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Abstract—The stochastic network calculus (SNC) has become
an attractive methodology to derive probabilistic performance
bounds. So far the SNC is based on (tacitly assumed) exact
probabilistic assumptions about the arrival processes. Yet, in
practice, these are only true approximately–at best. In many
situations it is hard, if possible at all, to make such assumptions
a priori. A more practical approach would be to base the SNC
operations on measurements of the arrival processes (preferably
even on-line). In this paper, we develop this idea and incorporate
measurements into the framework of SNC taking the further
uncertainty resulting from estimation errors into account. This
is a crucial step towards a statistical network calculus (StatNC)
eventually lending itself to a self-modelling operation of networks
with a minimum of a priori assumptions. In numerical exper-
iments, we are able to substantiate the novel opportunities by
StatNC.

I. INTRODUCTION

A. Motivation
Over the last two decades the stochastic network calculus

(SNC) has evolved as a valuable methodology to compute
probabilistic performance bounds [10]. It has found numerous
and diverse usage in important network design and control
problems: smart grid control [26], delay control in cognitive
radio networks [15], and as foundation for bandwidth estima-
tion on Internet end-to-end paths [22], to name a few recent
examples.

SNC originated from its deterministic counterpart as con-
ceived by Cruz [12], [13] to provide stochastically relaxed
performance bounds, mainly in order to capture the statistical
multiplexing gain as is characteristic for packet-switched net-
works. Some of the earliest work on SNC can be traced back
to [27], [7], [20]. In particular Chang’s sigma-rho calculus
based on moment-generating functions (MGF) received much
attraction in the field and was refined in [14] to match with
the latest advances in the min-plus algebraic formulation of
network calculus (alternative SNC formulations can be found
in [14], [6], [19], see [10] for some perspectives about these).
The core modelling abstractions of SNC are arrival envelopes
and service curves. Arrival envelopes provide probabilistic
bounds on how much traffic arrives within a time interval of
a given length; service curves essentially do the same for the
amount of work done by a system serving those arrivals.

One of the strengths of SNC is its versatility with respect to
traffic models that can be treated, ranging from short-range de-
pendent traffic with exponentially bounded burstiness (see e.g.
[9]) to long-range dependent traffic such as fractional Brown-
ian motion [25], or even heavy-tailed self-similar traffic [21].

Yet, all of these works start from “clean”, a priori and exact
probabilistic assumptions. In practice, however, the question
arises: where do these assumptions come from? In most cases
the answer must be: observation of the past traffic behaviour, in
the form of measurements and subsequent statistical inference.
However, statistical inference involves errors and, thus, another
source of uncertainty besides traffic variations themselves. To
the best of our knowledge, none of the existing work on
SNC has taken this uncertainty into account and integrated it
into the SNC operations. We take this missing first step, i.e.,
measuring the arrivals and making statistical inferences, and
integrate it into the SNC, thereby moving towards a statistical
network calculus (StatNC)1. Moving from SNC to StatNC
can be viewed as going from stochastic processes to time
series. Of course, we still have to make assumptions for the
time series corresponding to past traffic arrivals with respect
to the underlying stochastic process, but we can adapt them
dynamically (possibly on-line) and some deviations from the
assumptions may be tolerable (depending on the robustness
of our statistical estimators). Clearly, the goal of our StatNC
framework is to cope with as few assumptions as possible
while still providing accurate performance bounds.

To illustrate where a statistical network calculus can be very
beneficial, let us briefly sketch two application scenarios:

1) Traffic engineering in an MPLS domain [2]: traffic
is measured at ingress nodes to an MPLS domain and
label-switched paths are dynamically dimensioned ac-
cording to service level agreements based on StatNC; an
immediate benefit is that time-of-day effects or any other
seasonal effects are automatically taken into account.

2) Self-modelling in wireless sensor networks: traffic is
measured at sensor nodes and the resulting estimates are
delivered towards a sink (in the simplest case) which can
then base decisions such as, e.g., topology control on
the respective StatNC models; an immediate benefit is
that no a priori traffic description is necessary any more,
which is very helpful in many WSN applications as the
behaviour of the physical phenomena to be observed is
often not well-understood before deployment and thus
the traffic induced by them is hard to predict.

1The term statistical network calculus has been used before to indicate
that the SNC takes into account statistical multiplexing gains [6], whereas
here we use it to indicate the usage of statistical methods instead of purely
probabilistic reasoning.
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Overall, we make the following contributions
• development of a uniform framework for a statistical

network calculus which allows to plug in a large class
of traffic estimators (→ Section III);

• design of several traffic estimators with differing amount
of presumed knowledge and probabilistic assumptions (→
Section IV);

• in numerical examples, the practicality, precision, and
robustness of the StatNC is investigated and contrasted
against the performance of SNC alongside with simula-
tive results (→ Section V).

B. Related Work

In the SNC literature, there are only few papers that
discuss the fact that arrival envelopes could be derived from
measurements: for example, [10] provides a brief sketch
how a measured packet trace could be fitted to a weighted
hyperexponential traffic envelope, while [21] even does it for
a heavy-tailed self-similar traffic envelope. Yet, none of these
integrates the measurements with the SNC operations such that
the uncertainty resulting from estimation errors is factored into
the stochastic bounds. In the paper at hand, we perform this
integration in a rigorous and uniform manner (see Theorem 5
in Section III). Furthermore, to the best of our knowledge
there is no previous work in the SNC literature about an on-
line estimation of the arrival envelope as it is enabled by our
StatNC framework.

In a larger context, somewhat related work can be found
in the domain of measurement-based admission control (see
e.g. [18], [17], [24], [16]]). However, because at that time the
SNC was not yet fully developed, these works are restricted to
admission control rather than basing on a general performance
evaluation framework like SNC. Furthermore, they typically
assume a known (deterministic) traffic envelope and then mea-
sure to what extent this envelope is used and how statistical
multiplexing helps to reduce resource demands, whereas in
our work we basically start one step earlier by estimating the
probabilistic arrival envelopes themselves.

Also slightly related is the work by Lübben et al. [22] on the
identification of stochastic service curves to represent Internet
end-to-end paths. Clearly, measurements (though active ones)
play a central role here as well, yet the target is different in
our case as we deal with the uncertainty about arrival rather
than service processes.

On a very high level, the vision of autonomic networking
(see e.g. [5] for a prominent large-scale project in that domain)
could be related especially to the self-modelling aspect of the
StatNC when used in an on-line fashion, yet no use of SNC
within this domain is known to us, although it appears to be
a very promising idea.

II. PRELIMINARIES ON STOCHASTIC NETWORK
CALCULUS

In this paper, we focus on the SNC formulation as originally
presented in [8] and later on generalized by [14], which is also
known as (σ(θ), ρ(θ))-calculus. In this setup, time is discrete
while data is allowed to be continuous (i.e., we deal with

infinitesimally small data units). For convenience, we make a
few small modifications to definitions and notations from [8],
and therefore repeat the most important of them together with
the main results needed in this paper. For brevity, we focus on
the backlog as performance measure in this paper and only
present the corresponding results. Results concerning other
performance measures (i.e., virtual delay and output bounds)
or reducing the complexity of networks with multiple flows
and service elements, can be derived in a similar fashion.

In SNC, data flows arrive at service elements and after being
processed leave them again. We represent such a flow, by a
real non-negative stochastic process (ak)k∈Z and the bivariate
cumulatives

A(m,n) :=

n∑
k=m+1

ak.

We henceforth call the random variables ak increments of the
flow A. The basic idea of StatNC is to apply statistical methods
on past observations and hence we think of increments with
time index k < 0 as lying in the past (the so-far observed
time series of arrivals). The increments with indices k ≥ 0 are
upcoming arrivals. Further, we assume a value n0 ≤ 0 such
that ak = 0 for all k < n0, this is the time when we started
our observations.

The service element is also abstracted by a doubly indexed
stochastic process S with the properties:

0 ≤ S(m,n) ∀m,n ∈ N0

S(m,n) ≤ S(m,n′) ∀m,n, n′ ∈ N0 and n ≤ n′

Note that we define S only on N0 ×N0, which is–as we will
see–sufficient. The service process S, arrival flow A and the
departure flow D of a service element are linked with each
other in the following way:

Definition 1. If for all n ∈ N0 it holds that

D(0, n) ≥ min
0≤k≤n

{A(0, k) + S(k, n)},

we call the service element a dynamic S-server. Here D is
defined as a flow with n0 = 0.

Before we can provide stochastic bounds on the backlog of a
system, we need some bounds on the arrivals and the dynamic
S-server. More precisely, we need bounds on the moment
generating functions (MGF) of the corresponding stochastic
processes.

Definition 2. Let θ > 0. An arrival is (σA(θ), ρA(θ))-bounded
iff

sup
m∈Z
{E(eθA(m,m+k))} ≤ ekθρA(θ)+θσA(θ) ∀ k ∈ N

A dynamic S-server is (σS(θ), ρS(θ))-bounded iff

sup
m≥0
{E(e−θS(m,m+k))} ≤ ekθρS(θ)+θσS(θ) ∀ k ∈ N

We are now able to provide stochastic bounds on a service ele-
ment’s backlog process defined by q(n) := A(0, n)−D(0, n).

Theorem 3. Let A be an arrival flow served by a dynamic S-
server and θ > 0. Assume A is (σA(θ), ρA(θ))-bounded and S
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is (σS(θ), ρS(θ))-bounded. If A is stochastically independent
of S, the following probabilistic bound holds2:

P(q(n) > x) ≤ e−θxeθ(σA(θ)+σS(θ))
n∑
k=0

ekθ(ρA(θ)+ρS(θ)).

Proof: By definition of the dynamic S-server we have:

q(n) ≤ A(n)− min
0≤k≤n

{A(0, k) + S(k, n)}

= max
0≤k≤n

{A(k, n)− S(k, n)}

from which we can derive, using Chernoff’s inequality3:

P(q(n) > x) ≤ e−θxE(eθmax0≤k≤n{A(k,n)−S(k,n)})

≤ e−θx
n∑
k=0

E(eθA(k,n))E(e−θS(k,n))

≤ e−θxeθ(σA(θ)+σS(θ))
n∑
k=0

ekθ(ρA(θ)+ρS(θ))

Where the independence of A and S has been used in the
second line.

Here, problems arise when we face uncertainty in the
description of the arrival flow A. If the exact distribution of
the increments is unknown, we cannot calculate the expression
E(eθA(k,n)), which in turn prohibits calculation of the backlog
bound. Hence, we use statistics to deal with E(eθA(k,n)),
effectively replacing the (σA(θ), ρA(θ))-bound in the above
proof.

III. A FRAMEWORK FOR A STATISTICAL NETWORK
CALCULUS

In this section, we present the framework of StatNC
(→Theorem 5). Technically, it can be seen as a sufficient
condition on the employed statistics, allowing calculations
of performance bounds. For brevity, denote by φm,n(θ) :=
E(eθA(m,n)) the MGF of A(m,n) at point θ. First, we need a
small lemma proving the monotonic behaviour of the backlog
bound in the MGF of A.

Lemma 4. Let φ̂m,n(θ) ≥ φm,n(θ) for some θ > 0 and
all m,n ∈ N0 with m ≤ n. Assume A being stochastically
independent4 from S. Then

P(q(n) > x) ≤ e−θx
n∑
k=0

φ̂k,n(θ)E(e−θS(k,n))

for all n ∈ N0.

2For the case of A not being stochastically independent of S bounds also
exist, yet, for the sake of clearity and brevity, we leave these out here. See
[8], [3] for more information.

3Chernoff’s inequality states that for some real random variable X and
every θ > 0: P(X > x) ≤ e−θxE(eθX).

4A corresponding result for the dependent case can be found in [4].

Proof: From the proof of Theorem 3 we know

P(q(n) > x) ≤ e−θx
n∑
k=0

φk,n(θ)E(e−θS(k,n))

≤ e−θx
n∑
k=0

φ̂k,n(θ)E(e−θS(k,n)).

Define F to be the space of functions mapping from
N0 × N0 × R+ to R+

0 . In expression, if f ∈ F , then:

f : N0 × N0 × R+ → R+
0

An already familiar example for a member of F is the MGF
φm,n(θ) of the arrival flow A.

We now provide a theorem on how the uncertainties of
using statistics can be combined with the probabilistic bounds
derived from SNC.

Theorem 5. Let θ∗ = sup{θ : φm,n(θ) < ∞} and
Φ : R|n0| → F be a statistic on a = (an0

, . . . , a−1) such
that

sup
θ∈(0,θ∗)

P
( ⋃
m≤n

Φ(a)(m,n, θ) < φm,n(θ)
)
≤ α.

Then for all n ∈ N0, θ < θ∗

P(q(n) > x) ≤ α+ e−θx
n∑
k=0

Φ(a)(k, n, θ)E(e−θS(k,n)).

Proof: Fix some θ > 0:

P(q(n) > x)

=P
(
q(n) > x ∩

⋃
m≤n

Φ(a)(m,n, θ) < φm,n(θ)
)

+ P
(
q(n) > x ∩

⋂
m≤n

Φ(a)(m,n, θ) ≥ φm,n(θ)
)

≤α+ P
(
q(n) > x ∩

⋂
m≤n

Φ(a)(m,n, θ) ≥ φm,n(θ)
)

≤α+ P
(
q(n) > x

∣∣∣ ⋂
m≤n

Φ(a)(m,n, θ) ≥ φm,n(θ)
)

≤α+ e−θx
n∑
k=0

Φ(a)(m,n, θ)E(e−θS(k,n))

From the proof, the nature of the condition in the theorem
becomes clearer. We need the intersection of the events
Φ(a)(m,n, θ) ≥ φm,n(θ) to leverage from the monotonic
behaviour of the backlog bound (→Lemma 4). We achieve
this intersection by partitioning the event q(n) > x and hence
have to deal with the corresponding complement, which is the
union appearing in the second line of the proof. This union
describes the event, that our statistic delivers a value lying
below the real MGF of A at least once. We bound this kind of
(estimation) error by a confidence level of α. The confidence
level α can be seen as a parameter of optimization.
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Please note, that, for our theorem, we defined the statistic Φ
in the most general way, i.e., being a function on the complete
history a = (an0 , . . . , a−1). This does not mean, however, that
one has to use all this information to construct a Φ satisfying
the above condition. Assume a subsample a′ = (a′n′0

, . . . , a′−1)

of a, such that: a′i = aji for some index ji ∈ {n0, . . . ,−1} and
a statistic Φ′ : R|n′0| → F on a′. If Φ′ meets the assumption of
Theorem 5 for a′, we can extend it canonically to a statistic Φ
by setting: Φ(a) = Φ′(a′) for all a, such that aji = a′i holds.
This shows that using only a part of the history a is just a
special case of the above theorem.

Often one may want to give more recent observations a
larger impact on the sample and diminish the influence of
observations as they get older, e.g., wi(ai) = β|i+1|ai, 0 <
β < 1 (→exponential smoothing). Such transformations of
the sample are also covered by the above theorem: for some
weighting function w : R|n0| → R|n0| on the sample a, the
concatenation Φ ◦ w(a) needs to meet the above assumption
in order to apply the statistic Φ on the weighted sample.

Another typical and very practical way of subsampling
would be to use a sliding window of length l on the obser-
vations, i.e., a′i = ai, with i ∈ {−l, . . . ,−1}. The sliding
window is particularly interesting for on-line estimation, since
it allows the statistical network calculus to dynamically adapt
to changes in the arrivals’ characteristics. In Section V, we
investigate how the versatility of this dynamic view can be
leveraged to achieve better bounds than the static ones of SNC.

For the rest of the paper, we adhere to the general notation
as in Theorem 5, unless otherwise mentioned.

IV. EXAMPLES OF STATISTICAL ESTIMATORS

As stated above, estimating the quantity φm,n(θ) for an
arbitrary θ ∈ (0, θ∗) and m ≤ n ∈ N is key for StatNC.
In the following subsections, we present different scenarios
and their corresponding φm,n(θ)-estimators. The crucial point
is to meet the condition from Theorem 5. Starting with a fairly
simple, but illustrative example (exponential i.i.d. increments),
we move on to more complex scenarios, involving non-i.i.d.
behaviour of the increments ak.

A. Exponential Traffic

Assume the (ak)k≥n0
to be i.i.d. exponentially distributed

with some unknown parameter λ. The idea to construct Φ in
this scenario, is to estimate λ first. For this, note that a lower
bound on the real distribution parameter λ with confidence
level α can be computed by

λ̄ :=
χ2
α(2|n0|)

2 ·A(n0 − 1,−1)
.

Here χ2
α(2|n0|) is the one-sided α-quantile of a Chi-

Squared distribution with 2|n0| degrees of freedom (scaling
A(n0 − 1,−1) by 2λ results in a random variable, which
is Chi-squared-distributed with 2|n0| degrees of freedom).
Moreover, the MGF of the exponential distribution is given
by φ(λ, θ) = ( λ

λ−θ ) = 1 + ( θ
λ−θ ), for all θ < λ. With the

simple implication

λ̄ ≤ λ⇒ λ̄

λ̄− θ
≥ λ

λ− θ
,

we obtain for λ̄ ≤ λ that

Φ(a)(m,n, θ) :=

(
λ̄

λ̄− θ

)n−m
≥
(

λ

λ− θ

)n−m
= φm,n(θ)

applies for all θ < λ and m ≤ n ∈ N0.
Hence we obtain

1− α = P(λ̄ ≤ λ)

≤ inf
θ∈(0,λ)

P
( ⋂
m≤n

Φ(a)(m,n, θ) ≥ φm,n(θ)
)
.

Or, equivalently

sup
θ∈(0,λ)

P
( ⋃
m≤n

Φ(a)(m,n, θ) < φm,n(θ)
)
≤ α,

which is exactly the condition of Theorem 5.

B. Bandwidth-Limited i.i.d. Traffic

Assume again the increments of A to be i.i.d., now also
adhering to a bandwidth limitation M , i.e., no more than
M data units per time slot can arrive. The latter is a valid
assumption as any real access link has such a restriction. In
contrast to the previous subsection, we now lack any further
knowledge about the distribution of the increments ak. Yet,
it turns out that we can still construct a statistic Φ fitting
Theorem 5. The Dvoretzky-Kiefer-Wolfowitz inequality [23]
is very useful in this setup:

Lemma 6. Let Fn0
(x) := 1/|n0|

∑−1
k=n0

1{ak≤x} be the em-
pirical distribution function of the sample a = (an0

, . . . , a−1)
and F be the distribution of one increment of A. Then we
have for all ε > 0 the following:

P
(

sup
x∈[0,M ]

|Fn0
(x)− F (x)| ≤ ε

)
≥ 1− 2e−2|n0|ε2 .

Since the arrivals are bounded we can fix some arbitrary
θ > 0 for the rest of this subsection. The next theorem
constructs Φ:

Theorem 7. Let α ∈ (0, 1) be given. The statistic Φ defined
by

Φ(a)(m,n, θ) := (Ā+ ε(eθM − 1))n−m

satisfies the condition in Theorem 5. Here

Ā :=
1

|n0|

−1∑
k=n0

eθak .

and ε :=
√

log(α/2)
2|n0| .

Proof: Let ak be an arbitrary increment of A. Assum-
ing the event in the left-hand side of the Dvoretzky-Kiefer-
Wolfowitz inequality (→ Lemma 6), we can derive succes-
sively:

F (x) ≥ Fn0(x)− ε ∀x ∈ [0,M ],

1− F (x) ≤ 1− Fn0
(x) + ε ∀x ∈ [0,M ],
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P
(
eθak > x

)
≤ 1− Fn0

(1/θ log(x)) + ε ∀x ∈ [1, eθM ],

E
(
eθak

)
= 1 +

ˆ eθM

1

P
(
eθak > x

)
dx

≤ 1 +

ˆ eθM

1

1− Fn0 (1/θ log(x)) + ε dx.

Hence, we have for all θ > 0:

P
(
E
(
eθak

)
≤ 1 +

ˆ eθM

1

1− Fn0

(
1
n log(x)

)
+ ε dx

)
≥P
(

sup
x∈[0,M ]

|Fn0
(x)− F (x)| ≤ ε

)
≥ 1− 2e−2|n0|ε2 .

This means we have constructed a one-sided confidence
interval for E(eθak) with a significance level smaller than
α = 2e−2|n0|ε2 , which is given by:[

0, 1 +

ˆ eθM

1

1− Fn0
(1/θ log(x)) + ε dx

]
.

Simplifying the integral and inserting the corresponding ε for
a significance level smaller than α (for details see [4]), the
confidence interval becomes:[

0, Ā+

√
− log(α2 )

2|n0|
(eθM − 1)

]
.

For the statistic Φ we indeed have:

inf
θ
P
( ⋂
m,n

Φ(a)(m,n, θ) ≥ φm,n(θ)
)

= inf
θ
P
( ⋂
m,n

n∏
k=m+1

Ā+ ε(eθM − 1) ≥
n∏

k=m+1

E(eakθ)
)

≥ inf
θ
P(Ā+ ε(eθM − 1) ≥ E(eθk))

≥ 1− α.

Or, equivalently:

sup
θ

P
( ⋃
m,n

Φ(a)(m,n, θ) < φm,n(θ)
)
≤ α.

Again, the statistic Φ(a)(m,n, θ) satisfies the condition of
Theorem 5 and thus can be used to calculate the desired
performance bounds.

C. Markov-Modulated Arrivals

Next, we discuss a traffic class, in which the i.i.d. as-
sumption is dropped and multiple statistics are combined to
construct Φ. For this consider a Markov-modulated arrival,
with a Markov chain (Yk)k∈{n0,...} corresponding to the
transition matrix

T =

(
µ 1− µ

1− ν ν

)
and denote the first (second) state as On-state (Off -state). The
increments of the arrival A are now defined by:

ak =

{
0 if Yk is in Off -state
xk if Yk is in On-state

where (xk)k∈{n0,...} is a sequence of i.i.d. random variables
bounded by the bandwidth limitation M and xk 6= 0 almost
surely. Note that in general the increments ak are neither iden-
tically distributed nor stochastically independent. This model
generalizes the well-known and popular Markov-modulated
On-Off traffic model [1], with the distinction, that in the On-
state the arrivals are defined by a random process, instead of
a constant rate.

Before we can construct Φ, we need a lemma, showing the
monotonicty of φm,n(θ) with respect to the parameters µ and
ν. For this define θ∗ = sup{θ : E(eθxk) <∞}.

Lemma 8. For the above model, all m ≤ n ∈ N and all
θ ∈ (0, θ∗) it holds that

µ ≥ µ̃ ⇒ E(eθAµ,ν(m,n)) ≤ E(eθAµ̃,ν(m,n)),

and

ν ≤ ν̃ ⇒ E(eθAµ,ν(m,n)) ≤ E(eθAµ,ν̃(m,n)).

Proof: Although this statement is very intuitive, a rigor-
ous proof is surprisingly involved. Please see [4] for details.

Without knowing the transition probabilities µ and ν, nor the
distribution of the (xi), we can still construct a Φ satisfying
Theorem 5. In order to do so, denote for an arrival sample
a = (an0

, . . . , a−1) the observed number of transitions from
Off -state to Off -state by X0,0, from Off -state to On-state by
X0,1, from On-state to Off -state by X1,0 and from On-state
to On-state by X1,1. Further, denote the observed number of
visits in the On-state in a time interval (m,n] by O(m,n)
and the number of visits in the Off -state by P (m,n). Further,
define O := O(n0,−1) and P := P (n0,−1).

Theorem 9. Choose some confidence level α = αµ+αν +αd
and consider some sample a = (an0 , . . . , a−1) with O 6= 0.
Define the statistics

µl := β−1(αµ;X0,0, P −X0,0 + 1)

νu := β−1(1− αν ;X1,1 + 1, O −X1,1)

where β−1 is the inverse of the beta-distribution. Further
define the transition matrix

T ∗ =

(
µl 1− µl

1− νu νu

)
.

Define

A∗ = Ā+

(
− log (αd/2)

2|O|

)1/2 (
eθM − 1

)
.

Then the statistic Φ : R|n0| → F defined by:

Φ(a)(m,n, θ) := A∗
x̄On ∨ x̄Off
x̄On ∧ x̄Off

ρ(ĒT ∗)n−m−1

satisfies the condition of the statistical framework (→Theorem
5). Here Ā := 1

O

∑
i:Yi=On

eθai , Ē, x̄On and x̄Off are from
the σ(θ), ρ(θ)-bound for Markov-modulated arrivals (see [4])
with fixed arrivals in the On-states equal to 1/θ log(A∗).

Proof: First we show that [µl, 1] and [0, νu] are confidence
intervals for µ and ν and the confidence levels αµ and αν ,
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respectively. Basically, these are the well-known Clopper-
Pearson intervals [11], which are constructed as follows:
Interpret X0,0 as the number of successes in a Bin(µ, P )-
distributed random variable. It is known that for some X ∼
Bin(p, n) and β being the beta-distribution it holds that:

P(X ≤ k) =

k∑
i=0

(
n

i

)
pi(1− p)n−i = β(1− p; n− k, k+ 1).

From that we can continue with:

β(1− p, n− k, k + 1) = 1− β(p; k + 1, n− k).

We now ask for the smallest µ′ such that a random variable
X ∼ Bin(µ′, P ) meets:

Pµ′(X ≥ X0,0) ≥ αµ,

or, equivalently:

Pµ′(X ≤ X0,0 − 1) ≤ 1− αµ.

Hence µ′ must fulfill:

1−β(µ′; X0,0, P−X0,0+1) = Pµ′(X ≤ X0,0−1) = 1−αµ,

which is solved by µl = β−1(αµ; X0,0, P−X0,0+1). Using a
simple coupling argument and the definition of µl one obtains
the implication:

P(µl > µ) ≤ P(X ≥ X0,0) = αµ.

Very similarly, we obtain:

P(νu < ν) ≤ P(X ≤ X1,1) = αν ,

where X is now a Bin(νu, O)-distributed variable.
Now fix some arbitrary θ ∈ (0, θ∗) and assume for the

moment

µl ≤ µ,
νu ≥ ν,
A∗ ≥ E(eθaOn).

Then, for all m,n ∈ N it would hold that:

E(eθA(m,n)) ≤ E(eθAµl,ν(m,n))

≤ E(eθAµl,νu (m,n)) ≤ Φ(a)(m,n, θ),

where we still have to show the last inequality. Putting the
proof of the last inequality on hold, we henceforth have for
all θ ∈ (0, θ∗):

α = αµ + αν + αd ≥ P(µl > µ ∪ νu < ν ∪A∗ < E(eθaOn))

≥ P
( ⋃
m≤n

E(eθA(m,n)) > Φ(a)(m,n, θ)
)

which is what we wanted to show.
To show the missing inequality define a new Markov-

modulated arrival with a constant rate a∗On = 1/θ log(A∗) and
T ∗ as transition matrix. Then, we then have E(eθa

∗
On) = A∗

and the σ(θ), ρ(θ)-bound is given by Φ(a)(m,n, θ). Further
we have:

E(eθAµl,νu (m,n)) =

n−m∑
k=0

P(Oµl,νu(m,n) = k)E(eθaOn)k

≤
n−m∑
k=0

P(Oµl,νu(m,n) = k)E(eθa
∗
On)k

= Φ(a)(m,n, θ).

This completes the proof.

D. Summary

We have provided three examples with differing degrees
of assumed knowledge and complexity, when constructing
the statistic Φ. From the formulation of the framework, it is
clear that the technically hard part in applying the StatNC
lies in constructing such estimators. Taking care of other,
potentially more complex arrival processes is thus a question
of finding the corresponding Φ, i.e., meeting the condition of
the framework theorem. Admittedly, this can be hard in some
circumstances and, for example, we leave the construction of
Φ for long-range dependent traffic types for future work.

V. NUMERICAL EVALUATION – STATNC AT WORK

In this section, we compare the statistical network calculus
with its stochastic counterpart. To that end, we investigate
how high the costs of involving statistics are (in terms of
looser bounds). Furthermore, we study special properties of
StatNC which the SNC lacks; these are its dynamic view
on the measurements, as well as its robustness against false
assumptions.

Scenario 1: The Price of StatNC

In the first scenario, we study if the additional uncertainties
resulting from the statistical part of the performance bounds
are acceptable. In expression, we calculate the smallest b such
that we can still guarantee

P(q(n) > b) ≤ ε,

with our methods of StatNC (or with the methods of standard
SNC). For a perfect bound, we expect that for a large number
of simulations N to see roughly N · ε of the simulations
producing a backlog larger than b at time n. Hence, we
simulate the backlog process for time n in N repetitions and
compare the empirical distribution of the observed backlogs
with the b obtained from the StatNC/SNC formula above. The
bounds are the better, the closer they lie to the (1−ε)-quantile
of the empirical backlog distribution.

To that end, we simulate a Markov-modulated arrival pro-
cess, as described in Section IV-C, with xi being exponentially
distributed, but capped by a bandwidth limitation M . The
parameter λ of the exponential distribution is chosen to be 0.2,
while the bandwidth limitation is set to M = 20 (which means
a hypothetical access link is maximally utilized at 25%). The
transition probabilities of the Markov chain are set to µ = 0.9
and ν = 0.9. We use a constant rate server with rate c = 5,
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Figure 1. StatNC and SNC backlog bounds as well as the empirical
distribution of the backlog measured at time n = 100 resulting fromN = 106

simulation runs.

which means during the On-state, considering the bandwidth
limitation, we see a peak utilization of 1

λc (1−e
−λM ) ≈ 98%.

Considering the bandwidth limitation and the fact, that we are
not always in the On-state, we compute an average utilization
of roughly ≈ 49%. The computation of the backlog bound
based on SNC can be found in [4], while the StatNC bounds
are computed according to Section IV-C. For illustration, we
have simulated N = 106 runs of this system and evaluated
the backlog at time slot 100 (at which time in all simulation
runs the initial distribution of the Markov chain had faded
out and steady-state was reached). In Figure 1, the empirical
distribution function of the backlog is plotted; for the bounds
a violation probability of ε = 10−4 was assumed. As can be
observed, both bounds are reasonably close to the (1 − ε)-
quantile; but, even more importantly, the bounds are pretty
close to each other. This demonstrates that the price we pay
for using StatNC is not too high.

As a side remark, we point out that the confidence level
α, being a fraction of the violation probability ε, does not
affect the quality of the StatNC bounds significantly, if not
chosen at the extremes (α extremely close to 0 or ε). For a
more detailed discussion, why α does only marginally affect
the bounds, please refer to [4].

Scenario 2: Exploiting the Dynamic Behaviour of StatNC

In the second scenario, we investigate StatNC’s dynamic
point of view. In particular, we use a sliding window approach
over the last l observations (as discussed in Section III).
Using this kind of sub-sampling, we eventually forget old
measurements and “learn” from new arrivals instead. As such,
the observation window allows to track changes in the arrival
process (stemming, e.g., from non-stationarities such as time-
of-day or other seasonal effects), which take place on longer
timescales. For example, if we imagine a flow starting with
large increments and diminishing over time, standard SNC
faces problems; it lacks the adaptability to track this behaviour
and its bounds get looser over time. On the other hand, StatNC
can adapt by forgetting about the first large increments as time
passes.

To investigate the adaptability, we use a Markov-modulated
arrival process, similar to the previous one, but instead of
having On- and Off-states, we use states High and Low.
For both of these, arrivals are drawn from an exponential
distribution with a parameter λxi (and then capped by M );
here, the parameter λxi depends on the state of the Markov
chain.

In this scenario, we use the estimators from Subsections
IV-A and IV-B and not the estimator presented in Subsection
IV-C. The goal is to use the observation window for tracking
changes of states, instead of “learning” the Markov chain
itself. Therefore, we use transition probabilities of µ = 0.999
and ν = 0.999; this means in expectation we stay 1000 time
slots in one of the states until we change into the other one;
this emulates a non-stationary behaviour of the arrival process.
Further, we set λLow = 5 and λHigh = 0.2 and a bandwidth
limitation of M = 10. With a service rate of c = 5, we have–
taking the bandwidth limitation into account–a utilization of
4%, while residing in the Low-state and 86% in the High-
state. In the simulations, we started the arrival process at time
n0 = −1000 to provide StatNC with an initial observation
window. A typical run of this scenario is plotted in Figures
2 (for the exponential traffic estimator) and 3 (for the i.i.d.
bandwidth-limited estimator). In addition to the bounds, we
have plotted the simulated backlog process over time, to see
how close the bounds are. Due to their dynamic nature, the
StatNC bounds evolve over time. Similar to the SNC bounds,
they are computed for a violation probability of ε = 10−4

and for a time which lies n time slots after the point they
have been computed; we provide the results for n = 10 and
n = 1000 time slots, representing a short and long prediction
horizon, respectively. As can be seen clearly, the bounds react
and ultimately adapt to the observed arrivals: If the arrival
intensity is high (indicated by larger backlogs), the statistical
bounds also increase, while they decrease, when the Markov
chain changes to the Low-state. One can also observe that
the StatNC bounds track the changes of states with some
delay, since old measurements need to be discarded from the
observation window first. The effect of the prediction horizon
n is such that a larger n results in higher bounds for both
methods. For comparison, we also provide the SNC bounds
calculated by exactly modelling the Markov chain. As can
be observed, although the SNC uses complete information its
bounds lie far above the StatNC bounds, which perform very
well in terms of staying close, but not being violated too often
(in accordance with the violation probability ε = 10−4).

Another effect that can be observed, when comparing the
two plots with each other, is how helpful the additional
information about the exponential distribution is. We see, for
the same run, that the StatNC bounds using knowledge about
the type of distribution in the High-state, performs moderately
better, compared to the non-parametric i.i.d. estimator of
Subsection IV-B. We will demonstrate in the next scenario,
however, that taking more assumptions about the arrivals into
account, bears the risk of making false assumptions, which in
turn can be fatal for the bounds.
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Figure 2. The backlog process for a typical simulation run; further the StatNC
and SNC bounds for n = 10, 1000. For the StatNC bound the parametric
estimator of Subsection IV-A was used.

Figure 3. The backlog process for a typical simulation run; further the StatNC
and SNC bounds for n = 10, 1000. For the StatNC bound the non-parametric
estimator of Subsection IV-B was used.

Scenario 3: Robustness of StatNC

In the third scenario, we investigate the robustness of
StatNC and SNC bounds against false assumptions on the
arrival process. This reveals another feature of StatNC when
using the estimator of Subsection IV-B: StatNC can cope with
rather few assumptions about the arrivals and is therefore more
robust than SNC.

To illustrate this, we let SNC make a false assumption about
the distribution of the i.i.d. increments of the arrival process:
For this we have chosen the increments to be i.i.d. Pareto
distributed with parameters xmin and s, again capped by the
bandwidth limitation M ; yet, for the calculation of the SNC
bound we assume the increments to be i.i.d. exponentially
distributed with parameter λ (again capped by M ), with λ
set such that the expectations of the capped Pareto-distributed
arrivals and the assumed capped exponentially distributed
arrivals coincide (for details see [4]). On the other hand, the
StatNC using the non-parametric estimator from Subsection
IV-B cannot–by definition–make such a false assumption about
the arrivals.

In Figure 4, it can be observed that such a false assumption
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Figure 4. Under a false distribution assumption (exponential instead of Pareto
distributed increments), SNC delivers a grossly invalid bound while StatNC
remains correct.

on the arrival process can lead to disastrous results. As in
the first scenario, the empirical distribution of the backlog
is displayed and compared against the bounds calculated by
StatNC and SNC. For the plot, parameters have been set as
xmin = 1, s = 1, M = 55; further, we used a violation
probability of ε = 10−4 at time n = 100. The plot shows the
empirical backlog distribution for 106 simulation runs, which
in turn means, we would expect a tight 10−4 bound to be
violated 100 times in expectation. The SNC bound however
is broken by 234,526 runs, i.e., in approximately 23% of
the simulations! This lies far below the empirical (1 − ε)-
quantile, the location of a sharp bound. This means the SNC
is far too optimistic and hence is rendered useless. In contrast,
the StatNC remains valid and stays reasonably close to the
empirical quantile–a very satisfying result.

VI. CONCLUSION

By integrating statistical methods into the network calculus
framework in order to deal with the frequent uncertainty about
arrivals, we believe to have made an important step towards
a better applicability of network calculus. In particular, the
dynamic mode of operation of the newly developed statistical
network calculus is attractive for many application fields
where uncertainty and permanent change rules and modelling
assumptions are already outdated when the actual system is
under operation. After providing the basic technical results for
StatNC–a framework theorem providing a sufficient condition
for statistical estimators of the arrival process to connect them
with the SNC framework and several matching estimators–we
were able to make a case for the promising opportunities of the
novel StatNC framework in a set of numerical experiments.

Given the positive results from this paper, there are many
opportunities for future work within the StatNC framework:
besides the already mentioned estimator for long-range depen-
dent traffic, there are many more useful estimators that can be
conceived; also, more sophisticated sub-sampling techniques
than sliding windows, e.g., optimally weighted estimators,
could provide even better reaction times; and last, but not
least, a validation of the framework in a practical setting like



9

the ones mentioned in the introduction (MPLS domain, WSN)
should provide new insights.
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