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ABSTRACT
The stochastic network calculus (SNC) holds promise as a versa-

tile and uniform framework to calculate probabilistic performance

bounds in networks of queues. A great challenge to accurate bounds

and efficient calculations are stochastic dependencies between flows

due to resource sharing inside the network. However, by carefully

utilizing the basic SNC concepts in the network analysis the neces-

sity of taking these dependencies into account can be minimized.

To that end, we unleash the power of the pay multiplexing only

once principle (PMOO, known from the deterministic network cal-

culus) in the SNC analysis. We choose an analytic combinatorics

presentation of the results in order to ease complex calculations.

In tree-reducible networks, a subclass of general feedforward net-

works, we obtain an effective analysis in terms of avoiding the need

to take internal flow dependencies into account. In a comprehensive

numerical evaluation, we demonstrate how this unleashed PMOO

analysis can reduce the known gap between simulations and SNC

calculations significantly, and how it favourably compares to state-

of-the art SNC calculations in terms of accuracy and computational

effort. Motivated by these promising results, we also consider gen-

eral feedforward networks, when some flow dependencies have to

be taken into account. To that end, the unleashed PMOO analysis

is extended to the partially dependent case and a case study of a

canonical topology, known as the diamond network, is provided,

again displaying favourable results over the state of the art.

CCS CONCEPTS
• Networks→ Network performance modeling.

KEYWORDS
stochastic network calculus; pay multiplexing only once

ACM Reference Format:
Anne Bouillard, Paul Nikolaus, and Jens Schmitt. 2022. Unleashing the

Power of Paying Multiplexing Only Once in Stochastic Network Calculus. In

Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS/PERFORMANCE ’22 Abstracts), June 6–10, 2022, Mumbai, India.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3489048.3530964

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMETRICS/PERFORMANCE ’22 Abstracts, June 6–10, 2022, Mumbai, India
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9141-2/22/06.

https://doi.org/10.1145/3489048.3530964

1 INTRODUCTION
Stochastic network calculus (SNC) is a mathematical framework

with the goal to control tail probabilities for the end-to-end (e2e)

delay, i.e., probabilities for rare events shall be bounded, e.g.,

P(e2e delay ≥ 10ms) ≤ 10
−6 . SNC originates in the deterministic

analysis by Rene Cruz [5] and was later transferred to a stochastic

setting, see [4] for a perspective.

Analysing more general networks of queues, in particular feed-

forward networks, usually requires the consideration of stochas-

tically dependent flows. Even if all external arrival and service

processes are independent, the sharing of resources by individual

flows at queues generally makes them stochastically dependent at

subsequent queues. How much this kind of dependencies has to

be taken into account is affected by the network analysis method

because different methods require different levels of knowledge

about the internal characterization of flows. Further on, we call

these dependencies method-pertinent. SNC analysis methods with

less method-pertinent dependencies are strongly favourable as they

are more accurate and more efficient. In fact, in [8], it has been ob-

served that the PMOO analysis known from deterministic network

calculus [1, 6, 9, 10] leads to less method-pertinent dependencies

compared to the state of the art and is thus also promising in an

SNC analysis. However, the application of PMOO in the SNC has,

so far, been limited to so-called nested interference structures – this

is very restrictive. The overall goal of our paper [2] is therefore to

unleash the power of the PMOO principle in the SNC framework

in order to not widen the known simulation-calculation gap [3]

further, especially in more complex and larger networks of queues.

2 MAIN RESULT
We present a PMOO-based SNC end-to-end analysis for a subclass

of feedforward networks, so-called tree-reducible networks; the

main result is given in Theorem 1 below. It achieves zero method-

pertinent stochastic dependencies when external arrivals and ser-

vice processes are independent. I.e., if all input flows are assumed to

be independent, we can derive bounds without resorting to Hölder’s

inequality. Also, Theorem 1 allows us to calculate the residual ser-

vice in one big step avoiding the sequencing penalty in previous

network analysis methods.

We introduce the necessary definition in order to present Theo-

rem 1. A bivariate (arrival) process 𝐴(𝑠, 𝑡) = ∑𝑡
𝑖=𝑠+1 𝑎𝑖 denotes the

amount of data of a flow traversing at some server between discrete

times 𝑠 and 𝑡, 0 ≤ 𝑠 ≤ 𝑡 . We define the departure process 𝐷 accord-

ingly. Let 𝑆 be a non-negative bivariate function. A server is called

a dynamic 𝑆-server if the relation between its arrival and departure

processes satisfies∀𝑡 ≥ 0,𝐷 (0, 𝑡) ≥ inf0≤𝑠≤𝑡 {𝐴(0, 𝑠) + 𝑆 (𝑠, 𝑡)} and
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Figure 1: Extended interleaved tandem.
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(a) Exponential distribution with 𝜆𝑖 = 2.0
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(b) Weibull distribution with 𝑘 = 2 and
𝜆𝑖 = 0.7
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(c) MMOO with 𝑝on,𝑖 = 0.5, 𝑝
off,𝑖 = 0.5, 𝑃𝑖 = 1.0

Figure 2: Delay bounds for the extended interleaved tandem with server rates 𝐶𝑖 = 2.0 for 𝑖 = 1, . . . , 12.

is called work-conserving if it offers at least service 𝑆 (𝑠, 𝑡) during
any backlogged period [𝑠, 𝑡].

For all flows 𝑓𝑖 , 𝑖 ∈ {1, . . . ,𝑚}, we denote its path by 𝜋𝑖 =

(𝜋𝑖 (1), . . . , 𝜋𝑖 (ℓ𝑖 )) , where ℓ𝑖 is the length of the path of flow 𝑓𝑖 .

Theorem 1. Assume a tree network with flows 𝑓1, . . . , 𝑓𝑚 and
work-conserving 𝑆-servers 𝑆1, . . . , 𝑆𝑛 . Assume a flow of interest 𝑓1
traversing the servers (𝜋1 (1), . . . , 𝜋1 (ℓ1) = 𝑛) . We denote by 𝑆 𝑗• the
successor of 𝑆 𝑗 (successors are unique for tree networks), with con-
vention 𝑛• = 𝑛 + 1, and denote the indices of the time variables ac-
cordingly. By abuse of notation, each server offers the service 𝑆 𝑗 (𝑠, 𝑡),
𝑗 ∈ {1, . . . , 𝑛} for 0 ≤ 𝑠 ≤ 𝑡 . Then flow 𝑓1 is at least offered a dynamic
𝑆e2e-server ∀0 ≤ 𝑡𝜋1 (1) ≤ 𝑡𝑛+1 with

𝑆e2e (𝑡𝜋1 (1) , 𝑡𝑛+1)=
 inf

∀ 𝑗, 𝑡 𝑗 ≤𝑡 𝑗•

𝑛∑︁
𝑗=1

𝑆 𝑗
(
𝑡 𝑗 , 𝑡 𝑗•

)
−
𝑚∑︁
𝑖=2

𝐴𝑖

(
𝑡𝜋𝑖 (1) , 𝑡𝜋𝑖 (ℓ𝑖 )•

)+.
Based on bounds for the moment-generating function of arrivals

and the Laplace transform of service processes, Theorem 1 is then

used to calculate bounds of the form P(𝑑 ≥ 𝑇 ) ≤ 𝜀 (𝑇 ) for a given
tree-reducible network. E.g. for a tandem with a frequently used

interference pattern as in Figure 1, we calculate a stochastic delay

bound 𝑇 such that 𝜀 (𝑇 ) ≤ 10
−6

and vary the tandem length. The

results are displayed in Figure 2. While the state-of-the-art bound

explodes in the number of servers (we have only included the results

from 3 to 5 servers), the new PMOO-technique (PMOO-AC) scales

significantly better.

3 FURTHER CONTRIBUTIONS
The following further contributions are elaborated in [2].

• We apply analytic combinatorics (AC) [7] to recover bounds

from state-of-the-art analysis methods in simple networks

and enable a generalization to more complex settings.

• We conduct an extensive numerical evaluation with respect

to the accuracy of the new bounds for several traffic classes

and different network topologies.

• We discuss first results to extend our new method from tree-

reducible to general feedforward networks, still striving for

the goal to minimize method-pertinent dependencies.
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