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ABSTRACT

Ensuring the aspired outcome quality of network-based ap-
plications has ever implied an appropriate prognosis of the
performance behavior the underlying communication struc-
tures will exhibit prior to potential optimization steps. How-
ever, the reliable forecast of correlative metrics is still a chal-
lenging task, especially in terms of wireless network systems
that reject centralized or manual administration. In the
context of our prospective self-management concept for au-
tonomous analysis and control of volatile performance char-
acteristics in Wireless Sensor Networks (WSNs), we relate
a common network property known as packet transfer de-
lay to various adjustable parameters peculiar to such radio
network technologies. Our hands-on experiments reveal the
reproducible influence of packet size, backoff period, and
number of active neighbor nodes on the medium access pro-
cedure and involved performance indicators. By means of a
closed formulation of permutable weighted drivers, we inves-
tigate the average-case predictability of inter-node end-to-
end delays for arbitrary configurations of given network pa-
rameters. We validate our prediction method against basic
multi-hop networking scenarios while verifying its practica-
bility on a typical resource-scarce WSN platform. Leverag-
ing measurement-driven inspection and conditional model-
ing of network attributes based on regression analysis, yield
field test results substantiate the high precision of our ap-
proach to the estimation of performance-related WSN prop-
erties as the basis for application-aware performance opti-
mization subject to projected complements.
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1. INTRODUCTION

New-age advances in the development of micro-electro-
mechanical systems and wireless communication technolo-
gies have facilitated inexpensive network-enabled sensor de-
vices featuring miniaturized shapes and energy-aware oper-
ation modes. Ever since, WSNs have evolved into a seminal
platform for tackling low-maintenance application domains
where efficient capturing, collection, and exchange of phys-
ical phenomena data plays a constitutive role, a.o., envi-
ronment monitoring, medical diagnostics and home automa-
tion [1]. However, future considerations of large-scale WSNs
envision administration-free deployments of even smaller,
poly-functional, and heterogeneous devices that leverage au-
tonomous interaction patterns while serving as ambient in-
formation sources for unattended actuation as the eventual
step towards pervasive intelligence. In this context, auto-
nomic computing and networking have witnessed great at-
tention from academia as well as the industry in regard to
the self-management of distributed network systems of ever-
growing size and complexity [2, 3]. The implicated need for
a self-governed handling of adjustable technical parameters
and implicitly controllable functional properties as encoun-
tered in actual network deployments necessitates the reliable
and precise estimation of performance metrics without hu-
man supervision. This constitutes a critical feature of appli-
ances in inaccessible and/or highly dynamic environments,
e.g., traffic control in over-crowded urban areas. Yet, it is
obviously challenging to bring these stringent requirements
in line with present-day equipment that essentially requires
manual intervention to fulfill any task at all due to lacking
automation mechanisms [4]. Moreover, even though existing
approaches are technically capable of determining such net-
work properties under certain assumptions, they mostly ab-
stract away from primal aspects that inherently have an es-
sential impact on temporal network performance dynamics.
Also, they often require auxiliary resources to be deployed
along with the actual components to cope with the implied
issues of increased complexity. Therefore, we strive for a self-
contained performance management concept based on nodal
abilities supporting collateral measurements and lightweight
prediction methods, the distributed coordination of which
noninvasively integrates into any performance-constrained
WSN application [5]. In this spirit, Section II introduces
the basics of our methodology followed by the analysis of
our evaluation approach to identify network attribute cor-
relations in Section III. Our initially proposed prediction
technique is discussed and its quality is validated in Section
IV before conclusions are given in Section V.



2. PERFORMANCE SELF-MANAGEMENT

The need for application-aware and efficient management
of available and controllable resources in question suggests to
introduce a comprehensive self-ability concept we recognize
as Intrinsic/Extrinsic Performance Self-Management
(I/EPSM). Whereas during a transitional period it is re-
quired to provide involved network entities with extrinsic
feedback and functional support, the ultimate fusion of in-
trinsically applied methods in a collaborative manner shall
render such networks operable on a fully autonomic ba-
sis. In this context, we identify a set of sub-routines to be
implemented on I/EPSM-enabled nodes such as measure-
ment, modeling, assessment, and adaptation. These tasks
are meant to iterate in a modular loop as defined in the
I/EPSM Task Cycle and embody two fundamental prin-
ciples that saturate two recurring phases as detailed below.

e Inspection Phase: Measurement of parameter values
and property-related statistics as indicated by applica-
tion requirements (Control Principle) and modeling, i.e.,
identification and instantiation of the best-fitting perfor-
mance model (Analysis Principle).

e Tuning Phase: Assessment of current performance
quality against application requirements (Analysis Prin-
ciple) and adaptation of parameter value constellations
to adhere to imposed network property demands at cor-
responding entities (Control Principle).

Based on resource availability and mode of operation, the
flexible task cycle procedure shall include time-based, event-
triggered, and entity-controlled execution which also depends
on the desired performance sustainment quality. Due to
the higher computational/communicative burden imposed
on nodes involved in task accomplishment, a selective load-
balancing mechanisms shall further be applied for energy
saving purposes. The choice of the model type and predic-
tion technique shall also be subject to setup conditions.

For the sake of referable terminology, we further distin-
guish two variable network metric types and the viewpoint
on them. Whereas network parameters include explicitly
or implicitly adjustable settings when acting as drivers for
network property control, network properties, denote at-
tributes merely obtainable by means of measurements and/or
computations based on statistical or analytical inference.
Centrical parameters refer to intra-node variables that
can be determined and tuned without any interaction with
other entities (e.g., power amplifier level, packet size) while
peripheral parameters encompass inter-node system vari-
ables usually accessible and modifiable only by collaboration
(e.g., number of active nodes in cluster, number of neighbor
connections). Correspondingly, centrical properties per-
tain to measurable or calculable attributes that relate to the
status of a single network node (e.g., medium access delay,
traffic arrival rate) in contrast to peripheral properties
which are concerned with attributes quantifying network-
wide conditions (e.g., end-to-end delay, network backlog).
In some cases, network parameters might also need to be
measured or deduced from captured phenomena (e.g., node
position, distance to neighbors). However, as long as they
remain uncontrollable, they are not considered drivers for
network properties but at most predictor variables for net-
work property determination based on a predefined abstract
intuition of real circumstances, generally referred to as per-
formance model. For more detailed explanations see [5].

3. SELF-MEASUREMENT EXPERIMENTS

As part of this work, we focus on a representative selection
of peripheral and centrical parameters to investigate their re-
lation to the End-to-End Delay (E2ED) as a fundamen-
tal and descriptive network property. As per convention, the
E2ED in packet-switched communication networks encom-
passes the duration between the start of the sending process
at the source node and the end of reception at the ultimate
destination node [6]. In between, several delay components
known as processing, queuing, transmission, and propaga-
tion delay can be identified dividing the E2ED into per-hop
time segments. Without loss of generality, we cumulatively
redefine that division into Packet Processing Delay (PPD),
Medium Access Delay (MAD), and Packet Transmission De-
lay (PTD) all of which summing up to the Packet Sending
Delay (PSD) for practical examination reasons. This allows
to consider the otherwise peripheral notion of E2ED also
from a centrical view of a single network entity.

General Node Configuration Experiment Run Configuration

Parameter Setting Parameter Setting
Bonin 10 (320 ps) Bp [1,20] by 1
PAL 31 (0 dBm) Pg [Byte] [20,120] by 5
Channel 26 (2.48 GHz) Ng {1,2,4,8}
ACKs 0 (disabled) Samples [packets] 1000
Duty Cycle 1 (always on) Event rate [1/s] 10

Figure 1: General and experimental configuration settings

Considering major network parameters common to wire-
less network technologies, we opt for the Number of Con-
tenders (N¢ ) as a peripheral and Packet Size (Ps) and
Backoff Period (Bp) as two centrical parameters consid-
ered the objects of investigation due to their anticipated in-
fluence on E2ED. In this regard, as part of the control princi-
ple in the I/EPSM inspection-phase, nodes participating in
network activity are supposed to capture parameter values
that are considered important regarding their impact on net-
work properties. To this end, self-measurable performance-
related data is of particular interest that can be obtained
during regular network operation, i.e., collected or derived
when sending, receiving or processing data in the context
of orderly application execution (e.g., medium access delay,
traffic input) without auxiliary network communication.

The WSN node platform used throughout the experiments
is the popular MICAz mote [7] running TinyOS 2.1.2. Net-
work nodes are randomly arranged in a star-shaped topology
with a radius of &~ 1m allowing for line-of-sight communi-
cation (see Fig. 1 (left) for further configuration settings).
One mote being attached to a gateway board is in charge
of test run coordination and relaying of experiment data.
All other motes are endued with experiment run-specific ex-
ecution settings and act as parts of a sample homogeneous
WSN providing the Linux-based evaluation back-end system
with feedback on gathered results. Throughout experimen-
tal runs, the selected network parameters are systematically
permuted over the specified value range (see Fig. 1 (right)).

Regarding all influencing factors separately, Fig. 2 in-
cludes a subset of all experiment results for representative
parameter constellations. Fig. 2 (a) reveals the developing
of mean delays against increasing Bp also in view of 4 con-



(c) Backoff Period Bp = 10

(a) Packet Size Ps = 20 Byte

X PSD, 2 C

& PSD.1C o PSD.1C

o
o

(b) Packet Size Ps = 70 Byte

ol ),
| pmepeD 20| |57 PID+PPD
-5 PD 10| | 8- pD
dard

; Standard Error G,
L for9s % CI,

v
vVvV
v

v v R

-

2w v

I B R S A R R RS R

BackofT Period [islot]

10011 12 13 14 15 16 17 18 19 20 20 25 30 35 40 45 50 55 Go 65 70 75 80 55 0 95 100105 110 115 120
BackofT Period [islot]

Packet Size [Byte]

Figure 2: Influence of backoff period, packet size, and number of contenders on packet transmission/processing/sending delay

tender configurations while Ps is minimized to 20 Byte. The
PSD increases gradually with all settings of Bp. Although
it also shows a virtual dependency on N¢, the confidence in-
tervals for 0.05 significance level overlap especially for higher
Bp values, signifying their statistical indistinguishability.
This is due to the increasing standard deviation of the sam-
ples lying between 776 us and 5729 us for no neighbors and
between 1324 us and 6044 us for 7 neighbors, respectively,
as far as backoff periods between 1 and 20 slots are con-
cerned. This also emphasizes the high probabilistic impact,
albeit ascertainable as almost linear, of the Bp parameter on
overall delay. A more convincing statistical relevance of the
N¢ becomes evident not before the Ps is increased as exem-
plified for Pg = 70 Byte in Fig. 2 (b), where, additionally, a
slightly wider spreading of the confidence intervals and also
a definite elevation of the PSD can be observed. The lat-
ter trend, which obviously suggest a sensitivity of the PSD
to the packet length, is captured in Fig. 2 (¢). In terms of
the default Bp setting of 10 slots and incrementation of the
Ps by 5 Byte over the available range of values, the aver-
age PSD increases apparently in a linear manner. Again, a
severe statistical relevance of the number of contenders for
the mean PSD, at least for the first two proximate instances
of the traversed value range, cannot be assumed before a
packet size of 50 Byte is reached. Throughout all experi-
mental runs, we observe the devolution of the PPD as well.
It turns out that the PPD is exclusively dependent on Ps
as expected. However, in order to shed light on its por-
tion of the overall time readings in isolation, we conducted
disjoint measurement runs freezing the random number to
r = 100 for Bp = 10 within the backoff process, i.e., ob-
serving a constant MAD of 3520 us for an initial backoff
value of z = 31 as applied on first transmission attempt in
case of only one sender. In this way, we numerically divided
the PSD into its individual components, i.e., PPD, MAD,
PTD, the relationship of which becomes evident in Fig. 2 (a)-
(c). Whereas the PTD can be assumed to be consistently
dependent on the transceiver transmission speed, the mea-
surements of the PPD yield a median standard deviation of
about 11 ps proving its constancy in view of any parameter
constellation. In summary, we can act on the assumption of
a linearly proportional interconnection between Ps and not
only the PTD but also the PPD. More details on the mea-
surement campaigns including methodology, data analysis
and further experiment results, e.g., parameter influence on
the packet loss rate can be found in [5].

4. PREDICTING NETWORK PROPERTIES

For the purpose of network property estimation, determin-
ing an appropriate performance model based on a lightweight
technique in addition to its concrete instantiation with avail-
able measurement results constitutes the key enabling pro-
cedure as per analysis principle of the I/EPSM inspection-
phase. In view of our experiment results, (multiple) linear
regression qualifies as most suitable for finding the model
instance of choice that relates PSD, considered as predicted
response ypsp, to the nonstochastic network parameters x
from set ® = {Bp, Pg, Nc}, that act as predicting explana-
tory variables according to Eq.(1) with m € {1,2,3}.

Ypsp =T0 + <an’> +e,x, €PN U {zr-1} (1)

i=1 k=1

where xg = &, r; are regression coefficients, and e denotes
the residual error term. To identify the best fitting model
variant ¥; for any parameter constellation, we include all
previously measured value observations. First, we derive a
simple linear model to relate PSD to any individual param-
eter from ® and subsequently consider it in view of all pa-
rameter combinations by virtue of a multiple linear model
each. In order to find the mean predicted response with
as little variability as possible, we apply the least-squares
criterion procedure minimizing the sum of squared errors
in view of the observed mean response for all observations.
Expectedly, every network parameter shows a distinct influ-
ence on the PSD to a certain extent as can be told by the
coefficient of determination Q [8]. Model variant W, based
on just Bp appears to have highest single explanatory rate
of about 62.53 % on PSD in contrast to N¢ that seems to
play a minuscule role with only 9 % followed by Ps with
26.03 %. However, the permuted combination of all three
parameters turns out to increase () in a cumulative manner
so that U4 with PSD ~ Bp + Pg exhibits 88.56 % whereas
WUy with PSD ~ Bp + N¢ relies on an explanatory value
of 71.53 %. Accordingly, ¥; is assumed to most precisely
explain the PSD on the average by 97.56 %, i.e., it can pre-
dict its mean value more reliably than all the other models
do. For model testing purposes, we examine the confidence
intervals (Cls) for the regression coefficients of each model
to reveal the statistical significance of the regression with re-
spect to the response variation. Since all corresponding Cls
are non-zero for even a 0.05 significance level in terms of any
single predictor variable tested against PSD as in isolation so
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Figure 3: Comparison of model prediction quality for E2ED in
multi-hop scenarios for Bp = 10, Pg = 70 Byte, and No =1

30

204 =

15

104
I T
2 4

6
Number of Hops [¢]

in combination, they are considered statistically significant.
Also, all parameter combinations pass the zero correlation
test excluding multicollinearity effects of the predictor vari-
ables that might otherwise reduce the statistical accuracy
of the applied regression method. At last, a clear additive
parameter cohesion throughout all model alternatives is ev-
ident indicating their pertinence for PSD prediction.

In terms of verifying the viability of the analysis principle
in the I/EPSM inspection phase, all mentioned procedures
are implemented on MICAz motes. Results confirm that
existing resource limitations do not hamper the precision of
the proposed modeling and prediction technique. A mov-
ing average function implemented to consider only the last
captured value into a continuously updated mean PSD for
all setting constellations from @, allowed for storing just a
subset of values of (||®|| + 2) -4 Byte for each compound ob-
servation with ps precision so as to conduct the sequence of
calculations needed for regression model instantiation [8].

For validation purposes, we investigate hop-variant net-
work topologies of tandem-like shape while measuring E2ED
between the source and destination node for default param-
eter settings as per Fig. 3. Along with estimating PSD by
statistically most accurate model instances selected based
on €, our actual models are enhanced (¥;g) by including
PPD, which is assumed to additionally incur at every re-
ceiving node r, and by postulating an additive coherence
between the E2ED and the number of hops h according to

1
Ypsp,p = h - (yPSD + §PPD,«) (2)

Indeed, yield results show an almost perfect forecast of the
E2ED for up to 10 hops using enhanced model VY7 as in-
dicated by overlapping CIs for 95 % confidence level. Other
model candidates, in turn, seem to mismatch the E2ED to
a large extent. Interestingly, the prediction based on Vg
is equal to that based on W4pg, albeit, with a lower cer-
tainty, even though Pg is unconsidered in ¥1g and Qy, <
Qu,. Nevertheless, a general trend towards overestimation
of the E2ED by any model can be observed that seems to
sums up with the increase in number of hops. As further
node-local measurements reveal, the cause lies in the fact
that PPD during the sending process differs from PPD dur-
ing reception by about the half. These observations point
out the need for diversity in consulting statistical measures
when comparing prediction quality as well as completeness
when collecting or concluding details about the constituent
and ambient parts of network entities when adhering to the

I/EPSM control principle. Summing up, we verified the
investigated modeling technique to be what a WSN node
is able to apply for meaningful performance model deriva-
tion in virtue of its given capabilities. This is in line with
our original aim to keep complexity as rational as possible
rendering the methodology what is considered lightweight
and eligible for I/EPSM. For more details on the proposed
methodology, results and implementation see [5].

5. CONCLUSION AND FUTURE WORK

This work introduced the basics of a measurement-driven
approach to self-management of network attributes based
on regression analysis for performance property value predic-
tion. In this context, we studied the influence of selected net-
work parameters on a fundamental network property. The
results of node-local measurements confirmed their linear re-
lationships under isolated conditions. We derived several re-
gression models based on empirical data enabling property
forecast for arbitrary parametrical settings beside reliable
model validation even on resource-scarce WSN nodes. The
practical verification of yield speculations on performance
behavior in basic multi-hop networks revealed the high pre-
cision of an augmented performance model in view of end-to-
end delay prediction. After all, we have demonstrated viable
methods for the aspired measurement and modeling tasks
based on principles as part of our comprehensive I/EPSM
approach that strives for lightweight procedures with as little
demands on available resources as possible by using network
inherent information drawn from regular network node op-
eration and communication behavior. In future works, we
intend to explore further WSN peculiarities as influence fac-
tors, test the quality of more sophisticated prediction and
validation methods for other network properties and include
simulations to cover more involved topologies and parameter
interactions in larger-scale networking scenarios.
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