permutation does the following with the path: It checks if the modified Markov
chain would jump earlier to the On-state, than the original Markov chain. If it does,
the time slots, which lie between the jump of the modified and the original chain,
are moved to the end of the timeline, while all later time slots move up to fill the
just produced gap. By this the number of timeslots corresponding to On-states can
not decrease (only “Off-states” are moved).

Denote by ¢ now the permutation, which results by successively applying the
above permutations ¢ = gyo007_1...007. For each w € {w| H?;Omfl Usy € Ap}
holds for the modified transition matrix

O(m,n)(w) >k

since the modified trajectory has at least as many visits in On-states than the
original walk in the unpermutated trajectory. Hence it holds for every path P € Py:

n—m—1 n—m—1
IP( 11 UleAp>:IP’< UU(I)EAP>§]P’(O(m,n)2k)

1=0 =0
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This allows us to finish the prove for the first statement, by using:

The second statement follows very similar. Define P(m,n) and ﬁ(m,n) as the
number of times the Markov chain and the modified Markov chain are in the Off-
state during (m, n]. It can be shown very similar to the previous that:

P (P(m,n) > k) <P(P(m,n)>k) Vke{0,...,n—m}
From this follows

P(n—m—ﬁ(m,n)<n—m—k> <P(n—m—P(m,n) <n—m—Ek)

P
P(O(m,n)<nfm—k) <P(O(m,n) <n—m—k)
P

P(O(m,n)zn—m—k)z (O(m,n) >n—m—k)
forallk € {0,...,n—m}. From which we can follow E (69‘4#)”(’”’”)) <E (eeA“f"(m*”))
as in the proof of the first statement. O

We next construct a ® in this case of Markov-modulated arrivals, for which nei-
ther the transition probabilities p and v, nor the distribution of the (x;) are known.
Of course, we want this statistic to satisfy the requirements of our framework again,
i.e., the condition in Theorem 5. For an arrival sample a = (ay,,...,a—1), let
X0,0, X0,1, X1,0, and X1 1 denote the observed number of transitions from the Off-
state to Off -state, from Off-state to On-state, from On-state to Off-state and from
On-state to On-state, respectively. Further denote the observed number of visits
in the On-state by O(ng,n—1) = O and the number of visits in the Off-state by
P(TL(), n,l) =P.

Theorem 9. Choose some confidence level & = o, + o, + g and consider some
sample a = (ang, - . .,a—1) with O # 0. Define the statistics

= B ;s Xoo, P — Xoo +1)
Ve i =B (1 —a,; X171+ 1,0 — X1 1)

where B~1 is the inverse of the beta-distribution. Further define the transition

matric
1—1, Vy,

1/2
A=A+ (‘k’g(”)) (M 1),

Define

2|0|
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Then the statistic ® : RI™l — F defined by:
®(a)(m,n,0)

— A ?On N ?Off p(ET*)nfmfl
Ton NZoff
satisfies the condition of the statistical framework theorem. Here A := % Zi:Yi:On efai
E, Zon and Toysy are from the o(0), p(0)-bound for Markov-modulated arrivals (—
Appendiz 6) with fized arrivals in the On-states equal to 1/6log(A*).

Proof. First we show that [y, 1] and [0, v,] are confidence intervals for u and v and
the confidence levels o, and «,, respectively. Basically, these are the well-known
Clopper-Pearson intervals [9], which are constructed as follows: Interpret X as
the number of successes in a Bin(u, P)-distributed random variable. It is known
that for some X ~ Bin(p,n) it holds that

k
P k) = 32 () -pr = 60— pn k)
From that we can continue with
Bl—p,n—k k+1)=1-8(p; k+1,n—k).
We now ask for the smallest p’ such that a random variable X ~ Bin(y/', P) meets:
P, (X > Xo0) > ay,
or, equivalently
Pu(X < Xoo—1)<1—a,.
To find p’ consider
1— 81 Xoo, P—Xoo0+1) =Py (X < Xp0—1) S1- oy,

which is solved by w; = 87 Xo,0, P — X0 + 1). Using a simple coupling
argument and the definition of u; one obtains the implication:

P > p) <P(X > Xo0) = -
Very similarly we obtain:
Plv, <v) <P(X < X;1)=a,,

where X is now a Bin(v,,, O)-distributed variable.
Now fix some arbitrary 6 € (0, 6*) and assume for the moment

<,
Vy > U,

A* < B(efom).
Then for all m,n € N it would hold that:
E(BQA(m,n)) S ]E(egAu,l,u(mvn))

< E(e?Arra (M) < &(a)(m,n, 0),
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where we still have to show the last inequality. Putting the proof of the last in-
equality on hold, we henceforth have for all 8 € (0, 6*)

a=a,+a,+ag>Py > pUy, <vUA* < E(f0n))
> IP’( | E(ef40mm) > q)(a)(m,n,e))

m<n
which is what we wanted to show.
To show the missing inequality define a new Markov-modulated arrival with
a constant rate aj,, = 1/0log(A*) and T* as transition matrix. We then have
E(e?0n) = A* and the (), p(f)-bound is given by ®(a)(m,n,#). Further we
have:

1
E

E(e?40mm)) = N " P(O(m, n) = k)E(e?*0m )k

=
Il
o

i
3

< P(O(m,n) = k)E(e?*on)

=
o

< ®(a)(m,n,H).
Here, Lemma 8 was used in the second line. This completes the proof. O

4.4. Summary. We provided three examples with differing degrees of assumed
knowledge and complexity when constructing the statistic ®. From the formula-
tion of the framework it is clear, that the technically hard part in applying the
StatNC lies in constructing such estimators. Taking care of other, potentially more
complex arrival processes is hence just a question of finding the corresponding P,
i.e., meeting the condition of the framework theorem. Admittedly, this can be
hard in some circumstances and, for example, we leave the construction of ® for
long-range dependent traffic types for future work.

5. NUMERICAL EVALUATION — STATNC AT WORK

In this section, we compare the statistical network calculus to its stochastic
counterpart. For this we investigate how high the costs of involving statistics are
(in terms of looser bounds). Furthermore, we study special properties of StatNC
which the SNC lacks; these are its dynamic view on the measurements, as well as
its robustness against false assumptions.

Scenario 1: The Price of StatNC. In our first scenario, we study if the addi-
tional uncertainties resulting from the statistical part of the performance bounds
are acceptable. In expression, we calculate the smallest b such that we can still
guarantee
P(g(n) > b) <e,

with our methods of StatNC (or with the methods of standard SNC). For a perfect
bound, we would encounter after a large number N of simulations that roughly
N - ¢ of the simulations produce a backlog larger than b at time n. Hence, we
simulate the backlog process for time n in N repetitions and compare the empirical
distribution of the observed backlogs with the b we found from the above formula
above. The bounds are the better, the closer they lie to the (1 — €)-quantile of the
empirical backlog distribution.
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FI1GURE 5.1. StatNC and SNC backlog bounds as well as empirical
backlog distribution of the backlog measured at time n = 100 for
N = 10% simulation runs.

To that end, we simulate a Markov-modulated arrival process, as described in
Section 4.3, with x; being exponentially distributed, but capped by a bandwidth
limitation M. The parameter A of the exponential distributions is chosen to be
0.2, while the bandwidth limitation is set to M = 20 (which means a hypothetical
access link is maximally utilized at 25%). The transition probabilities of the Markov
chain are given by p = 0.9 and v = 0.9. We use a constant rate server with rate
¢ = 5, which means during the On-state, considering the bandwidth limitation,
we see a peak utilization of - (1 — e™*™) ~ 98%. Considering the bandwidth
limitation and the fact, that we are not always in the On-state, we compute an
average utilization of roughly ~ 49%. The computation of the backlog bound
based on SNC follows Appendix [REF], while the StatNC bounds are computed
according to Section 4.3. For illustration, we have simulated N = 10° runs of this
system and evaluated the backlog at time slot 100 (at which time in all simulation
runs the initial distribution of the Markov chain had faded out and steady-state
was reached). In Figure 5.1, the empirical distribution function of the backlog is
plotted; for the bounds a violation probability of e = 10~* was assumed. As can be
observed, both bounds are reasonably close to the (1 — ¢)-quantile, but, even more
importantly, the bounds are pretty close to each other. This demonstrates that the
price we pay for using StatNC is not too high.

Scenario 2: Exploiting the Dynamic Behaviour of StatNC. In the second
scenario, we investigate StatNC’s dynamic point of view. In particular, we use a
sliding window approach over the last [ observations (as discussed in Section 3).
Using this kind of sub-sampling, we eventually forget old measurements and “learn”
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from new arrivals instead. As such, the observation window allows to track changes
in the arrival process (stemming, e.g., from non-stationarities such as time-of-day
or other seasonal effects), which take place on longer timescales. For example, if we
imagine a flow starting with large increments and diminishing over time, standard
SNC faces problems; it lacks the adaptability to track this behaviour and its bounds
get looser over time. On the other hand, StatNC can adapt by forgetting about
the first large increments as time passes.

To investigate this effect, we use a Markov-modulated arrival process, similar to
the previous one, but instead of having On- and Off-states, we use states High and
Low. For both of these, arrivals are drawn from an exponential distribution with a
parameter \,, (and then capped by M); here, the parameter )., depends on the
state of the Markov chain (High or Low).

In this scenario, we use the estimators from Subsections 4.1 and 4.2 and not
the estimator presented in Subsection 4.3. The goal is, instead of “learning” the
Markov chain itself, to use the observation window for tracking changes of states.
Therefore, we use transition probabilities of © = 0.999 and v = 0.999; this means in
expectation we stay 1000 time slots in one of the states until we change into the other
one; this emulates a non-stationary behaviour of the arrival process. Further, we set
ALow = 5 and Agign = 0.2 and a bandwidth limitation of M = 10. With a service
rate of ¢ = 5, we have—taking the bandwidth limitation into account—a utilization of
4%, while residing in the Low-state and 86% in the High-state. In the simulations,
we started the arrival process at time ng = —1000 to provide StatNC with an initial
observation window. A typical run of this scenario is plotted in Figures 5.2 (for the
exponential traffic estimator) and 5.3 (for the i.i.d. bandwidth-limited estimator).
In addition to the bounds, we have plotted the simulated backlog process over time,
to see how close the bounds are. Due to their dynamic nature, the StatNC bounds
also evolve over time. Like the SNC bounds, they are computed for a violation
probability of ¢ = 10™* and for a time which lies n time slots after the point
they have been computed; we provide the results for n = 10 and n = 1000 time
slots, representing a short and long prediction horizon, respectively. As can be seen
clearly, the bounds react and ultimately adapt to the observed arrivals: If the arrival
intensity is high (indicated by larger backlogs), the statistical bounds also increase,
while they decrease, when the Markov chain changes to the Low-state. One can
also observe that the StatNC bounds track the changes of states with some delay,
since old measurements need to be discarded from the observation window first.
The effect of the prediction horizon n is such that larger n result in higher bounds
irrespective of the bounding method. For comparison, we also provide the SNC
bounds calculated by exactly modelling the Markov chain (—Appendix 6). As can
be observed, although the SNC uses complete information its bounds lie far above
the StatNC bounds, which perform very well in terms of staying close, but not
being violated too often (in accordance with the violation probability e = 10~%).

Another effect that can be observed, when comparing the two plots with each
other, is how helpful the additional information about the exponential distribution
is. We see, for the same run, that the StatNC bounds using knowledge about the
type of distribution in the High-state, performs moderately better, compared to the
non-parametric i.i.d. estimator of Subsection 4.2. We will see in the next scenario,
however, that taking more assumptions about the arrivals into account, bears the
risk of making false assumptions, which in turn can be fatal for the bounds.
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FIGURE 5.2. The backlog process for a typical simulation run as
well as different StatNC and SNC bounds for n = 10, 1000. Here,
the parametric estimator of Subsection 4.1 was used for the StatNC
bounds.

Scenario 3: Robustness of StatNC. In the third scenario, we investigate the
robustness of StatNC and SNC bounds against false assumptions on the arrival
process. This reveals another feature of StatNC when using the estimator of Sub-
section 4.2: StatNC can cope with rather few assumptions about the arrivals and
is therefore more robust than SNC.

To illustrate this, we let SNC make a false assumption about the distribution of
the i.i.d. increments of the arrival process: For this we have chosen the increments
to be i.i.d. Pareto distributed with parameters z.,,;, and s, again capped by the
bandwidth limitation M; yet, for the calculation of the SNC bound we assume the
increments to be i.i.d. exponentially distributed with parameter \ (again capped
by M), with A set such that the expectations of the Pareto-distributed arrivals and
the assumed exponentially distributed arrivals coincide (for details see Appendix
[REFIII]). On the other hand, the StatNC using the non-parametric estimator
from Subsection 4.2 cannot—by definition—make such a false assumption about the
arrivals.

In Figure 5.4, it can be observed that false assumptions on the arrival process can
lead to desastrous results. As in the first scenario, the empirical distribution of the
backlog is displayed and compared against the bounds calculated by StatNC and
SNC. In the plot, parameters have been set as T, = 1, s = 1, M = 55; further,
we used a violation probability of e = 10™* at time n = 100. The plot shows the
empirical backlog distribution for 10% simulation runs, which in turn means, we
would expect a tight 107% bound to be violated 100 times in expectation. The
SNC bound however is broken by 234,526 runs, i.e., in approximately 23% of the
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F1GURE 5.3. The backlog process for a typical simulation run as
well as different StatNC and SNC bounds for n = 10, 1000. Here,
the non-parametric estimator of Subsection 4.2 was used for the
StatNC bounds.

simulations! This lies far below the empirical (1 — €)-quantile, the location of a
sharp bound. This means the SNC is far too optimistic and hence is rendered
useless. In contrast, the StatNC remains valid and stays reasonably close to the
empirical quantile-a very satisfying result.

6. CONCLUSION

By integrating statistical methods into the network calculus framework in order
to deal with the frequent uncertainty about arrivals, we believe to have made an
important step towards a better applicability of network calculus. In particular, the
dynamic mode of operation of the newly developed statistical network calculus is
attractive for many application fields where uncertainty and permanent change rules
and modelling assumptions are already outdated when the actual system is under
operation. After providing the basic technical results for StatNC-a framework
theorem providing a sufficient condition for statistical estimators of the arrival
process to connect them with the SNC framework and several matching estimators—
we were able to make a case for the promising opportunities of the novel StatNC
framework in a set of numerical experiments.

Given the positive results from this report, there are many opportunities for
future work within the StatNC framework: besides the already mentioned estimator
for long-range dependent traffic, there are many more useful estimators that can be
conceived; also, more sophisticated sub-sampling techniques than sliding windows,
e.g., optimally weighted estimators, could provide even better reaction times; and
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FIGURE 5.4. Under a false distribution assumption (exponential
instead of Pareto distributed increments), SNC delivers a grossly
invalid bound while StatNC remains correct.

last, but not least, a validation of the framework in a practical setting like the ones
mentioned in the Introduction (MPLS domain, WSN) should provide new insights.
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Appendix 1

Assume a Markov modulated arrival A with finite signal space S. I.e. the
distribution of the increments of A depend on the current state of an underlying
Markov chain Y. The states of this Markov chain are described by the set S and
transition matrix 7 = [t,,], such that ¢,, > 0 for all (r,s) € S2.3 Denote the state
of the Markov chain at time n € N by y,,, further denote by E a diagonal matrix
with entries E, := E,, := E(e%® |y, = s) for all s € S. It holds the following:

Lemma. A is (0(0), p(0))-bounded with:

MaXses T 1
=1/p1 E,. —————p(E-T
o(0) = Y/olog <r£1€a§< Mmingeg Ts 4 ) )
p(6) = 1/olog (p(E - T))

where p : Mat(S) — R is the spectral radius of some matriz over S and the vector
x 15 a positive eigenvector of ET.

Remark. The proof given here is very similar to a proof in [6]. The difference is,
that we give constructive proof for a (o(8), p(6))-bound, while there (Example 7.2.7.
together with Lemma 7.2.6.) only the existence of such a bound is proven.

3We will use the symbol S for both, the set of states, as well as their cardinality. This causes
in fact no trouble and is quite intuitive.
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Proof. Fix 6 > 0. We start with a backward-like equation, for every r € S holds:

]E(eeA(n)| y1=r)=: E(n) = ZE(eM(")\ZA =1, y2=3)P(y2 =rly1 = 3)

seS
=SB gy =1, yp = SE(LAD Ny = 1, gy = )t
seS
—E,. ZE(GGA(nAN Y = s)tm

seS

=E,- Y Ei(n— 1)t

seS

If we denote by F(n) the vector with entries [E,(n)], we can write the above short
by:

E(n)=ET-E(n-1)
Using this recursion we get:
E(n) = (ET)"'E -1,

where 1 is the unit column vector on S. Assume now the beginning state of the
chain is not given, but follows an (arbitrary) distribution = = (7y,...,7g), then an
application of the law of total probability yields:

Er(e*4M) =3 " P(y1 = 5)Es(n)
SES
= ZﬁsEs(n)
ses
= Zﬂ—s ((ET)H_lE' 1)5
sesS
=7 (ET)"'E-1

Next we want to bound the entries in the matrix (ET)"~!. The following corollary
(8.1.33. in [16]), achieves that: O

Corollary. Let A = [a,s] € Mat(S) be a nonnegative matriz. Write A™ = [a&?)],

If A has a positive eigenvector x = [x4] then for allm € N and all r € S holds:

max X

S alm < —HESSL g
min X

ses teS Lt

Proof. (continuation of proof) To apply this corollary we need a positive eigenvector
x. Since T is positive and F has positive entries on the diagonal, we know that also
the matrix ET is positive (i.e. every entry is larger 0) and hence also (ET)"for every
n € N. This allows us to apply the Perron-Frobenius theorem, which guarantees
an eigenvector with positive entries. Denote this eigenvector by z = [z,] € R®.
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Eventually we have for every starting distribution 7 and all n € N:

Ex(n) = Zﬂ'r Z(ET):}S_l(E 1)

res seS
n—1
< E Ty <I?€a§<Et> E (ET)r.
res ses
max X _
< | max F}; E W,.-.L*Hp(ET)" 1
tesS minges Tt
res
max X
= [ max Et . &p(ET)”*I
tes minges Tt

Note that the given bound does not depend on the initial distribution 7. This
allows us to finish the proof by using:

E(e?A0mm)) = B(AM-Am)|y, ) = By (n—m)

Appendix II

The expectation of an exponentially distributed random variable with parameter
A and truncated by M is given by 1/x(1 — e*M). Further the expectation of a
truncated Pareto distribution with parameters ,,;, and s # 1, is given by

Tmin Tmin s—1 1
xmmﬂ_s'((M) - )

( >
177’7.7;"1

The fitting A is found by solving
1 ! T Tomin \ 51
(1~ —-aMy L im min ( mln) 1
=) Lo+ 12 (5

(1 - eiAM) ; Tmin T Tmin IOg M >

and for s =1 by:

or

> =
8
3
3

numerically.

Appendix 11T

We give in this appendix some insights about the fact, that o can be choosen
rather freely, without worsening the bounds much or stated differently: optimization
over a does not improve the bounds by any significant value. We will show this for
the non-parametric estimator of Subsection 4.2. First we rewrite the bound of 5 as
a function of «, remember we search for the smallest b such that P(g(n) > b) < e
holds. Insterting the statistical bound and resolving for b we get:

bla) = —% log (5(1 — e*‘gcfl) —a(l - 6796121) — q(a)(eeM — 1)6*9‘3))

with ¢(a) := (¢ — @) 4?575?/2). We investigate now the function ¢. It is easy to

see, that its range lies in (0, 00) with diverging to infitiy while & — 0 and zero as
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’ a ‘ 10710 ‘ 107100 ‘ 1071000 ‘ 10710000 ‘
[¢la) [=15-10°[~4-10° [~15-10 " [~4-10""]
TABLE 1. Values for ¢(a) with e = 107* and |no|.

limit for « — €. Due to the logarithm under the squareroot we have for g(«) the
property that it remains relatively unchanged for most choices of «. The following
table (with an e = 10~*) makes this clear. Please note that values of o have been
choosen, which lie far beyond the numerical precision of usual computers:

Esssentially this allows us to bound the value of ¢(a) < @ from above (in our
example Q = 4-10~% could be a bound) and reduce the contribution of the summand
a(l — e %¢A) at the same time to a diminishing value (by choosing avery small).
This leaves us with a bound, which is determined effectively by:

1 _
bg ~ —3 log (e(1 —e " A) — Q(e"™ — 1))

Although this is a special case, we have encountered this “independence” from «
through all our experiments.



