
Simulation of Adversarial Scenarios in OMNeT++ –
Putting Adversarial Queueing Theory from Its Head to Feet

Daniel Berger
Distributed Computer Systems

Lab (DISCO)
University of Kaiserslautern,

Germany
berger@cs.uni-kl.de

Martin Karsten
David R. Cheriton School of

Computer Science
University of Waterloo,

Canada
mkarsten@uwaterloo.ca

Jens Schmitt
Distributed Computer Systems

Lab (DISCO)
University of Kaiserslautern,

Germany
jschmitt@cs.uni-kl.de

ABSTRACT
Adversarial models of traffic generation replace probabilis-
tic assumptions by considering the deterministic worst-case.
The framework of adversarial queueing theory (AQT) has
discovered unexpected results on the stability of networks
and has seen continuous research efforts over more than
15 years. So far, almost all AQT results have been de-
rived analytically under simplifying but arguably harmless
assumptions. However, as can be observed from recent work
in AQT, the adversarial scenarios, in particular those that
demonstrate instability, become more and more contrived
and complex, thus lending themselves less and less to analyt-
ical tractability. While simulation seems like a good match
for this problem, no available simulation model includes ad-
versarial traffic generation. In this work, we introduce an
OMNeT++ simulation framework for AQT as a tool to fa-
cilitate the study and development of instability examples.
We validate the usefulness of AQT simulations in several
use cases and, en-passant, discover some new insights into
adversarial effects.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; I.6.m
[Simulation and Modeling]: Miscellaneous

Keywords
Adversarial queueing theory, discrete-event simulation, FIFO
scheduling, OMNeT++, stability, traffic generation

1. INTRODUCTION
For network performance evaluation the term stability has

emerged to describe the desired state of a network that is
able to cope satisfactorily with the load requested. For ex-
ample, in queueing theory, a networking system is termed
unstable if no equilibrium exists, i.e., if queues might grow
indefinitely [7].
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Achieving stability over long time-scales is non-trivial and
has been in the scope of research ever since the beginning
of telecommunication network models. When early work on
queueing delay by Erlang [10] was expanded to networks of
queues [13] and networks with diverse customers [14], the
initial belief was shaped that instability might only happen
in (locally) overloaded networks. Yet, in the early 1990s,
probabilistic examples [17, 19] have shown network scenarios
that are unstable despite the queues not being overloaded
locally by the input traffic.

Starting from this insight, novel queueing models have
emerged, among them Adversarial Queueing Theory (AQT)
[5], which is centered around the notion of stability. While
previous work usually assumes stochastic processes for packet
arrivals and service times (in most cases of Markovian na-
ture), this model introduces a radically new approach to
study stability. In an attempt to dispense with specific
probabilistic assumptions, these are replaced by determinis-
tic worst-case considerations: the adversarial traffic model
assumes that arrivals are controlled by a hypothetical adver-
sary, whose goal it is to put stress on the networking system
and to eventually destabilize it. Indeed, this line of think-
ing proves to be a rich source of fundamental insights into
network stability and has delivered a number of surprising
results. In the following, we restrict our brief survey to the
practically very relevant case of FIFO scheduling.

Andrews et al. [2] were the first to prove that a small four-
node network, known as the baseball network, can be unsta-
ble even though the arrival rate of new packets requiring any
component in the network is less than each component’s pro-
cessing capacity, i.e., in the classical sense an underloaded
system. The corresponding example is based on an induc-
tive construction. By assuming a certain queue length and
a specific pattern of traffic flows, such that, after some time,
the assumptions for the same process are satisfied again, yet
now at a larger queue length, this provides a recipe to desta-
bilize the network in terms of infinitely growing buffers.

Interestingly, bursty packet arrivals are not inherently suf-
ficient to cause instability [12] and all instability examples
work with smooth rates and by exploiting the network’s
topology. Hence, rate and topology are central in the process
of causing instability and critical to understand the exact
boundaries of stable network behavior.

The lower bound on the arrival rate of unstable networks
has been lowered in subsequent work [9, 15, 18] and ulti-
mately, it has been shown that networks with FIFO schedul-
ing can be unstable at arbitrary small (0+ε) arrival rates [3].

Similarly, the space of unstable topologies has been ex-



plored by graph minors [1, 2, 11]. A comprehensive char-
acterization has determined that only so-called decorated
cycles are FIFO-stable topologies [23]. However, many re-
alistic topologies are not captured by this characterization
and thus their stability is not guaranteed.

In summary, interesting results have been obtained from
adversarial queueing models but are currently limited to
a theoretical viewpoint. A more practical approach and
broader understanding is an important step to make use of
these results. To this end, we propose to simulate instability
effects and introduce a suitable model for the OMNeT++
discrete simulation framework [22]. Using simulations pro-
vides the flexibility to relax certain “convenient” assump-
tions from the analysis, evaluate the tightness of bounds,
and study the robustness of adversarial effects.

1.1 Problem Statement and Use Cases
Previous work on adversarial queueing models studies sta-

bility with analytical methods. This works well, e.g., when
deriving delay bounds for stable networks, or to describe
small instability examples [2, 9, 15], but becomes increas-
ingly complex for involved constructions with low adversar-
ial arrival rates [18, 3]. For instance, for the latter two AQT
scenarios only bounds of unclear tightness are known. This
may be sufficient for the qualitative evaluation whether a
system is stable or not. However, we are also interested
in quantitative measures of instability such as the severity
of an instability scenario, the time until a given measure of
congestion occurs, or the amount of loss under finite queues.

To summarize, for quantitative evaluation, we observe
that tight bounds on the behavior of networking systems
in adversarial queueing models are hard to derive. This is
a major motivation for an AQT simulator, because such a
tool can be used to efficiently obtain numerical results in this
domain. Additionally, we find that developing new adver-
sary types can be supported very well with a simulation tool
at hand. In particular, the possibility to visualize the sys-
tem state at any given time is an important aid in designing
sophisticated adversaries.

As pointed out already, many assumptions of adversarial
queueing models are not accurate and are made for analyti-
cal convenience. For example, the models use discrete time
steps where events occur at distant nodes in the network
with precise and synchronous timing. Of course, this does
not necessarily hold in real-world networks. A flexible sim-
ulation model allows an increased level of detail and realism
to iteratively adapt an adversary’s strategy to observations
from simulation experiments.

1.2 Related Work
To our knowledge, there is little work on AQT simula-

tion, and what exists only touches the issue while focusing
on other aspects. Chroni et al. [8] use a simulation of ad-
versarial queueing theory to determine the stability of com-
positions of different schedulers in a network. The scope of
this approach is fundamentally different from our goal as it
focuses on the exact conditions for stability. In contrast,
the main focus of our work is to study and understand in-
stability. We wish to observe the theoretically predicted
unstable behavior in order to understand the corresponding
implications for a real-world network. We focus on a quan-
titative assessment of FIFO instability under slightly more
realistic assumption than the original model. The simulation

in [8] focuses on a variety of different scheduling strategies
and composite schedulers and evaluates only qualitatively
whether instability occurs.

Also, a distinguishing feature of this work is that we val-
idate our implementation by a comparison to previous an-
alytical results and make the complete source code avail-
able to the public. We facilitate the implementation of new
adversaries and reuse of existing ones by a modular code-
excerpt structure and are able to visualize network behavior
through the capabilities of OMNeT++

Another related approach is concerned with more complex
inter-arrival distributions for traffic generation [16]. By im-
plementing several stochastic process types as modules for
OMNeT++, the authors are able to simulate positive corre-
lation between packet arrivals. An adversarial traffic injec-
tion model is different as inter-arrivals are entirely determin-
istic. Furthermore, adversarial queueing theory is mainly
concerned with circular topologies where the adversary also
controls the routes taken by packets. From this perspec-
tive, our implementation goes beyond traffic generation and
extends into dynamic continuous packet routing [5].

Because of the deterministic nature of AQT, the initial
simulation model does not include stochastic variation. The
output of the model strictly depends on the set of input
parameters and behaves the same for every run. This ap-
proach can be considered as being in the realm of the general
topic of deterministic simulation models, which see limited
use in computer networking, but are regularly used in other
science disciplines [20]. However, we use this method differ-
ently than most previous work in this domain as we take the
opposite view point: the model is given and corresponding
analytical predictions are studied.

1.3 Outline
We report adaptations to AQT to fit an implementation in

OMNeT++ in Section 2. The implementation and design
decisions are described in Section 3. Experimental results
for the validation of the usefulness of AQT simulations are
presented in Section 4, and we conclude in Section 5.

2. SIMULATION MODEL
The underlying model for the simulation presented here

is very similar to the original specification of AQT [5]. We
first introduce the original model, present an example, and
then describe adaptations to AQT, and design decisions we
took for our implementation.

2.1 Adversarial Queueing Model
A network is represented as a directed graph G = (V,E)

where V are network nodes and E are network links. Packet
routes are assumed to be simple paths. Edges comprise a
queue at their origin where packets wait if they arrive at
an edge which is already processing requests. At a non-
empty queue the next packet to be processed is chosen by
some scheduling policy which will be FIFO throughout this
work. If two packets arrive at the same time an arbitrary
tie-breaking rule is used.

We consider discrete time, where each edge may process
one packet each time step. Processing means that the packet
disappears from the queue and appears in the queue of the
next edge in the packet’s path if it has not yet reached its
final destination. If it arrives at its final destination, it is
assumed to be absorbed, thus leaving the system.
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Figure 1: An example of a small graph taken from the class A+ introduced in [23]. This class is one of three
instability graph minors which are the foundation of more complex examples. A phase is divided into five
intervals; in each interval injection’s paths are marked by dotted or dashed lines.

Besides the network representation, the model comprises
an adversary A, giving name to the model. The adversary
injects packets that follow predefined routes chosen by the
adversary such that the stress on the network is maximized.
All injections are subject to a load condition which ensures
that the network is not trivially overloaded by the requests
upon injection.

Different but similar load constraints have been used in
previous work. We find the bounded adversary model [2]
more intuitive than the original form [5]. As both adversary
models exhibit the same power [21], we adhere to the former.
Fix a natural number b ≥ 1 and 0 < r < 1; an adversary is
said to be (b, r) bounded if, for any interval [s, t), the adver-
sary’s injections containing any particular edge in the graph
do not exceed r(t−s)+b packets. This implements a simple
leaky bucket constraint on the adversary’s injections where b
allows for some burstiness, and r is called the injection rate.
Note, that the injection rate is strictly less than one, which
in traditional settings would mean a (local) underload.

2.2 Example for the Original AQT Model
Proving a network to be unstable works in an inductive

fashion: assuming a number of packets s somewhere in the
network and the adversary applying some injections, it is
shown that the network satisfies the initial assumption again,
but the number of packets has increased to s′ > s.

As an example we consider the graph in Figure 1. This
graph and its adversary are examples for the class A+ intro-
duced in [23] and the mechanism is representative of many
other examples as it is one of three fundamental instabil-
ity graph minors1. We will use the A+ graph minor as a
running example in subsequent sections. The adversary is
described in textual form in [23], but given in a condensed
form here, with a visualization of injections in Figure 1.

Adversary 1.
t0: Assume an initial set S0 of size s is queued in e1.
(t0, t1 = t0 + s]: Inject the set S1 of size rs into e1 with
path (e1, e2, e4).
(t1, t2 = t1 + rs]: Inject the set S2 of size r2s into e1 with

path (e1, e3, e4); inject the set C of size r2

1+r
into e2.

(t2, t3 = t2 + r2s]: Inject the set S3 of size r3s into e4.
(t3, t4 = t3 + r2s]: Inject the set S4 of size r4s into e4
with path (e4, e5, e1).
(t4, t5 = t4 + r2s]: Inject the set S5 of size r5s into e1.

Observe that in (t0, t1] S1 stays queued behind the initial
set S0. In (t1, t2] S1 starts traversing its path, but is slowed

1A graph is FIFO-stable, iff none of the classes A+, B+, C+
introduced in [23] appears in it as a graph minor.

down by the injections of C which compete with S1-packets
to traverse e2. Meanwhile S2 is still queued behind the re-
maining packets of S1. In (t2, t3] the adversary waits for the
simultaneous arrival of S1 and S2 at e4 and uses this time to
further fill the queue of e4 with packet injections. It remains
to ensure that the initial assumption of S0 is satisfied for the
next phase. Appendix B.1 in [23] gives a proof showing that
at the end of some phase, s′ = sr6 2+r

1+r
packets satisfy the as-

sumption of S0 for the next phase. Then, another phase may
follow with the same injection and packet flow patterns. For
r > 0.933 it holds that s′ > s and by induction the number
of packets in the network grows without bounds.

2.3 Adaptation to the Simulation Model
We represent a network as an undirected graph as this

holds for the majority of communication networks in prac-
tice. This has been done before in adversarial queueing mod-
els [2], but most instability examples use directed graphs.
Instead of an explicit list of edges packets have to visit, we
adapt a loose source routing approach, i.e., a list of nodes to
visit and static shortest-path routing so that the node list
does not need to include the full path. This means a change
from a link addressing scheme to node addressing, which in
turn changes the requirement of simple paths to requiring
paths without cycles. We choose this adaption because rout-
ing in real-world networks is also based on node addresses
instead of link addresses.

Because smooth arrivals are sufficient to cause instability,
we drop the adversary parameter b as a parameter in our
simulation. Instead we add the initial configuration of the
network at time t0 = 0 as parameter. An initial distribu-
tion of packets in the system is necessary for all previously
published adversary types. There are proposals to transform
adversaries with initial sets into adversaries with empty con-
figurations [2, 4]; however, we are interested in the effect of
initial set sizes on unmodified adversaries and topologies.

In previous work it has been consensus to “keep the defi-
nitions slightly informal for the sake of readability” [2]. Ob-
viously, this does not work when implementing these defi-
nitions into a program. Hence some interpretation to for-
malize informal descriptions of adversaries in programming
language statements is needed. A first step is the notation
used in Adversary 1 and in Figure 1. Next, we formalize the
notation by the use of OMNeT++ and C++ data structures.

2.4 Adapted Example for Simulation Model
In this section, we review the adaptations of AQT for the

instability graph minor A+ as introduced above.
Representing the graph as an undirected graph with node-

level addressing makes it impossible to route packets either



Figure 2: Left: Implementation of the A+ graph mi-
nor as an OMNeT++ network. Nodes are used for
addressing. Right: Node A from the same network
is an instance of the class SourceRoutingNode. It
comprises one application, one routing module, and
a queue for each link to the neighbors C, D, and E.

over e2 or e3 as in the original graph Figure 1. For this reason
we introduce an additional helper node whenever switching
from edge addressing to node addressing causes ambiguity.
We show the result of adapting the A+ graph minor in Fig-
ure 2. D and E are examples of artificial helper nodes.

To formalize the description of Adversary 1 we need to
distinguish between two different notions of time: simula-
tion time (SimTime) in OMNeT++, and discrete time steps
in AQT. We use an overlay over SimTime and represent
time steps in SimTime by multiplying with the configuration
parameter “timeSlots”. Injection intervals are described in
AQT time steps by setting an interval start and the interval
length. Corresponding injections are executed for a specified
number of time steps at the injection rate r. These intervals
are always rounded to integer time steps. In contrast, the in-
jection rate r is represented by a waiting time of 1/r between
injections – this is not rounded but uses SimTime precision.
This can also be seen in Listing 1 where we consider the
second interval [t1, t2] of Adversary 1. Interval start and
length are defined in the first two lines. This interval starts
directly after [t0, t1] is over, hence we add its length. The
length of [t1, t2] is the injection rate r multiplied with the
previous interval’s length. Injections are scheduled with an
inter-packet delay of 1/r as specified in line 5 and the total
number of injected packets is given in line 6. The round-
ing methods presented here are conservative as we choose a
perspective on instability [5].

Injection paths are given to the simulator in an explicit
order. Similar to the OMNeT++ routing example, nodes
are labeled by character strings but addressing is done on
integer addresses. This can be seen in Listing 1 in Lines
10-14 where a path of length 4 is specified. Node address 1
is labeled A, 22 is D, 3 is B, and 4 is F in Figure 2.

3. IMPLEMENTATION IN OMNET++
We have used OMNeT++ 4.2 to implement our AQT sim-

ulation model, and have used code and concepts from the
routing example. The simulator’s project page including the
source code of the model is available online2. On the high-
est abstraction level, we implement topologies proposed in
the AQT literature as NED files comprising a correspond-

2http://disco.informatik.uni-kl.de/content/
Aqtmodel

1 //interval [t1,t2]
2 intervalStart +=

intervalLength*(timeSlots->doubleValue());
3 intervalLength =

ceil(intervalLength*injectionRate);
4 newInjection = new AdvSchedMess;
5 newInjection->interInjectionTime =

(timeSlots->doubleValue())/injectionRate;
6 newInjection->packetCount =

floor(intervalLength*injectionRate);
7 newInjection->atNode = "C"; //where to inject
8 newInjection->message = new

AdversarialInjectionMessage("set S2");
9 newInjection->message->setPathArraySize(4);

10 newInjection->message->setPath(0,4);//last hop
11 newInjection->message->setPath(1,3);
12 newInjection->message->setPath(2,22);
13 newInjection->message->setPath(3,1);//first hop
14 scheduleAt(intervalStart,newInjection);

Listing 1: Code-excerpt of the implementation of
Adversary 1 in the proposed OMNeT++ package.
Only the second interval is shown.

ing adversary class, and node modules which allow for source
routing and may be controlled by the adversary. Nodes are
linked by either standard data rate or delay channels, or by a
channel with variable delay which we use to test the robust-
ness of adversarial effects (see Section 4). Apart from the
latter channel type, everything behaves in a deterministic
way. Because AQT requires discrete time steps, the imple-
mentation uses an abstract time step structure on top of the
virtual continuous time which is offered by OMNeT’s Sim-
Time Class. The basic 64-bit Integer type cannot be directly
used to represent time steps, because variable channels may
introduce continuous delay variation. Furthermore, to be
more realistic, we allow injections to take place in contin-
uous time (according to the injection rate). One time step
has a 1ms simulation time duration. All operations that are
not concerned with link traversals, e.g., routing decisions,
do not consume (simulation) time.

3.1 Nodes
Network nodes are implemented as compound modules as

illustrated in Figure 2 Each link is connected by an InOut-
gate to a slightly modified version of L2Queue, which in
turn is connected to the routing layer. A packet’s destina-
tion address is an array of nodes to visit, in reverse order.
Each packet traversing a node is forwarded to the routing
module which considers the last entry of the address array.
If the array has a length greater than one, then the packet
is forwarded, and a static shortest-path scheme is used to
determine the output link. The address array length is de-
creased by one, if the current node is an intermediate hop.

If the array has length one and the local address matches
the array’s entry, then the packet is forwarded to the applica-
tion layer, which reports the delay and absorbs the packets.

3.2 Querying the Network State
All previously published adversaries assume a set of pack-

ets s in a queue in the network, and schedule injections
corresponding to |s|. We implement this behavior by giv-
ing the adversary the possibility to query for any queue’s

http://disco.informatik.uni-kl.de/content/Aqtmodel
http://disco.informatik.uni-kl.de/content/Aqtmodel


Message Type Description Representative Properties
QueueLengthRequest Out-of-band control command, used by the adversary

to set up a queue listener
moduleName (node), outAddress (set by
adversary), gateID (set by routing layer)

Adversarial-
SchedulingMessage

Internal scheduling for the adversary’s injections, in-
cludes a whole set of injections.

packetCount, atNode, interInjectionTime,
AdversarialInjectionMessage

Adversarial-
InjectionMessage

Out-of-band injection command, sent from adversary
to application layer of a node.

destAddrArray, injection description,
(atNode implicit by sendDirect)

SourceRoutingPacket Basic packet type which is sent over the network, the
path is modified at each hop in destination path

srcAddr, destAddrArray, hopCount, recor-
dRouteArray

Table 1: Different message types used in the implementation. The first three message types are used for
injections by the adversary, the last one describes the format of packets sent over the network.

length. In fact, using the analytical model, an adversary
would be able to compute the cardinality of s for any phase
in advance. However, this would disqualify any compari-
son between analytical and simulative results: the analyti-
cal prediction might estimate a queue’s size wrong and the
adversary may carry this offset as an additive error across
all subsequent phases.

This additional capability of the adversary, which is im-
plicit in analytical models, is implemented as a listener on
a queue’s length. For modularity, the adversary does not
have direct access to the queues but sends a request to a
particular node to set up a listener for a link’s queue at
this node. Having a layered node architecture, it would be
best to reuse the already established control path for injec-
tion commands from the adversary to the application layer.
However, only the routing layer knows the correspondence
between links and queues. To simplify implementation, we
allow the adversary to also communicate with the routing
layer and thereby obtain knowledge of queues to set up a
queue length listener.

3.3 Adversaries and Packet Injections
Adversaries share common functionality. In particular, all

adversaries need to translate the definition of injections as
introduced in Section 2.4 into discrete packets. This process
is implemented in the super-class AdvancedAdversary from
which adversary implementations are derived. Deriving a
new adversary works by providing a class inheriting from
AdvancedAdversary, defining a function to set up the initial
state of the network, and defining a method to handle the
injection scheme. The injection scheme is specific to each
adversary and is executed repeatedly, at each phase’s start:
the adversary queries the network state and schedules sets of
injections. An adversary such as Adversary 1 would consist
of several blocks of injections, each one similar to Listing 1
and is organized in several stages. Some key message types
are explained in Table 1.

The initial state of the network is only constructed once,
at time step 0. Dependent on the configuration parameter
InitialSetSize an initial configuration of packets in queues
is prepared. This may include packets at multiple queues
in the network, however, each queue’s size must be strictly
less than the initial set size. Additionally, adversaries may
set up queue listeners with QueueLengthRequest-packets to
nodes in the network. Doing this once gives the possibility
to learn a queue’s length at the start of a new phase.

The injection scheme consists of four steps and is exe-
cuted once every phase. Firstly, the adversary queries some
queues’ lengths. Depending on this information, injection

sets are created and represented as messages of the type Ad-
versarialSchedulingMessage. These messages are scheduled
with waiting time 1/r as a self message and are handled
by the super-class AdvancedAdversary. Upon receiving an
AdversarialSchedulingMessage, the AdvancedAdversary de-
rives injection commands for single packets from this rep-
resentation. These injection commands are then sent out-
of-band as AdversarialInjectionMessage to the application
layer of a network node. Each such message triggers the
immediate injection of a SourceRoutingPacket in the appli-
cation layer which is passed on to the routing layer, and
handled according to the description in Section 3.1.

3.4 Channels
Previous work in the adversarial queueing framework has

modeled changes, e.g., to a link’s capacity, by allowing the
adversary to change a link’s state every time step [6]. Our
goal is different, since we want to assess the robustness of ad-
versarial effects. Therefore we introduce randomized chan-
nels with the capacity modeled by a random variable.

We have evaluated two implementations of randomization.
The first implementation allows for a change in a channel’s
capacity in each time step. Although this would be a typi-
cal approach from the classical AQT viewpoint, this model
is debatable: for a real-valued random variable the duration
of traversing a link might not match our time-step abstrac-
tion. In particular, it might happen that two consecutive
packets observe an unchanged channel capacity. The second
implementation extends the basic DatarateChannel so that
the channel’s capacity is an independent random variable
for each traversal.

In both implementations, we sample each link’s capacity
from a Normal distribution. To work around the issue of
negative channel capacity, the truncated Normal distribu-
tion is used. The OMNeT truncnormal implementation re-
jects negative values by sampling again until a positive value
is obtained. We chose the mean capacity so that it translates
into a one time step duration for our uniform packet size,
and we introduce the standard deviation as an additional
floating-point parameter.

3.5 Summary
Our proposed OMNeT++ simulation model has six basic

parameters which can be set in the main configuration file:

1. the topology implemented as a NED-file;

2. the adversary which a user may provide as a C++ class
or reuse from existing examples;

3. the initial set size which sets a maximum allowable
queue size for a network’s initial configuration
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4. the injection rate r;

5. the mean of the variable channel delay;

6. the standard deviation for the variable channel delay.

4. VALIDATION AND RESULTS
The goal of this section is to demonstrate the usefulness

of AQT simulations as a complementary method to analy-
sis when investigating instability effects of packet-switched
networks. To that end, we provide a non-exhaustive set of
representative use cases where simulations deliver insights
that go beyond what is feasible in analysis:

• relaxation of analytically convenient assumptions;

• investigation of the effect and interaction of initial set
sizes and injection rates;

• evaluation of the dependence of adversarial scenarios
on strict synchronization;

• assessment of the tightness of analytical bounds.

We find some surprising results that are interesting in them-
selves, for example on the interaction between the size of
initial sets and the injection rate and that strong desynchro-
nization by randomization can destruct adversarial effects.
In most experiments we deal with the following three promi-
nent adversarial scenarios: Baseball (BB) [2], Diaz et al.[9],
and the previously introduced graph minor A+ [23]. We use
r = 0.96 (if r is not a parameter), an initial set size of 20 (if
not a parameter), a buffer size which is never exceeded, and
evaluate 60,000 time steps with OMNeT++ 4.2.2.

4.1 Basic Comparison to Analytical Results
The first set of experiments is focused on the relaxation

of analytically convenient assumptions such as the continua-
tion of discrete events, e.g., working with a fraction of pack-
ets in the analysis. Additionally, this comparison between
analysis and simulations of the adversarial scenarios serves
to some degree as a validation of our simulation model.

Figure 3 shows the comparison of analytical vs. simula-
tive results for the queue size evolution over time for the
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that networks with small initial sets may remain sta-
ble although the injection rate exceeds the theoretic
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different adversarial scenarios under study. While for all
scenarios analysis and simulations stay fairly close, it is not
always a perfect fit. This demonstrates that, while qualita-
tively instability always occurs, the convenient relaxations
can have an effect on quantitative characteristics. Interest-
ingly this differs for the different adversarial scenarios: BB
is a perfect fit, for the A+ graph minor analysis overesti-
mates, and for Diaz analysis underestimates the adversarial
effect. It also provides evidence that these relaxations have
to be done with some care as they are not easy to control in
terms of providing upper or lower bounds always.

Note that in Figures 3 and 7 the x-axis is labeled phases,
because analytical methods yield estimates for the results at
the end of a phase, but Figures 5 and 6 show time steps to
give a more realistic temporal point of view.

4.2 Interplay of Initial Sets and Injection Rate
Next, we investigate the effect of initial set sizes and injec-

tion rates as well as their interaction. Especially, the effect
of initial set sizes and its interplay with injection rates has
rarely been addressed in AQT literature, presumably be-
cause it is difficult to do analytically. Here, we restrict the
study to the A+ graph minor scenario for brevity.

In Figure 4, we can observe the effect on the maximum ob-
servable delay (over a finite time horizon of 10000 time steps)
for different initial set sizes as the injection rates grow. Note
that in the simulations we can now easily use the delay in a
metric such as seconds as a measure of interest, something
that would not be simple, using analysis. Interestingly, we
can observe that for a very low initial set size of 2 no signif-
icant delay can be observed. It appears that the adversarial
effect simply does not show up even under high injection
rates close to 1. This changes for an initial set size of 5 but
requires high injection rates. For initial set sizes of 20 and
50, delay becomes excessive already at lower injection rates,
clearly showing the interaction of these two parameters.
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Figure 5: Effect of randomized channel delay on ad-
versarial effect: mean queue length at the end of a
phase with 30 repetitions. The queue lengths grow
steadily over time4for a deterministic system and
small variation of channel delay, e.g., 5% deviation
of a time step. For a highly variable channel delay,
the adversarial effect disappears.

4.3 Channel (Re-)Randomization
It is considered a virtue of AQT to not rely on stochastic

assumptions to assess network stability. On the other hand,
it is clear that for the adversarial effects to appear, the de-
terministic synchronization of events plays a role. In this
subsection, we use the flexibility of our simulation model
to investigate how crucial the role of synchronization is in
adversarial scenarios. We (re-)randomize the channel delay
to some degree, which is also a reality check for AQT as
perfect synchronization is typically unrealistic. Specifically,
we consider a channel whose traversal time is modeled as a
normally distributed random variable with mean one time
step and a standard deviation of a certain percentage of the
unit delay. Both implementations of randomized channels
have been used to derive the results. We find the results
very similar, and report only those obtained from the sec-
ond implementation (Section 3.4). Note that a standard
deviation of 0% denotes the original deterministic setting.
Because these experiments are not deterministic anymore,
30 repetitions of each experiments are performed.

Figure 5 shows the effect of randomized channel delays on
the evolution of the queue size over time for the different ad-
versarial scenarios. For a strongly randomized channel (30%
standard deviation), all scenarios become harmless and the
adversarial effect is not exhibited any more. For a moder-
ately randomized channel (5% standard deviation), adver-
sarial effects still show up for all three scenarios, more or less
in a quantitatively attenuated form. A more detailed view
of the queue size process over time for the deterministic and
strongly randomized channel for the A+ graph minor can be
found in Figure 6 and provides deeper insight into why the
adversarial effect disappears.

Thus, by using simulations, we are able to shed some light
on the issue of the robustness of adversarial effects against
desynchronization effects. Clearly, this is still a preliminary
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Figure 6: Detailed observations of the queue of the
link C–A in the A+ graph minor. We compare the
case of 30% delay deviation to zero variation. For
zero variation we observe symmetric behavior, e.g.,
for the shape of the burst pattern, or the time be-
tween two bursts. Irregular behavior occurs for 30%
deviation: the first two bursts are farther spread out
than the second to third, and the queue length over-
shoots occasionally. After time step 150 the next
burst has a much smaller size than previous bursts.

study of this important aspect, but serves as a further illus-
tration of the usefulness of AQT simulations.

4.4 Tightness of Analytical Bounds
Finally, we study the use of simulation to assess the tight-

ness of analytically derived bounds. This is very important
as in many recent adversarial scenarios the complexity of
the adversaries has grown to a level where analysis often re-
sorts to bounds instead of exact results. The first published
example for this is the adversary by Lotker et al. [18]. The
network topology consists of a variable number M of build-
ing blocks called gadgets. Each gadget has a length n and
consists of two node chains. Lemma 3.6 and Theorem 3.17
in [18] give lower bounds on how to choose these parameters.
In order to simulate as tight as possible, we choose minimal
values. For the results presented here, we have used an ini-
tial set of 2965 packets, n = 10, and M = 20 – a network
of about 400 nodes. From Lemma 3.15 in [18] we obtain an
analytical bound on the queue size after each (sub-)phase.
We compare this analytical bound against simulations of the
same scenario in Figure 7.

Clearly, the analytical lower bound, while correct, is very
conservative and may not even capture the right order of
growth. This is strong evidence that an accurate quanti-
tative assessment of network instability in more complex
adversarial scenarios may require simulations.

5. CONCLUSION
In this work, we introduce a novel OMNeT++ package

which allows to quantitatively assess adversarial instability
effects for a variety of adversaries and topologies. We vali-
date the usefulness of simulations in the adversarial queueing
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rameterized AQT scenario in [18] derive only a lower
bound on the queue length to prove instability. By
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more efficient than analytically anticipated. Already
after traversing 11 of 20 gadgets we observe a dif-
ference of factor two.

theory concept in several use cases and demonstrate its po-
tential to create a new perspective on adversarial queueing
scenarios. For example, an interaction between initial set
size and injection rate has not been demonstrated before, as
well as investigating the tightness of the bound in [18] shows
that quantitative results obtained from simulations can be
much more precise.

We are confident that bringing this theory closer to prac-
tice bears many more interesting insights and challenges.
Implementing a simulation framework is only a first enabling
step. Clearly, we are aware that the simulation framework
presented here still suffers from many simplifying assump-
tions about real networks. Nevertheless, we believe it to be
a valuable tool to study the important issue of (in)stability.
In particular, understanding the interaction of adversarial
effects with a layered architecture, e.g., congestion control,
is the ultimate goal towards assessing the realistic threat of
adversarial effects.
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