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Abstract Worst-case bounds on flow delays are essential for safety-
critical systems. Deterministic network calculus is a methodology to
compute such bounds. It is actively researched regarding its modeling
capabilities as well as analysis accuracy and performance. We provide a
contribution to the major part of the analysis: bounding the arrivals of
cross flows. In particular, it has been believed that an aggregate view on
cross flows outperforms deriving a bound for each cross flow individu-
ally. In contrast, we show that the so-called cross-flow segregation, can
outperform the aggregation approach under certain conditions. We give
a proof of concept, combine the alternative approaches into an analysis
computing best bounds, and evaluate accuracy improvements as well as
computational effort increases. To that end, we show that flows known
to suffer from overly pessimistic delay bounds can see this pessimism
reduced by double-digit percentages.

1 Introduction

In safety-critical, distributed systems that operate in public spaces, formal ver-
ification of performance guarantees is often a prerequisite for certification. For
example, bounding the end-to-end delay of data transmissions is an integral de-
mand of x-by-wire applications such as steer-by-wire or brake-by-wire. Thus,
even small gains in its accuracy can be of importance for the outcome of a
certification process. Deterministic Network Calculus (DNC) provides an ana-
lytical framework to compute worst-case delay bounds on data transmissions.
For instance, it has found application in the avionics industry to demonstrate
fulfillment of strict aircraft network requirements. To be precise, DNC’s (min,+)-
algebraic branch is often applied to analyze these avionics networks. A model
bounding supply and demand of the network’s forwarding resources is trans-
formed to a (min,+)-equation that bounds a specific flow’s end-to-end delay.

The step deriving an equation from the model has been steadily evolved in
order to improve the accuracy of the resulting delay bound. The first such im-
provement was to virtually separate the analyzed flow from all other flows in
the network and to establish the worst-case scenario exclusively for this flow
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of interest (foi). This principle, separation of the foi, was shown to result in
better bounds than the previous approach to anaylse the totality of the flows.
However, subsequent work shows that only the analyzed flow of interest can be
entirely removed while constructing a worst-case scenario. Efforts to implement
this principle for the remainder of the network analysis were shown to result in
an issue called segregation. In arbitrary multiplexing, i.e., no knowledge about
the multiplexing of flows is assumed, attempting to separate multiple flows can
result in situations where these simultaneously assume worst-case scenarios that
are mutually exclusive in the real system. While resulting bounds remain valid,
they are overly pessimistic. Therefore, the predominating objective of analyses
is to aggregate all flows except the flow of interest. The literature provides a
generic analysis procedure that maximizes aggregation and minimizes segrega-
tion when bounding the arrivals of the foi’s cross flows. This procedure, known
as Aggregate Arrival Bounding (AggrAB) [5], was extended by various analysis
enhancements that can further increase aggregation of flows and improve delay
bounds [6,1]. Based on the objective to maximize aggregation, an accurate and
fast analysis was eventually presented [2]. The delay bounds it derives are shown
to only deviate slightly from those bounds derived with the optimization branch
of DNC [9]. However, while the optimization becomes computationally infeasi-
ble , the algebraic analysis scales well with increasing network size. Its execution
time stays several orders of magnitude below the optimization’s one [2].

In this paper, we focus on further closing the gap between algebraic and
optimization-based DNC delay bounds. To be precise, we identify a peculiar
corner case that is defined by a very specific combination of flow entanglements,
resource demand, (left-over) resource supply and implemented DNC principle.
Against the trend to prevent segregation of flows by aggregating them as much
as possible, we prove that the reverse can actually result in better delay bounds.
The mutually exclusive worst-case assumptions of two flows add less pessimism
than the AggrAB does. We use this knowledge to contribute an arrival bound-
ing method that catches these corner cases. It is modeled after [8] but as it
relies solely on the PMOO principle, we call it SegrPMOO. Moreover, we com-
bine it with AggrAB’s latest evolutionary step, the Tandem Matching Analysis
(TMA) [2], to an exhaustive search for best arrival bounds, TMA+SegrPMOO.

We evaluate our contribution by extending the numerical results providing
insight on the gap between TMA and optimization. We show that the precondi-
tions for these corner cases can be fulfilled fairly often during a network analysis,
yet, in most cases it only helps to close the accuracy gap by less than 10%. A
noteworthy exception to this observation can be found when investigating out-
liers. E.g., in the TMA evaluation’s network of 20 devices, outliers are common
and we show that the largest gaps to optimization can be reduced by over 30%.

The remainder of the paper is structured as follows: Section 2 provides the
necessary background on DNC. In Section 3, we present the trend to improve
bounds by aggregating flows. To that end, we provide the DNC analysis prin-
ciples implemented in TMA. Based on these insights, Section 4 contributes and
proves the potential benefit of SegrPMOO. We extend the previously applied



cross-traffic arrival bounding with it and evaluate our contribution in Section 5.
We provide results on accuracy improvement as well as computational effort
increase. Section 6 concludes the paper.

2 Deterministic Network Calculus Background

DNC is based on a simple network model [12] consisting of functions from the
set

F0 :=
{
f : R→ R+

∞ | f (0) = 0, ∀s ≤ t : f (s) ≤ f (t)
}
,

R+
∞ := [0,+∞) ∪ {+∞} .

Cumulative data arrivals are upper bounded in interval time:

Definition 1. Given a flow producing data according to function A in the time
domain, a function α ∈ F0 is an arrival curve for the flow iff

∀t∀d 0 ≤ d ≤ t : A(t)−A (t− d) ≤ α(d).

I.e., arrival curves bound the maximum data arrivals of a flow during any
duration of length d. FTB ⊆ F0 is a commonly used set of curve shapes to bound
flow arrivals. It bounds flows shaped to comply with token bucket regulation:

FTB := {γr,b | γr,b (0) = 0, γr,b(d) = b+ r · d ∀d > 0} .

A server’s forwarding of arriving data is lower bounded in interval time:

Definition 2. If the service provided by a server S for a given input function
A results in an output function A′, then S offers a service curve β ∈ F0 iff

∀t : A′(t) ≥ inf
0≤d≤t

{A (t− d) + β(d)} .

A common set of curves FRL ⊆ F0 bounds service with a rate and a latency:

FRL := {βR,T | βR,T (d) = max {0, R · (d− T )}} .

A number of servers fulfill a stricter definition of service curves. They guar-
antee a higher output during periods of queued data, the so-called backlogged
periods of a server.

Definition 3. Let β ∈ F0. Server S offers a strict service curve β iff, during
any backlogged period of duration d, its output is at least equal to β(d).

Basic operations to manipulate curves while conserving the model’s deter-
ministic worst case were cast in a (min,+)-algebraic framework [15,11]:

Definition 4. The main (min,+)-algebraic DNC operations for f, g ∈ F0 are

aggregation: (f + g) (t) := f (t) + g (t) ,

convolution: (f ⊗ g) (t) := inf
0≤s≤t

{f (t− s) + g(s)} ,

deconvolution: (f � g) (t) := sup
u≥0
{f (t+ u)− g(u)} .



With these operations, we can bound performance characteristics of flows:

Theorem 1. Consider a server S offering a service curve β. Assume flow f
with arrival curve α crosses S. We obtain these two performance bounds for f :

Delay: ∀t ∈ R+ : D (t) ≤ inf {d ≥ 0 | (α� β) (−d) ≤ 0} ,

where it is assumed that the order of data in f is not altered.

Output: ∀d ∈ R+ : α′ (d) = (α� β) (d) ,

where α′ is an arrival curve for A′.

Theorem 2. Consider a single flow f crossing a tandem of servers S1, . . . , Sn

where each Si offers a service curve βSi
. The overall service curve for f is the

concatenation of servers, achieved by convolution

βS1
⊗ · · · ⊗ βSn

=
⊗n

i=1
βSi

.

Theorem 3. Consider a server S offering a strict service curve βS. Let S be
crossed by two flows f0 and f1 with arrival curves αf0 and αf1 , respectively. Then
f1’s worst-case residual resource share without knowledge about multiplexing (so-
called arbitrary multiplexing) at S, i.e., its left-over service curve at S, is

βl.o.f1
S = βS 	 αf0 ,

where (β 	 α) (d) := sup0≤u≤d {(β − α) (u)} denotes the non-decreasing upper
closure of (β − α) (d).

The above left-over service curve operation is applicable to single systems
only. Multiple DNC left-over service curve computations for tandems 〈S1, . . . , Sn〉
have been proposed in the literature. We include a common notation for these
in Table 1 and discuss them as required in the next section.

Lastly, note that the optimization analyses LP and ULP [9] do not derive
a left-over service curve. Instead, they each derive optimization formulations,
linear programs, whose result bounds the foi’s end-to-end delay.

3 Aggregation as the Objective of DNC Analyses

Basic DNC (min,+)-operations have been composed to analyses that achieve
varying degrees of accuracy as they implement different sets of principles. Yet,
not all principles can be fully attained at the same time. Some are even mutually
exclusive under current DNC analyses. The most impactful principles and thus
the best choice of analysis depends on the network scenario and the flow of
interest to be bounded. Moreover, algebraic DNC analysis is compositional. It
requires to combine tandem analyses to a network analysis. This paper focuses on
the search for the best composition. In this section, we give detailed background
on DNC weaknesses and previous attempts to mitigate or solve them by different
analysis principles.



Notation Definition
foi Flow of interest

{fn, ..., fm} Flow aggregate containing flows fn, ..., fm
〈Sx, . . . , Sy〉 Tandem of consecutive servers Sx to Sy

αf , α{fn,...,fm} Arrival curve (flow, aggregate)

αf
S , α

{fn,...,fm}
S Arrival bound at server S (flow, aggregate)

βS Service curve of server S
βl.o.f , βl.o.{fn,...,fm} Left-over service curve (flow, aggregate)
βl.o.f
S , βl.o.{fn,...,fm}

S Left-over service curve of server S

βl.o.f
〈Sx,...,Sy〉, β

l.o.{fn,...,fm}
〈Sx,...,Sy〉 Left-over service curve of tandem Sx to Sy

Table 1: Deterministic Network Calculus Notation.

3.1 DNC Analyses and Principles

The ultimate goal of a DNC analysis is to give an upper bound on the delay for
the foi. This flow is thus the starting point of an analysis, its path defines the
first tandem of servers whose left-over service curve has to be derived. This com-
putation requires bounds on data arrivals of interfering flows. Therefore, these
cross flows are backtracked, their respective left-over service curve is derived,
and the output from their path – another tandem of servers – is bounded. This
procedure repeats recursively in order to consider all flows that impact the foi
directly or indirectly [4]. Thus, a compositional network analysis is composed of
many tandem analyses, each computing a left-over service curve βl.o.

〈S1,...,Sn〉. To
allow for selecting the best analysis per tandem, we present common principles.

Aggregation of Flows (Agg) [12,13] Aggregation of flows crossing a server
(Definition 4) is the earliest principle of DNC. Total Flow Analysis (TFA), the
first DNC analysis, proposes to aggregate the totality of flows at each server.
This is generally beneficial for output bounding, yet, an aggregate’s delay bound
depends on the multiplexing discipline. In FIFO multiplexing, the horizontal
deviation between aggregate arrival curve and service curve gives a valid bound
(Theorem 1). For arbitrary multiplexing as considered in this paper, the inter-
section does. Separating the foi with a left-over service operation (Theorem 3)
allows for horizontal deviation and results in better delay bounds.

Pay Bursts Only Once (PBOO) [15] Computing the foi’s left-over service
curve enables a key principle of algebraic DNC analysis: convolving all left-over
service curves of servers crossed by the foi (Theorem 2). Then, the tandem
analysis does not compute the foi’s arrivals at every server, but its burst term
is only considered once and the principle is known as pay bursts only once.
Separation of the foi and convolution of left-over service curves are key to the



(a) Sample network.

(b) Aggregate cross-traffic arrival bounding.

(c) Segregated cross-flow arrival bounding.

Figure 1: Decomposition of a network (a) for cross-traffic arrival bounding:
(b) depicts the alternative to aggregate cross-flows [8] that restricts to PBOO,
(c) shows the segregation approach that can benefit from the PMOO principle.

Separate Flow Analysis (SFA). Thus, the SFA implements the PBOO principle.
Its delay bounds invariably outperform TFA delay bounds.

Pay Multiplexing Only Once (PMOO) [17] In case cross flows share mul-
tiple consecutive servers with the foi, their burst terms appear in each server’s
left-over computation. I.e., multiplexing with cross-traffic bursts is paid for mul-
tiple times and the principle to counteract this issue is known as pay multiplex-
ing only once. The eponymic analysis, PMOO Analysis (PMOOA), suggests to
reverse SFA’s order of operations. Servers are convolved before cross traffic is
subtracted. [17] provides a tandem left-over service curve computation achieving
PMOO. Note, that PMOO implies PBOO due to foi separation and convolution.

Order of Servers (Order) [16] (min,+)-convolution is a commutative op-
eration. Thus, the order of crossed servers is lost when applying it. This im-
pacts the PMOOA as the slowest server defines the tandem service. For that
reason, SFA’s per-hop cross-traffic considerations can arbitrarily outperform



PMOOA [16]. Therefore, in [16] the first optimization-based analysis (OBA)
is proposed that derives a tandem left-over service curve implementing PBOO,
PMOO and accounting for the order of servers.

Output Burstiness Cap (OBC) [6] While separation of flows is beneficial for
delay bounding, it was shown in [6] that the output bound computation suffers.
A subset of flows’ output burstiness after a server can supersede the maximum
amount of backlogged data by the totality of flows – a cap for a server’s output
burstiness that also holds for any subset of flows crossing the respective server.

Pay Segregation Only Once (PSOO) [7] Applying the left-over service
computation implicitly assumes higher priority for the subtracted flow. If, at a
single server, two flows applying the left-over thus assume incompatible priorities,
segregation is paid for more than once. Counteracting this issue results in better
performance bounds.

Flow Prolongation (FP) [1] A strategy to benefit from aggregation, similar to
OBC, is to prolong flows over servers they do not cross in reality. The analysis has
to work with increased load assumptions at these servers, however, if prolonged
flows then share a path with other flows, aggregation is possible and its benefits
can supersede the pessimism added to the model. FP was shown to be inherently
infeasible [1] and is thus not included as a viable principle in Table 2.

3.2 Compositional Approaches for Arrival Bounding

As stated above, DNC composes tandem left-over service computations to a
feed-forward network analysis. The literature proposes two alternatives. Both
start with the foi but differ beyond its path, in the so-called cross-traffic arrival
bounding. It analyzes the network between locations of interference with the foi
and sources of relevant cross flows. It is usually the largest part of the analysis,
as exemplified in Figure 1.

Segregated Arrival Bounding (SegrAB) [8] A straightforward extension
of the SFA was proposed for cross-traffic arrival bounding [8]. Each flow interfer-
ing with the foi is analyzed using SFA’s approach: compute per-server left-over
service curves from source to the server before meeting the foi, convolve these
service curves, compute an output bound. Then, all flows’ arrival bounds are
summed up. However, it was shown that, for α ∈ FTB and β ∈ FRL , the PSOO
violations explicitly enforced by this approach cannot be set off by the imple-
mented PBOO principle [5]. In Figure 1c, the PSOO violation takes place at S0.
Due to the SFA-based extension, only PBOO is implemented in the two left-over
service curves required to bound arrivals of cross flows, βl.o.xf1

〈S01,S0〉 and β
l.o.xf2
〈S02,S0〉.



Aggregate Arrival Bounding (AggrAB) [5] The approach immediately
resulting from the insights on segregated PBOO arrival bounding is to strongly
prefer aggregation. To maximize aggregation benefits, the length of tandems is
reduced such that all analyzed flows take the same path over it and can thus
be considered forming a single flow aggregate. Figure 1b depicts this approach:
Instead of a PSOO violation, a single left-over service curve for xf1 and xf2
suffices at S0. To achieve this, the flows’ arrivals to S0 need to be computed,
PBOO is enforced. In total, the arrival bounding will thus consist of three left-
over operations on shorter tandems instead of two on longer tandems.

3.3 Network Analyses

The above compositions of tandem analyses mostly take static, tandem-local in-
formation such as flow entanglement into account. In contrast, network analyses
take a more network-wide view and break with the strict composition rules of
SegrAB and AggrAB.

Tandem Matching Analysis (TMA) [2] We abbreviate the algebraic search
for best bounds presented in [2] as Tandem Matching Analysis (TMA). From a
conceptual point of view, it matches differently sized tandems onto the entire
feed-forward network to define an order of tandems to be analyzed. This is done
in an exhaustive fashion, yet, based on PBOO-applying segregation’s inferiority,
paths of flow aggregates are a restricting factor. Thus, AggrAB becomes one of
the alternatives TMA considers – in Figure 1, no (sub)tandem has length > 1
and thus TMA behaves exactly like AggrAB. TMA also leverages information
about the order of subtandems and employs the output burstiness cap. This
added flexibility in the tandem decomposition proved key for the most accu-
rate algebraically derived DNC delay bounds to date. TMA also mitigates the
combinatorial explosion of effort and shows good scaling of the analysis.

Linear Program / Unique Linear Program (LP / ULP) [9] Instead of
searching for the best combination of algebraic operations and analyses to ap-
ply, LP and ULP analysis directly search for the best delay bound. I.e., these
optimization-based analyses do not derive a left-over service curve (unlike OBA).
They convert the entire network into an optimization formulation, a (set of) lin-
ear program(s), that relates backlogged periods of servers. Yet, the ultimately
tight LP analysis suffers from unmitigated combinatorial explosion. In evalu-
ations, the proposed heuristic ULP has been shown to only contribute little
accuracy over TMA but at significantly longer analysis execution times [2].

4 Accuracy Improvements by SegrPMOO Cross-traffic
Arrival Bounding

We investigate the only not yet investigated principle in the TMA column in
Table 2. In Figure 1c, it enforces a segregation at S1 but it allows for the PMOO



Principle Tandem Analysis Network Analysis
TFA SFA PMOOA OBA TMA ULP LP

Agg 3 (3) (3) (3) (3) 3 3

PBOO 7 3 3 3 3 3 3

PMOO 7 7 3 3 (3) 3 3

Order 7 3 7 3 (3) 3 3

OBC 3 7 NA 3 NA
PSOO NA 71 NA (3) (3)[7] 3

SegrAB NA 7 NA
AggrAB NA 3 NA

good scaling 3 3 3 7 [14] 3 7 7

Table 2: Feature matrix of all current, mutually exclusive DNC analyses.
Principle implementation: 3 full, (3) partial/selective, 7 none, NAnot applicable.
1SFA requires arrival bounding for servers on the analyzed tandem.

principle for xf1 and xf2. In case these suffer from cross-traffic themselves, xf3
interfering with xf1 in our example, we can benefit from PMOO where aggregate
arrival bounding (Figure 1b) is only capable of implementing the PBOO princi-
ple. In this section, we show that the segregation/PMOO-tradeoff in SegrPMOO
can outperform the aggregation/PBOO-tradeoff provided by current AggrAB.

4.1 Introducing SegrPMOO

We call the SegrAB strategy that exclusively applies the PMOO analysis for
each left-over service curve derivation SegrPMOO. Next we give a proof that
SegrPMOO can indeed outperform AggrAB.

Proposition 1. Cross-flow segregation paired with a PMOO analysis is able to
obtain lower bounds on flow arrivals than its aggregating counterpart. That is,
none of these arrival bounding alternatives is a dominating approach.

Proof. The superiority of AggrAB employing PBOO over the segregated version
has been discussed in [5]. For the case that AggrAB implements either PBOO
or PMOO and SegrAB implements PMOO, we give an example where cross-
flow segregation yields a better result. Let us therefore consider the setting as in
Figure 1 with token-bucket arrivals (FTB) and rate-latency service (FRL). First,
we derive the arrival bound when aggregating cross flows:

α
Aggr{xf1,xf2}
S1

= α
{xf1,xf2}
S0

� βl.o.{xf1,xf2}
S0

=
((
αxf1 � βl.o.xf1

S01

)
+
(
αxf2 � βl.o.xf2

S02

))
�
(
βS0
	 αxxf1

S0

)
=
((
αxf1 �

(
βS01

	 αxf3
))

+
(
αxf2 � βS02

))
�
(
βS0
	
(
αxf3 � βl.o.xf3

S01

))



=
((
αxf1 �

(
βS01

	 αxf3
))

+
(
αxf2 � βS02

))
�
(
βS0
	
(
αxf3 � βS01

))
= (γr1,b1 � (βR01,T01

	 γr3,b3))
+ ((γr2,b2 � βR02,T02

)� (βR0,T0
	 (γr3,b3 � βR01,T01

))) .

We continue with

α
Aggr{xf1,xf2}
S1

=

((
γr1,b1 � βR01−r3,R01·T01+b3

R01−r3

)
+ γr2,b2+r2·T02

)
� (βR0,T0

	 γr3,b3+r3·T01
)

=

(
γ
r1,b1+r1·R01·T01+b3

R01−r3

+ γr2,b2+r2·T02

)
� β

R0−r3,R0·T0+b3+r3·T01
R0−r3

= γ
r1+r2,b1+b2+r1·R01·T01+b3

R01−r3
+r2·T02

� β
R0−r3,R0·T0+b3+r3·T01

R0−r3

= γ
r1+r2,b1+b2+r1·R01·T01+b3

R01−r3
+r2·T02

+ (r1 + r2) ·
R0 · T0 + b3 + r3 · T01

R0 − r3
.

At this point, please note that the PBOO property is preserved as b1 and
b2 occur only once. The PMOO property, on the other hand, does not hold
anymore, as b3 is included twice. The segregated version yields

α
Segr{xf1,xf2}
S1

= αxf1
S1

+ αxf2
S1

=
(
αxf1 � βl.o.xf1

〈S01,S0〉

)
+
(
αxf2 � βl.o.xf2

〈S02,S0〉

)
=

(
γr1,b1 � βRl.o.xf1

〈S01,S0〉
,T

l.o.xf1
〈S01,S0〉

)
+

(
γr2,b2 � βRl.o.xf2

〈S02,S0〉
,T

l.o.xf2
〈S02,S0〉

)
= γ

r1,b1+r1·T
l.o.xf1
〈S01,S0〉

+ γ
r2,b2+r2·T

l.o.xf2
〈S02,S0〉

= γ
r1+r2,b1+b2+r1·T

l.o.xf1
〈S01,S0〉

+r2·T
l.o.xf2
〈S02,S0〉

.

Using

T l.o.xf1
〈S01,S0〉 = T01 + T0 +

b2 + b3 + r3 · T01 + (r2 + r3) · T0
(R01 − r3) ∧ (R0 − r2 − r3)

,

T l.o.xf2
〈S02,S0〉 = T02 + T0 +

b1 + b3 + (r1 + r3) · T0
R02 ∧ (R0 − r1 − r3)

computed with [17] gives us

α
Segr{xf1,xf2}
S1

= γ
r1+r2,b1+b2+r1·

(
T01+T0+

b2+b3+r3·T01+(r2+r3)·T0
(R01−r3)∧(R0−r2−r3)

)
+r2·

(
T02+T0+

b1+b3+(r1+r3)·T0
R02∧(R0−r1−r3)

)
= γr1+r2,b1+b2+r1·T01+r1·T0+r1· b2+b3+r3·T01+(r2+r3)·T0

(R01−r3)∧(R0−r2−r3)

+r2·T02+r2·T0+r2· b1+b3+(r1+r3)·T0
R02∧(R0−r1−r3)

where the PMOO principle is implemented per flow xf1 and xf2. Yet, over-
all, b3 appears twice. We bound all arrivals with equal token buckets and con-
tinue by comparing burst terms. As we are free to choose parameters, we set



T0 = T01 = T02 = b1 = b2 = 0 and the arrival rates to be homogeneous
(r1 = r2 = r3 =: r > 0). We further assume the burst term b3 to be >0. Assume
now that the claim does not hold true yielding for the burst term

b
Aggr{xf1,xf2}
S1

< b
Segr{xf1,xf2}
S1

(1)

⇔ r · b3
R01 − r

+ r · b3
R0 − r

+ r · b3
R0 − r

< r · b3
(R01 − r) ∧ (R0 − 2r)

+ r · b3
R02 ∧ (R0 − 2r)

⇔ 1

R01 − r
+

2

R0 − r
<

1

(R01 − r) ∧ (R0 − 2r)
+

1

R02 ∧ (R0 − 2r)
.

In order to contradict the claim and prove the proposition, it is sufficient to
give an example where Equation (1) cannot hold. For this, see Example 1 below.

Example 1. Choosing r = 1, R0 = 4, and R01 = R02 = 2 in Equation (1) results

in 5
3

�
< 3

2 .

5 Numerical Evaluation

Previous evaluations of the TMA [2] showed that its delay bounds are close to
those computed with the ULP optimization. Yet, there is still a gap that can be
significant for some outliers. In this section, we extend the previous evaluation
by SegrPMOO to check if it can mitigate the cause for this gap and the outliers;
either by being independently executed as a stand-alone arrival bounding or by
deeply integrating it into to the search executed by TMA.

Analyzed Networks [2] provides Internet-like topologies, generated according
to the general linear preference GLP model [10] (m0 = 20, m = 1, p = 0.4695,
βGLP = 0.6447). We extend the analysis of these homogeneous networks of sizes
20 and 40 devices (Table 3) with arrival curves set to γ5Mbps,5Mb ∈ FTB and
service curves set to β10Gbps,0 ∈ FRL.

Accuracy Metric We are interested in the gap that algebraic DNC analyses
have to close to achieve the ULP optimization’s accuracy. Our metric of choice
is therefore

Gap Closing [%] =
|DelayTMA −DelayNewAnalysis|
|DelayTMA −DelayULP|

. (2)

Execution Time Metric To allow for meaningful extension and comparison of
execution time measurements, computations were executed with the same tools
(DiscoDNC [3] v2.2.3 and IBM CPLEX version 12.6.2) on the same hardware
platform (2x Intel Xeon E5420 CPU, 12GB main memory) as in [2]. We measure
the time it takes to analyze all flows in a given network.



5.1 Accuracy

SegrPMOO Arrival Bounding vs. Optimization Analysis We first evalu-
ate SegrPMOO in isolation. That is, we analyze the foi with TMA and compute
the required cross-traffic arrival bounds with SegrPMOO only. This strategy de-
fines the first NewAnalysis in Equation (2). Table 3a provides the results for
networks of size 20 and 40 devices, translating to 152 and 472 flows to be an-
alyzed respectively. While the share of improved delay bounds in the smaller
network exceeds 50%, it already decreases to 10% in the larger network. Table 3
also gives the max and mean gap closing whereas Figure 2a shows the gap closing
distributions for the flows that showed improved delay bounds.

Combined AggrAB and SegrPMOO vs. Optimization Analysis Second,
we integrate SegrPMOO into AggrAB-based TMA arrival bounding. At every
recursion level of TMA, i.e., when flows split up, a new arrival bounding is started
(see Figure 1b, above server S0). Here, we additionally execute SegrPMOO. For
these SegrPMOO arrival boundings, the same holds vice versa. When they need
to recursively bound arrivals of cross traffic, bounds are additionally derived
with TMA. In both cases only the smaller of the derived bounds is considered.

Results are depicted in Table 3b: a rather steady share of all flows, 78.3%
(20 devices) and 72.5% (40 devices), respectively, sees improvements. I.e., in
these cases, applying at least one cross-flow segregation during the entire arrival
bounding process was beneficial over TMA only. Also, the shares are considerably
larger than with SegrPMOO only. This result reveals a rather large amount of
situations leading to segrPMOO superiority, although it depends on specific
flow entanglements and parameter combinations. Note, that the latter solely
occurs due to curve transformations as we evaluate homogeneous networks. The
improvements themselves, however, are in proximity of the SegrPMOO results
and considerably less pronounced in the larger network. The maximum reduction
of the gap to the ULP shrinks from 42.9% to 12% and the mean from 15.5% to
1.88%. Figure 2b shows the gap closing distribution. Compared to SegrPMOO,
mostly flows with small improvements are added. Yet, the 20 devices network
sees a noticeable growth of the flows having their gap closed by >40%.

Devices Servers Flows Gap Closing [%]
Total Improved Max Mean [improved]

(a) TMA foi Analysis, only SegrPMOO Arrival Bounding
20 38 152 88 42.36299 14.514300
40 118 472 39 10.03384 4.594554

(b) TMA foi Analysis, TMA+SegrPMOO Arrival Bounding
20 38 152 119 42.92102 15.50147
40 118 472 342 12.00559 1.877968

Table 3: Closing the gap between TMA and ULP.
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Figure 2: Closing the gap to ULP delay bounds.

Catching Outliers We also evaluated where TMA+SegrPMOO’s impact is
concentrated. Figure 3 depicts old and new deviation as well as gap closing for
the 10 outlier flows that previously suffered from the largest gap to ULP. 8 out
of 10 see their gap closed by more than 20% and the largest outlier even benefits
from an improvement narrowing its gap from 4.26% to 3.21%. Our results show
that the peculiar corner cases where segregation helps concentrate at the outliers.
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Figure 3: Gap closing with TMA+SegrPMOO for outliers, 20 devices network.
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Figure 4: Execution time comparison.

5.2 Computational Effort

The enhanced delay bound computation of TMA+SegrPMOO comes at the price
of additional computational cost, as more arrival bounds are computed at each
recursion level of the TMA analysis. We measured the execution time of each full
analysis, i.e., for all flows in each network. The results are shown in Figure 4,
ordered by the previously known TMA execution times. We observe that for
cases with a very fast TMA computation, the added SegrPMOO overhead is
negligible. In these cases, the recursion is not deep as little flows are involved
and paths of relevant cross flows are rather short. Yet, the ULP analysis does not
seem to be accelerated for these flows and their smaller optimization problem.

However, the amount of flows not requiring much arrival bounding is very
small. Thus, we observe a sharp increase of computation times for the majority
of flow analyses. TMA+SegrPMOO even takes considerably more time than the
ULP analysis. Analyzing the 20 and 40 devices network only seems manageable
due to their small sizes. In fact, we also observed that the 60 devices network
presented in [2] becomes infeasible to fully analyze in acceptable time. This
means design space exploration with TMA+SegrPMOO is out of scope although
this network only consists of 164 servers and 656 flows. Nonetheless, if only a
small number of flow delay bounds exceed their predefined deadlines, a selective,
additional analysis of these flows comes at an acceptable execution overhead.

A TMA+SegrPMOO Heuristic Last, let us remark the potential for a
heuristic that trades accuracy for faster computation. The later SegrPMOO is
applied in the recursive arrival bounding, the shorter the tandem it analyzes.
Thus, it becomes less likely that AggrAB enforces PBOO where the analysis
could benefit from PMOO. This is reflected in Table 3 where the improvement
from SegrPMOO to TMA+SegrPMOO seems small but might still be decisive.
We leave heuristics selectively removing SegrPMOO from TMA for future work.



6 Conclusion

In this paper, we demonstrate that cross-flow segregation combined with the
PMOO principle can outperform the predominating objective to aggregate flows.
We contribute an analysis that incorporates this SegrPMOO approach into the
existing TMA. Our numerical evaluations show that this new analysis outper-
forms others for the majority of analyzed flows. However, the improvement’s
amplitude can be small and comes at a considerably increased analysis cost. Our
new TMA+SegrPMOO is thus most suitable for small networks or a follow-up
analysis for selected flows, for instance to ensure strict certification requirements.
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