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Abstract. Feedback is omnipresent in communication networks. One promi-
nent example is window �ow control (WFC) as, e.g., found in many transport
protocols, for instance TCP. In deterministic network calculus elegant closed-
form solutions have been derived to provide performance bounds for WFC
systems. However, a treatment of WFC in stochastic network calculus (SNC)
has so far been elusive. In this work, we present the �rst WFC analysis in SNC
for subadditive and general service in the feedback loop. The subadditive case
turns out as an application of existing results, switching to continuous time
requires more e�ort. We further discuss how the condition of subadditivity
is preserved under concatenation of servers and demultiplexing of �ows. The
key idea for the general case is to keep track of how much the service deviates
from being subadditive. Both methods are illustrated in numerical examples
and their properties are discussed.



CHAPTER 1

Introduction

Stochastic Network Calculus (SNC) has matured in recent years to provide an
alternative method for performance analysis of stochastic queueing systems (see e.g.
[14, 12, 8]). Many results from the deterministic network calculus (DNC) have been
transferred into the stochastic domain, some have been rather immediate some have
required considerable e�ort (e.g., deriving the end-to-end service [6]). One major
remaining open issue is the stochastic analysis of feedback-based systems, such as
Window Flow Controlled (WFC) transport protocols, e.g. TCP. While there are
very elegant solutions for WFC in the deterministic setting [1, 4, 15]}, WFC in
SNC has been identi�ed for some time already as a very challenging open research
question [14, 11, 12, 7]. Moreover, being able to analyse WFC systems in SNC
would be very relevant to open up new application areas for SNC such as modelling
smart grid systems [13], for instance.

In this work, we present an approach to analyse WFC in SNC in two ways.
The �rst works under a subadditivity assumption for the involved service processes,
while the second works without such an assumption.

First we tackle the WFC in SNC by restricting to a subadditive service provided
by the network which is to be �ow controlled. This restriction is motivated by the
crucial role the so-called subadditive closure plays in the WFC analysis. Assuming
the network service to be subadditive eases the computation of the subadditive
closure tremendously. While the subadditivity assumption is clearly restrictive, we
argue it is a reasonable �rst step and, as we discuss in Section 5.3, it can be met
in a relevant class of applications.

Under the subadditive service assumption, we analyse WFC in SNC for both,
discrete and continuous time models. While in discrete time the analysis runs
smoothly and, in fact, requires mainly an application of existing results, the con-
tinuous time model takes more e�ort and care, mainly due to subtleties introduced
by instantaneous bursts from cross-tra�c arrivals. Nevertheless, we present closed-
form solutions in both cases for WFC within the so-called MGF calculus [5, 10], a
sub-branch of the SNC.

The key idea for the general case is to stochastically control how far the service
deviates from being subadditive and cast this into the setting of MGF-calculus, as
further contribution to the violation probabilities of the performance bounds. We
demonstrate the method by providing some numerical results in case of a server in
the feedback loop that is not subadditive.
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CHAPTER 2

Notations and Basic Results

We give here the needed notations and basic results of network calculus; for
further details see [5, 3]. We start by de�ning �ows which enter and depart service
elements.

Definition 1. We denote a �ow by its cumulatives A, i.e., A(t) counts data
arrivals in the interval [0, t]. The bivariate extension of A is de�ned by A(s, t) :=
A(t)−A(s). In case of discrete time we also consider the increments a(t) = A(t)−
A(t − 1). In case of continuous time we assume A to be cadlag (right continuous,
left limits).

We introduce two service descriptions here, one for the univariate calculus
(usually used in DNC and the tail-bound-branch of SNC) and the bivariate calculus
(used in the MGF-branch of SNC):

Definition 2. We say a service element o�ers a service curve U , if for any
input-output pair A, B and time t

B(t) ≥ A⊗ U(t) := min
0≤s≤t

{A(s) + U(t− s)}

(in continuous time the min is to be replaced by inf).
Let U be a bivariate function with U(s, t) ≤ U(s, t′) for all t ≤ t′ and time

be discrete. A service element is a dynamic U -server, if for any input-output pair
A, B and time t:

B(t) ≥ A⊗ U(0, t) := min
0≤s≤t

{A(0, s) + U(s, t)}.

The operator ⊗ is called min-plus convolution. Note that the bivariate U is in
general not a �ow, i.e., there may exist r, s, t with U(s, t) 6= U(s, r) + U(r, t).

The following two results enable the analysis of feedforward networks (under
arbitrary multiplexing).

Theorem 3. Consider two service elements, such that the output of the �rst
service element is the input to the second. If both service elements have a service
curve Ui (are dynamic Ui-server, i = 1, 2), the system o�ers a service curve U1⊗U2

(is a dynamic (U1 ⊗ U2)-server).

Theorem 4. Consider a service element serving two �ows A1, A2. If the
server o�ers a service curve Uo and the �ow A1 is bounded by A1(s, t) ≤ α(t− s),
then the system o�ers a service curve U(t) = Uo(t)− α(t) to �ow A2.

For discrete time, if the element is a dynamic Uo-server, the system acts as a
dynamic U -server with U(s, t) = Uo(s, t)−A1(s, t) for �ow A2.

The third network-operation we present here is central to this work. It de-
scribes, how a feedback system as presented in Figure 2.0.1 is handled. In this
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Figure 2.0.1. A window �ow controller: the input A is throt-
tled at the ∧-element. The departures of the system are C and
the feedback-loop consists of the dynamic U -server, an unspeci-
�ed service element and a window-element. The ∗ is a placeholder
for zero, one, or several elements, like delay-elements, scalers or
dynamic servers.

feedback system, the original input A is fed to a throttle-element �rst, which gov-
erns, how much data is admitted to the system (the feedback-loop). This is realized
by taking the minimum of the input A and the output of the service element at
any time, such that:

B(t) = A(t) ∧D(t).

Such systems are studied for example in [1]. We formulate from there the following
theorem:

Theorem 5. Let time be discrete. Assume the whole feed-back-loop in Figure
2.0.1 is described by a service curve Ufb (is a dynamic Ufb-server). The throttle
element ∧ has a service curve U∧ (is a dynamic U∧-server), with:

U∧(t) =

∞∧
k=0

U
(k)
fb (t)

(
U∧(s, t) =

∞∧
k=0

U
(k)
fb (s, t)

)
.

Here, the notation U
(k)
fb stands for the k-fold self-convolution of Ufb. Further,

for any U we de�ne U (0) to be the neutral element of the convolution: U (0)(t) =
1(t) = ∞ for all t > 0 and 1(0) = 0 (for the bivariate case we have 1(s, t) = ∞
for all s < t and 1(t, t) = 0 for all t, respectively). The expression

∧∞
k=0 U

(k) =: U
is known as the subadditive closure of service U . Subadditivity in the context of
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univariate and bivariate functions means for all times r, s, t:

U(t) ≤ U(s) + U(t− s)
U(s, t) ≤ U(s, r) + U(r, t)

As the name suggests the subadditive closure of a service description is subadditive.
Further, for any subadditive U we have

∧∞
k=0 U

(k) = 1 ∧ U .
To complete the analysis of the feedback system in Figure 2.0.1 we combine

Theorem 5 and Theorem 3 for a service description of the whole system:

Usys = U∧ ⊗ U.
This service description can then be used to derive probabilistic performance

bounds, e.g., on end-to-end-delay, as detailed below.
In network calculus, one assumes systems to be empty at time zero, i.e., A(0) =

0. To avoid trivial cases in the feedback system one needs a window element in the
feedback-loop. It serves two purposes: First it kickstarts our system by initially
admitting a certain amount of data to U , and, second, it will control how much data
is inside the feedback-loop, thus guaranteeing a maximal backlog on any element
inside of it. We de�ne such a window element by:

Definition 6. A window element is described by a cadlag function from Σ :
R+

0 → R+
0 (or in discrete time just by a sequence Σ : N0 → R+

0 ), such that for any
input-�ow A it produces an output B by:

B(t) = A(t) + Σ(t)

Σ(s, t) ≥ −A(s, t) ∀ s ≤ t.(2.0.1)

We further de�ne the bivariates Σ(s, t) as for �ows.

The constraint (2.0.1) enforces that the output B(s, t) of a window element
cannot be negative.

Using the above calculus one can derive probabilistic performance bounds. For
this we de�ne two performance measures:

Definition 7. The backlog q of the system at time t is de�ned by

q(t) := A(t)−B(t).

The virtual delay d at time t is de�ned by

d(t) := inf{T : A(t) ≤ B(t+ T )}.

To achieve actual bounds on q and d we need to add a probabilistic component.
There are di�erent methods [12] to describe the stochastic nature of �ows and
service descriptions, one of them is [5, 10]:

Theorem 8. Let time be discrete and A and the service process U be stochas-
tically independent. Let θ > 0 and:

E(eθA(s,t)) ≤ eθρA(θ)(t−s)+θσA(θ)(2.0.2)

E(e−θU(s,t)) ≤ eθρU (θ)(t−s)+θσU (θ)(2.0.3)

for all s ≤ t and ρA(θ) + ρU (θ) := ρ(θ) < 0 . Then:

P(q(t) > x) ≤ eθ(σA(θ)+σU (θ)−x)(1− eθρ(θ))−1 ∀ t ≥ 0,

P(d(t) > T ) ≤ eθ(σA(θ)+σU (θ)+ρU (θ)T )(1− eθρ(θ))−1 ∀ t ≥ 0
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The condition ρ(θ) < 0 is a stability condition for the system. There are
versions of the above theorem for continuous time, as well as for the case in which
A and U are not stochastically independent [2]. The above bounds use Moment-
Generating Functions (MGFs) to describe the behaviour of A and U , which is why
we just call it MGF-calculus for short.

We point out here that none of the state-of-the-art methods is able to describe
the service process resulting from a feedback-system (Theorem 5). Thus, the solu-
tion of WFC systems eluded stochastic network calculus, so far.



CHAPTER 3

Problem Exposition

Subadditivity plays an important role when analysing WFC systems, as the
throttle's service is just the subadditive closure of the elements inside the feedback
loop. Hence, feedback-loops containing subadditive elements are much easier to
analyse. We present this situation now in detail.

We look at a feedback loop which contains a subadditive service element U
(lying on the path from the sender to the receiver) and a window-element (lying
on the return path). Such a system can be easily analysed, by applying the most
general result concerning WFC systems as found in the textbook of Chang [5]. To
that end, denote the space of bivariate functions which are monotonically increasing
in their second variable as F̃ . We see immediately that all �ows and all dynamic-
server descriptions lie in F̃ , as they ful�ll F (s, t) ≤ F (s, t′) for all t ≤ t′.

Definition 9. An operator π : F̃ → F̃ is calledσ-additive if:

π

( ∞∧
n=1

Fn

)
=

∞∧
n=1

π(Fn),(3.0.4)

where Fn is any sequence in F̃ and the in�ma are understood pointwisely.

One can easily verify that the space of σ-additive operators is closed under
taking countable minima and compositions. Further they distribute over countable
minima: ( ∞∧

n=1

πn

)
◦ π =

∞∧
n=1

(πn ◦ π), π ◦

( ∞∧
n=1

πn

)
=

∞∧
n=1

(π ◦ πn)

An example of a σ-additive operator is the convolution with some bivariate
U ∈ F̃ , de�ned by πU (A) := A ⊗ U . Other examples needed for our speci�c
feedback system are

πẽ(A) := A

π+w(A) :=

{
A(s, t) if s 6= 0

A(0, t) + w if s = 0

where w ∈ R. The above operators represent the identity operator and a window-
element, respectively; their σ-additivity as well as the following properties are easy
to verify:

• π+w commutes with πU , i.e. πU ◦ π+w = π+w ◦ πU .
• π2

+w = π+2w, and U is subadditive i� πU is idempotent, i.e. π2
U = πU .

The whole feedback loop can be expressed by successively applying σ-additive op-
erators and it is a σ-additive operator itself:

πfb := π+w ◦ πU ,

8
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i.e. D = πfb(B). The relations between the �ows in Figure 2.0.1 are hence given
by:

(3.0.5) B = A ∧ πfb(B).

Lemma 5.7.2. in [5] can be applied resulting in B ≥ π?(A) for any B ful�lling
B ≥ A ∧ πfb(B), where π? = πẽ ∧

∧∞
n=1 π

n is the closure of π.
We show now that π? is tractable when considering a subadditive U together

with a window-element.

Example 10. Applying the above properties to πfb, we observe that

πnfb ≥ π+nw ◦ πU .

And for the closure of πfb

π?fb ≥ πẽ ∧
∞∧
n=1

π+nw ◦ πU = πẽ ∧ πU .

Applying the result of Chang we have for the departures C of the feedback system:

C(t) ≥ πU (B)(0, t) ≥ πU ◦ π?fb(A)(0, t)

=

∞∧
n=0

πU ◦ πnfb(A)(0, t)

≥
∞∧
n=0

π+nw ◦ πU (A)(0, t) = πU (A)(0, t)

We use the distributivity of σ-additive operators in the second line. We see that
the whole system behaves, just like the unthrottled one. With given MGF-bounds
on A and U we can use this bound on C to produce stochastic performance bounds,
as in Theorem 8.

The above example makes the role of subadditivity clear: without U being sub-
additive, we would not have π2

U = πU and the description of π?fb would include πnU .
The repeated application of πU prevents deriving stochastic performance bounds
as above. Note further, that the window-element causes only minor di�culties, as
its operator commutes with πU .

The most important example for a non-subadditive U is a service, which re-
sulted by applying Theorem 3. How one can preserve subadditivity instead for a
concatenation of service elements is discussed in Section 5.3. However, preserving
subadditivity in that way comes with the cost of a decreased service.

We now leave the notations of σ-additive operators, and take a step back to
have a closer look at subadditivity in the most simple scenario.

There are some crucial di�erences for a feedback system, when switching from
univariate to bivariate descriptions. Most of them stem from the di�erent service
characterization. For this work, the most important di�erence is found in Theorem
4. Note that the leftover service descriptions di�er by using the function α:

U(t) = Uo(t)− α(t)(3.0.6)

U(s, t) = Uo(s, t)−A1(s, t).(3.0.7)
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Calculating the self-convolution of both service descriptions reveals the impor-
tance of that di�erence. If we assume for a while Uo to be subadditive, we obtain:

U ⊗ U(t) = inf
0≤s≤t

{Uo(s)− α(s) + Uo(t− s)− α(t− s)}

≥ Uo(t)− sup
0≤s≤t

{α(s) + α(t− s)}.

And, as the last supremum is in general larger than α(t), we cannot achieve sub-
additivity of U . Consequently, the subadditive closure U becomes non-trivial.

In contrast to that, (3.0.7) yields

U ⊗ U(s, t)

= inf
s≤r≤t

{Uo(r − s)−A1(s, r) + Uo(t− r)−A1(r, t)}

≥Uo(t− s)−A1(s, t) = U(s, t)(3.0.8)

and hence U is subadditive, resulting in U = 1 ∧ U . This gives us an important
case at hand which is simple to analyse. The condition of Uo being subadditive is
restrictive, though, and not always given. The most prominent example of a service
which is not subadditive is the result of applying Theorem 3. We explore the space
of subadditive service in Section 5.3 in detail.

As the subadditive closure of the feedback-loop appears in the solution of The-
orem 5, subadditivity of the service curve U and how much is �missing� to it are
crucial questions in WFC systems. Assume we can give the following bound, de-
scribing by what quantity a service curve U fails subadditivity:

(3.0.9) U(t)− U ⊗ U(t) ≤ b ∀ t ∈ R+
0 .

Or, written di�erently:

U (2)(t) ≥ U(t)− b ∀ t ∈ R+
0 .

If we consider some U and b to ful�ll Equation (3.0.9), we achieve for Σ ≥ b the
subadditivity of U + Σ = Ufb, since

(U + Σ)⊗ (U + Σ)(t) = U (2)(t) + 2Σ

≥ U(t)− b+ 2Σ

≥ U(t) + Σ = Ufb(t).

A subadditive Ufb, however means that1:

Usys(t) = Ufb ⊗ U(t) = (1 ∧ U + Σ)⊗ U(t) = U(t).

This e�ect, that a system with a large enough window can be analysed as
unthrottled, is well known and can for example be found in [1]. One can think of
the window-element to compensate for how the service deviates from subadditivity.
An approach following this idea is presented in Chapter 6.

1As they are σ-additive operators the convolution with a function is distributive over minima,
i.e.: (U1 ∧ U2)⊗ V = U1 ⊗ V ∧ U2 ⊗ V



CHAPTER 4

Bivariate Continuous Time Equations

Theorem 5 only applies for discrete time in the bivariate case. In continuous
time, however, literature provides no bivariate service description for the throttle.
Closing that gap proves to be a rather technical problem, including many continuity
arguments. For ease of notation, we leave the placeholder in Figure 2.0.1 empty,
throughout this chapter.

To deal with continuous time we need to consider left-limits of �ows:
For a �ow A we de�ne the left-limits A◦(t) := limr↗tA(r) and the bivariate

notation:

Ã(s, t) := A(t)− lim
r↗s

A(r).

While not being a �ow, we use the notation Σ̃ and Σ◦ for window elements corre-
spondingly.

Due to allowing instantaneous bursts in arrivalsA we need to rede�ne a dynamic
U -server.

Definition 11. In continuous time a dynamic U -server satis�es for any input-
output pair A and B:

B(t) ≥ A◦ ⊗ U(0, t) = inf
0≤s≤t

{A◦(s) + U(s, t)}.

Further we call a dynamic U -server proper, if there exists some Lipschitz-constant
rmax ∈ R+

0 , such that the output is Lipschitz-continuous, i.e. B(s, t) ≤ rmax(t− s)
for all s ≤ t.

The di�erence between De�nition 2 and the above is to replace A by its left-
limits. We now give some intuition for this: let time s be the beginning of a
backlogged period with A having a burst of size b, i.e., Ã(s, s) = b. Due to the right-
continuity of A we only have: B◦(s) = A◦(s) and B(s) < A(s). This circumstance
prevents us from formulating a relationship between B and A like B(t) = A(s) +
U(s, t), and hence achieving B(t) ≥ A⊗ U(0, t) is out of reach.

Fortunately, this slight di�erence in the service description extends naturally
to the usual results of network calculus. The next lemma illustrates the in�uence
of the modi�ed service description.

Lemma 12. Assume the situation as in Theorem 4, but for continuous time.
The system is a dynamic U -server for A2 with

U = Uo − Ã1.

Further, if Uo(·, ·) is proper, then U(·, ·) is also proper.

With the de�nitions of �ows and service elements in place we can revisit the
feedback system.

11
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For the departures B of the throttle and all s ≤ t we have:

B(s, t) = A(s, t) + q∧(s) ∧ C(s, t) + lim
r↗s

Σ(r)− qU (s) + Σ̃(s, t)

=A(t)−B(s) ∧ C(s, t) + Σ(t)− qU (s)

=A(t)−B(s) ∧ C(t)−B(s) + Σ(t),

with q∧(s), qU (s) denoting the backlog at the throttle and the dynamic U -server
at time s, respectively. The second line reads as follows: the newly admitted �ow
in the interval (s, t] is the minimum of two expressions: 1) the amount of data
arriving by A(s, t), plus the already accumulated data at the throttle at time s;
2) the amount of data being delivered C(s, t), plus the di�erence between allowed
data in the system and already queued data at U , plus any change in the window
Σ̃(s, t).

We use the service description of U to replace C(t) and get:

B(s, t) ≥ A(t)−B(s) ∧B◦ ⊗ U(0, t)−B(s) + Σ(t).

Adding B(s) gives for all t ≥ 0 :

(4.0.10) B(t) ≥ A(t) ∧B◦ ⊗ U(0, t) + Σ(t).

Now we ask which �ows B ful�ll (4.0.10). For this we need the window element to
be Lipschitz-continuous with Lipschitz-constant σ:

(4.0.11) Σ(s, t) ≤ σ(t− s) ∀ s ≤ t

Theorem 13. Let U be proper and non-negative, Σ ful�ll (4.0.11) and Σ(t) ≥
Σmin > 0 for all t ∈ R+

0 . Then for all arrivals A exists a unique B′, ful�lling
(4.0.10) with equality and if some B ful�lls (4.0.10), also B ≥ B′ holds. Further
B′ is pointwisely given by:

B′(t) = lim
i→∞

B(i)(t) ∀ t ≥ 0B(0)(t) = A(t)

B(i)(t) = A(t) ∧ (B(i−1))◦ ⊗ U(0, t) + Σ(t)

Proof. This proof is very similar to the one in [1]. However, there are a few
obstacles to circumvent, hence we give the complete proof again.

Denote by B the set of �ows satisfying (4.0.10). Since A ∈ B, we know B 6= ∅.
We can henceforth de�ne pointwisely:

B′(t) = inf
B∈B

B(t)

We claim thatB′ is a �ow and again ful�lls (4.0.10). We start with showingB′ is
a �ow, in expression it is non-decreasing and right-continuous. For the �rst let s < t
be arbitrary and let Bk ∈ B be a sequence of �ows such that limk→∞B(t) = B′(t),
then

B′(t)−B′(s) = lim
k→∞

Bk(t)−B′(s) ≥ lim
k→∞

Bk(t)− lim inf
k→∞

Bk(s) ≥ 0,

since all Bk are �ows and B′ is non-decreasing. Now let t0 > 0 be arbitrary. We
can �nd a B ∈ B with

B(t0)−B′(t0) < δ/2

and an ε > 0, such that

B(t′)−B(t0) < δ/2
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for all t′ ∈ [t0, t0 + ε) (such an ε exists, as B is a �ow and hence right-continuous).
Adding above two inequalities leads to

δ > B(t′)−B′(t0) ≥ B′(t′)−B′(t0)

for all t′ ∈ [t0, t0 + ε). Hence B′ is right-continuous and henceforth a �ow.
Now we show B′ ful�lls (4.0.10): let t be arbitrary and assume �rst, that

infB∈B B(t) = minB∈B B(t) and let B∗ ∈ B, such that B∗(t) = B′(t). Then:

B′(t) = B∗(t) ≥ A(t) ∧ (B∗)◦ ⊗ U(0, t) + Σ(t) ≥ A(t) ∧ (B′)◦ ⊗ U(0, t) + Σ(t)

where we have used the monotonicity of ⊗. Now assume the in�mum is not adopted
by a �ow in B. Denote by Bk a sequence of �ows in B, such that their limit at time
t equals B′(t). Note that lim infk→∞Bk(s) ≥ B′(s) for all s < t. We have then:

B′(t) = lim
k→∞

Bk(t) ≥ lim inf
k→∞

{A(t) ∧ (Bk)◦ ⊗ U(0, t) + Σ(t)}

= A(t) ∧ lim inf
k→∞

{(Bk)◦ ⊗ U(0, t)}+ Σ(t)

≥ A(t) ∧ inf
0≤r≤t

{(B′)◦(r) + U(r, t)}+ Σ(t)

= A(t) ∧ (B′)◦ ⊗ U(0, t) + Σ(t)

Hence we have that B′ ful�lls (4.0.10).
Next we show, that B′ ful�lls (4.0.10) with equality. Suppose that B′(t) >

A(t) ∧ (B′)◦ ⊗ U(0, t) + Σ(t) holds. De�ne B′′(t) := A(t) ∧ (B′)◦ ⊗ U(0, t) + Σ(t)
and B′′(s) = B′(s) for all s 6= t. From our construction we immediately have

B′(t) > A(t) ∧B′ ⊗ U(0, t) + Σ(t) = B′′(t)

and hence:

B′′(t) = A(t) ∧B′ ⊗ U(0, t) + Σ(t) ≥ A(t) ∧B′′ ⊗ U(0, t) + Σ(t)

so that B′′ ∈ B, which contradicts the minimality of B′. So B′ has to ful�ll (4.0.10)
with equality.

To prove the �rst sentence of the theorem all left to show is the uniqueness
of the solution B′. Let B∗ be another �ow ful�lling (4.0.10) with equality, de�ne
t0 = inf{t ∈ R+

0 : B′(t) 6= B∗(t)} < ∞. By right-continuity of B′ and B∗, we can
�nd for each δ an ε > 0 such that B′(t) < B′(t0) + δ and B∗(t) < B∗(t0) + δ for all
t ∈ [t0, t0 + ε). Choose δ = Σmin. We have then:

B′(t) = A(t) ∧ (B′)◦ ⊗ U(0, t) + Σ(t)

= A(t) ∧
(

( inf
0≤s≤t0

{(B′)◦(s) + U(s, t)} ∧ inf
t0<s≤t

{(B′)◦(s) + U(s, t)}) + Σ(t)

)
Assume the second inf would minimize the expression in the bracket. Since (B′)◦(s) ≥
B′(t0) and U(s, t) ≥ 0 for all s ∈ (t0, t], this would result in

B′(t) ≥ A(t) ∧B′(t0) + Σ(t) ≥ A(t) ∧B′(t0) + Σmin > A(t) ∧B′(t),

which is only possible for B′(t) > A(t), a contradiction. Hence the �rst in�mum
must minimize the expression in the bracket. But in this case - applying the same
arguments to B∗ we get:

B′(t) = A(t) ∧ ( inf
0≤s≤t0

{(B′)◦(s) + U(s, t)}+ Σ(t)) = B∗(t)

This however contradicts the construction of t0. Hence B
′ must be unique.
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To prove the second part of the theorem we need to ensure �rst, that the
limit of B(i)(t) exists for all t ∈ R+

0 . First note that B(i)(t) ≥ 0 holds for all
i, t ∈ R+

0 . Hence, for showing the existence of the limit it is su�cient to prove

B(i)(t) ≤ B(i−1)(t) for all t ∈ R+
0 . Assume this holds for some i ∈ N0, by the

monotonicity of ⊗ we have1:

B(i+1)(t) = A(t) ∧ (B(i))◦ ⊗ U(0, t) + Σ(t)

≤ A(t) ∧ (B(i−1))◦ ⊗ U(0, t) + Σ(t) = B(i)(t)

together with B(1)(t) ≤ A(t) we have that all limits B(i)(t) exists. If we can show,
that limi→∞B(i) ful�lls (4.0.10) with equality the result follows from the already
proven uniqueness:

lim
i→∞

B(i)(t) = lim
i→∞

B(i+1)(t)

= lim
i→∞
{A(t) ∧ (B(i))◦ ⊗ U(0, t) + Σ(t)}

= A(t) ∧ lim
i→∞
{(B(i))◦ ⊗ U(0, t)}+ Σ(t)

= A(t) ∧ lim
i→∞

(B(i))◦ ⊗ U(0, t) + Σ(t)

= A(t) ∧ ( lim
i→∞

B(i))◦ ⊗ U(0, t) + Σ(t)

We have used Lemma 15 in the fourth line. The last equality is only possible if
changing order of the limit with the ( )◦-operator is possible. As this is in general
not true we give a proof for that:

Assume an interval [s, r] on which A is continuous and �x some t ∈ [s, r]. We
know:

B(i)(t) = A(t) ∧A⊗ U(0, t) + Σ(t) ∧ . . . ∧A⊗ U (i)(0, t) + iΣ(t)

As the min-plus convolution and the minima preserve continuity, we have that B(i)

is continuous in t as well. Assume now there would be a (unbounded) sequence ik,
such that:

lim
i→∞

B(i)(t) = lim
k→∞

A⊗ U (ik)(0, t) + ikΣ(t)

This could be interpret, that we always need to consider new terms in the sequence
of minima to calculate limi→∞B(i)(t). It would hold then

A⊗ U (ik)(0, t) + ikΣ(t) = B(ik)(t) ≤ A(t),

following:

ikΣ(t) ≤ sup
0≤s≤t

{A(s, t)− U (ik)(s, t)} ∀ i ∈ N0.

By the non-negativity of U we would have eventually:

Σ(t) ≤ sup
0≤s≤t

{
A(s, t)

ik
− U (ik)(s, t)

ik

}
k→∞−−−−→ 0

meaning Σ(t) ≤ 0, which contradicts the assumption of Σ(t) ≥ Σmin > 0. Hence
an unbounded sequence ik as above cannot exist and there exists always some
index i∗ with limi→∞B(i)(t) = B(i∗)(t). This allows to change the limit with the
( )◦-operator in all times, in which A is continuous.

1It is easy to see, that, if B(i)(t) ≥ B(i−1)(t) for all t, then also (B(i))◦(t) ≥ (B(i−1))◦(t) for
all t.
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Next consider by A the times at which A is discontinuous. As

B(k)(t) = A(t) ∧A⊗ U(0, t) + Σ(t) ∧ . . . ∧A⊗ U (k)(t) + kΣ(t)

and U is proper, the times at which B(k) is discontinuious form a subset of A, we
call it Ak and A∞ :=

⋂
kAk. On t ∈ A∞ we have (since every part of the above

representation is continuous, except for A):

B(k)(s) = A(s)

for all s ∈ [t − ε, t) and some ε > 0. Hence, if limk→∞B(k)(t) is discontinuous on
some t∗, we have:

lim
k→∞

lim
t↗t∗

B(k)(t) = lim
k→∞

lim
t↗t∗

A(t) = A◦(t) = lim
t↗t∗

lim
k→∞

B(k)(t)

�

The next theorem derives the throttle's service description:

Theorem 14. Under the above conditions the throttle is a dynamic U∧-server
with

(4.0.12) U∧(s, t) :=

∞∧
i=0

(U ′)(i)(s, t),

and U ′(s, t) = U(s, t) + Σ◦(t). I.e., for all B ful�lling (4.0.10) holds B(t) ≥ A◦ ⊗
U∧(0, t).

Eventually, we �nd that the results for the bivariate, continuous time scenario,
parallel those for discrete time and only di�er in a modi�ed service description.

The proof of Theorem 14 needs a Lemma about continuity:

Lemma 15. Let Ak be a decreasing sequence of �ows, i.e. Ak(s) ≥ Ak+1(s) for
all s ∈ R+

0 and denote limk→∞Ak(s) = A′(s). Further let U be some non-negative
service. Then:

lim
k→∞

(Ak ⊗ U)(s, t) = A′ ⊗ U(s, t) ∀ s ≤ t ∈ R+
0

Further, if Uk(s, t) is a decreasing sequence of services (Uk(s, t) ≥ Uk+1(s, t) for all
s ≤ t ∈ R+

0 ), we have for each �ow A:

lim
k→∞

(A⊗ Uk)(s, t) = A⊗ U ′(s, t) ∀ s ≤ t ∈ R+
0

Proof. We start with the �rst assertion, the second follows in the same man-
ner. Let U be some arbitrary service. We show �rst the existence of the left-handed-
side limit. Let s ≤ t be arbitrary and r∗ the index minimizing infs≤r≤t{Ak(s, r) +
U(r, t)}, then:

inf
s≤r≤t

{Ak(s, r) + U(r, t)} − inf
s≤r≤t

{Ak+1(s, r) + U(r, t)}

≥Ak(s, r∗) + U(r∗, t)−Ak+1(s, r∗)− U(r∗, t)

≥Ak(r∗)−Ak+1(r∗)

≥ 0

and hence the sequence (Ak⊗U)k∈N0 is decreasing. Further we have that Ak⊗U ≥ 0
for all k, ensuring the existence of limk→∞Ak ⊗ U . We show the equality in two
steps:



4. BIVARIATE CONTINUOUS TIME EQUATIONS 16

�≤ ”: Let r∗ be the index minimzing infs≤r≤t{A′(s, r) + U(r, t)}. Then:

lim
k→∞

inf
s≤r≤t

{Ak(s, r) + U(r, t)} ≤ lim
k→∞

Ak(s, r∗) + U(r∗, t)

= A′(s, r∗) + U(r∗, t)

= inf
s≤r≤t

{A′(s, r) + U(r, t)}

�≥ ”: From the monotonicity we have:

lim
k→∞

inf
s≤r≤t

{Ak(s, r) + U(r, t)} ≥ lim
k→∞

inf
s≤r≤t

{A′(r) + U(r, t)} −Ak(s)

= inf
s≤r≤t

{A′(s, r) + U(r, t)}

�

Now we can give the proof of Theorem 14

Proof. Let B be some �ow ful�lling (4.0.10). We know from the previous
theorem that B ≥ B′ holds. Hence it is su�cient to prove B′(t) ≥ A◦ ⊗ UT (0, t).

Denote UTk(s, t) =
∧k
i=0(U + Σ̃)(i)(s, t). Assume we would have B(k) ≥ A◦ ⊗ UTk

for all k ∈ N0, then

B′ = lim
k→∞

B(k) ≥ lim
k→∞

A◦ ⊗ UTk = A◦ ⊗ UT

where we have used the second part of Lemma 15. So, we only have to show the
above assumption. For k = 0 we have

B(0) = A ≥ A◦ ⊗ 1 = A⊗
0∧
i=0

(U + Σ̃)(0)

Given B(k) ≥ A◦ ⊗ UTk for some k ∈ N0 we get for all t > 0:

B(k+1)(t) = A(t) ∧ (B(k))◦ ⊗ U(0, t) + Σ(t)

≥ A◦(t) ∧ (A◦ ⊗ UTk)⊗ U(0, t) + Σ(t)

≥ A◦ ⊗ 1(0, t) ∧A◦ ⊗ (UTk ⊗ (U + Σ̃))(0, t)

= A◦ ⊗ (1(0, t) ∧ UTk ⊗ (U + Σ̃))(0, t)

= A◦ ⊗ UTk+1
(0, t)

In the second line we used

(B(k))◦ ⊗ U(0, t) = inf
0≤s≤t

{(B(k))◦(s) + U(s, t)}

≥ 0 + U(0, t) ∧ inf
0<s≤t

{A◦ ⊗ UTk(0, s) + U(s, t)}

= inf
0≤s≤t

{A◦ ⊗ UTk(0, s) + U(s, t)},

since A◦ ⊗ UTk(0, 0) = 0.
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In the third line we used:

(A◦ ⊗ UTk)⊗ U(0, t) + Σ(t)

=A◦ ⊗ (UTk ⊗ U)(0, t) + Σ̃(0, t)

= inf
0≤s≤t

{A◦(s) + inf
s≤r≤t

{UTk(s, r) + U(r, t)}}+ Σ̃(0, t)

≥ inf
0≤s≤t

{A◦(s) + inf
s≤r≤t

{UTk(s, r) + U(r, t) + Σ̃(r, t)}}

=A◦ ⊗ (UTk ⊗ (U + Σ̃))(0, t)

This works, since Σ◦(r) ≥ 0 for all r ≥ 0. �



CHAPTER 5

Subadditive Service

In this chapter, we investigate subadditive service descriptions in WFC systems.
An example for a subadditive server is given by a constant rate server Uo(s, t) =
rU (t − s) with some positive rate rU serving a cross�ow AU . As discussed above,

we need to replace the cross�ow AU by ÃU if we use continuous time. Because of
this and the somewhat di�erent results in continuous time, we distinguish between
both time models in this discussion.

5.1. Discrete Time

Assume we have a subadditive service description Usub covering the tandem
of the service element U and the placeholder in Figure 2.0.1, i.e., Ufb(s, t) =
Usub(s, t) + Σ(t). We then have

Ufb ⊗ Ufb(s, t)
= min
s≤r≤t

{Usub(s, r) + Σ(r) + Usub(r, t) + Σ(t)}

≥Ufb(s, t).

Applying this in Theorem 5 the throttle can be described by:

U∧(s, t) = 1(s, t) ∧ Ufb(s, t),

and with Theorem 3 we eventually have for the whole system the service description:

Usys(s, t) = U∧ ⊗ U(s, t)

≥ U(s, t) ∧ Usub ⊗ U(s, t) + min
s≤r≤t

Σ(r)

≥ Usub ⊗ U(s, t),

where we use the monotonicity of the min-plus convolution, i.e., it holds U ⊗
V (s, t) ≤ U(s, t) for all V with V (t, t) = 0 for all t.

Particularly, we have for Usub = U the system description:

Usys(s, t) ≥ U(s, t),

i.e., the system can be analysed as the unthrottled one and Theorem 8 gives end-
to-end delay bounds.

5.2. Continuous Time

To make a long story short: in principle, the results of discrete time carry over
to the setting of continuous time; however, the slightly di�erent characterization of

18
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leftover service (Lemma 12) interferes with subadditivity. One has in contrast to
10 for a subadditive service Uo , cross�ow AU and arbitrary times s ≤ r ≤ t:

U(s, r) + U(r, t) = Uo(s, r)− ÃU (s, r) + Uo(r, t)− ÃU (r, t)

≥ Uo(s, t)− ÃU (s, t)− ÃU (r, r)

= U(s, t)− ÃU (r, r)

Hence, U remains subadditive if ÃU (r, r) = 0. This motivates the following de�ni-
tion.

Definition 16. A dynamic U -server is subadditive with defect A (abbreviated
A-subadditive), if for all s ≤ r ≤ t

U(s, r) + U(r, t) ≥ U(s, t)− Ã(r, r).

The intuition here is, that U is �mostly� ' subadditive, but the subadditivity
can be violated, if the cross�ow AU contains an instantaneous burst. Although the
above de�nition is weaker than conventional subadditivity, it still lends itself to an
analysis of WFC systems. The key here is that the window process can compensate
for the subadditivity's defect.

Theorem 17. Let U be an AU -subadditive dynamic server. For the k-th (k > 0)
self-convolution of U ′(s, t) := U(s, t) + Σ◦(t) holds:

(5.2.1) (U ′)(k)(s, t) ≥ U ′(s, t) + (k − 1) inf
s≤r≤t

{Σ◦(r)− ÃU (r, r)}

Proof. We prove this by induction over k. The statement is obviously true
for k = 1. Assuming (5.2.1) holds for k we have for k + 1:

(U ′)(k+1)(s, t) = inf
s≤r≤t

{(U ′)(k)(s, r) + U ′(r, t)}

≥ inf
s≤r≤t

{U(s, r) + Σ◦(r) + U(r, t) + Σ◦(t)

+ (k − 1) inf
s≤q≤r

{Σ◦(q)− ÃU (q, q)}}

≥ inf
s≤r≤t

{U ′(s, t) + Σ◦(r)− ÃU (r, r)

+ (k − 1) inf
s≤q≤r

{Σ◦(q)− ÃU (q, q)}}

≥ U ′(s, t) + inf
s≤r≤t

{Σ◦(r)− ÃU (r, r)}

+ (k − 1) inf
s≤r≤t

inf
s≤q≤r

{Σ◦(q)− ÃU (q, q)}

= U ′(s, t) + k inf
s≤r≤t

{Σ◦(r)− ÃU (r, r)},

which proves the theorem. �

Similar to the discrete time setting we now assume an AU -subadditive service
description Usub covering the service element U and the placeholder in Figure 2.0.1
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such that Ufb(s, t) = Usub(s, t) + Σ(t). Applying Theorem 17 in (4.0.12) we obtain:

U∧(s, t) =

∞∧
k=0

U
(k)
fb (s, t)

≥ 1(s, t) ∧
∞∧
k=1

Usub(s, t) + Σ(t)

+ (k − 1) inf
s≤r≤t

{Σ◦(r)− ÃU (r, r)},

which in turn, depending on the sign of the involved in�mum, reduces to two values
only

(5.2.2) U∧(s, t) ≥

{
0 if ∃ r ∈ [s, t] with ÃU (r, r) > Σ◦(r)

1(s, t) ∧ Usub(s, t) + Σ(t) else

resulting in

Usys(s, t) ≥

{
0 if ∃ r ∈ [s, t] with ÃU (r, r) > Σ◦(r)

Usub(s, t) else

Hence, if we know that the maximal burst of AU in some interval does not exceed the
current window size, we can analyse the system as an unthrottled one. Calculating
that probability is thus key when we want to calculate probabilistic performance
bounds as in Theorem 8. This is formulated in the following theorem.

Theorem 18. Assume Ufb(s, t) = Usub(s, t) + Σ(t) and the conditions of The-
orem 8 hold for A and Usub. Further, let Usub be AU -subadditive. The following
end-to-end delay bound holds for any t, T ≥ 0:

P(d(t) > T )

≤ eθ(σU (θ)+σA(θ)+ρU (θ)(T−δ))(1− eδθρ(θ))−1 + P(E),

where δ > 0 is a free discretization parameter and

P(E) := P( sup
r∈[0,t+T ]

{ÃU (r, r)− Σ(r)} > 0).

Proof. We start by applying the law of total probability, conditioning on the
event E:

P(d(t) > T )(5.2.3)

≤P(d(t) > T |E)P(E) + P(d(t) > T | ¬E)P(¬E)

≤P(E) + P(d(t) > T | ¬E)

As we observed for discrete time the expression P(d(t) > T | ¬E) can be treated by
applying Theorem 8 on Usub . The version of this result in continuous time requires
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a discretization parameter δ and reads:

P(d(t) > T | ¬E)

≤P( sup
0≤s≤t+T

{A(r, t)− Usub(r, t+ T )} > 0)

≤P( max
0≤i≤N−1

{A(iδ, t)− Usub((i+ 1)δ, t+ T )} > 0)

≤
N−1∑
i=0

E(eθA(iδ,t))E(e−θUsub((i+1)δ,t+T ))

≤
N−1∑
i=0

eθρA(θ)δ(N−i)+θσA(θ)eθρU (θ)(T−δ)+θρU (θ)δ(N−i)+θσU (θ)

= eθ(σA(θ)+σU (θ)+ρU (θ)(T−δ))
N∑
j=1

eθρU (θ)δj

≤ eθ(σA(θ)+σU (θ)+ρU (θ)(T−δ)) · (1− eδθρU (θ))−1.

Here, we divided the interval [0, t] into N slots each of length δ. �

To obtain a numerical value for the above delay bound, we need to �nd an
appropriate bound for the event E. This depends on the type of arrivals A:

Example 19. Assume the jumps occur at integer times n = 1, 2, . . . and their
jump sizes have an i.i.d. distribution FJ . Further de�ne Σmin(t) = inf0≤s≤t Σ(s).
Then:

P( max
1≤n≤bt+Tc

ÃU (n, n) > Σmin(t)) = 1− FJ(Σmin(t))bt+Tc.

We can extend this example to bursts at random times: assume the timing of bursts
follows a Poisson process. Splitting by the number of bursts we have:

P(E) =

∞∑
k=0

(1− FJ(Σmin(t))bkc)P(|[0, t+ T ] ∩ J | = k).

In this section, we showed that subadditive service is su�cient to make the
analysis of WFC systems in MGF-calculus possible. Subadditivity reduces the
complexity of describing Ufb immensely, such that a closed-form description of the
end-to-end service is possible. On the other hand, it is a strong assumption to have
a subadditive service description for Usub in Ufb = Usub + Σ. We explore the scope
of this approach in the next section.

5.3. Comments on Network Analysis

Excluding the window element we can consider the feedback loop as any kind
of network, in which B enters and C ′ departs (see Figure 2.0.1). The goal is to
�nd a subadditive service description of this network. We can intuitively extend
the notion of A-subadditivity to networks, if they can be represented by some A-
subadditive service

C(t) ≥ B ⊗ Ue2e(0, t) ∀ t ≥ 0.

To answer which kind of networks are subadditive we check two network operations
with respect to preserving subadditivity. The �rst considers demultiplexing of �ows
and the second is the concatenation of service elements.
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Theorem 20. Consider a subadditive dynamic U -server and a �ow A. The
leftover service Ul = U − Ã is A-subadditive. If U is AU -subadditive, the leftover
service is A+AU -subadditive.

Proof. We prove the second part only, as the �rst part can be considered as
a special case with AU = 0. Let s ≤ r ≤ t be arbitrary:

Ul(s, r) + Ul(r, t) = U(s, r) + U(r, t)− Ã(s, r)− Ã(r, t)

≥ U(s, t)− ÃU (r, r)− Ã(r, r)− Ã(s, t)

= Ul(s, t)− (ÃU (r, r) + Ã(r, r))

�

Next, we give a subadditive description for concatenated service elements. How-
ever, we �rst need a de�nition, which is slightly stricter than subadditivity:

Definition 21. A dynamic U -server is called separable, if there exists a sub-
additive Uo and a �ow AU , such that

U(s, t) = Uo(s, t)− ÃU (s, t).

Note that a separable dynamic U -server is always AU -subad-ditive, but the
converse does not hold in general. Often, we are able to represent Uo and AU of a
separable server in an additive form:

Uo(s, t) =

ˆ t

s

uo(x)dx(5.3.1)

AU (s, t) =

ˆ t

s

aU (r)dr +
∑
r∈[s,t]

ÃU (r, r),(5.3.2)

for some integrable functions uo and aU .
We assume such representations for the rest of this section. This enables the

following theorem.

Theorem 22. Assume separable dynamic U - and V - servers. In tandem they
form a separable dynamic W -server with

Wo(s, t) :=

t−1∑
p=s

Uo(p, p+ 1) ∧ Vo(p, p+ 1)

AW (s, t) :=

t−1∑
p=s

AU (p, p+ 1) ∨AV (p, p+ 1).

in discrete time and

Wo(s, t) :=

ˆ t

s

uo(x) ∧ vo(x)dx

ÃW (s, t) :=

ˆ t

s

aU (x) ∨ aV (x)dx+
∑

q∈p[s,t]

ÃU (q, q) + ÃV (q, q)

for continuous time. W is AU +AV -subadditive.
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Proof. We give the proof for continuous time as the one for discrete time is
just a special case. We know that the tandem is a U ⊗ V -server, further we have
for all s ≤ t:

U ⊗ V (s, t)

≥ inf
s≤r≤t

{Uo(s, r) + Vo(r, t)} − sup
s≤r≤t

{ÃU (s, r) + ÃV (r, t)}

≥ inf
s≤r≤t

{Wo(s, r) +Wo(r, t)} − sup
s≤r≤t

{
ˆ t

s

aU (x) ∨ aV (x)dx

+
∑
q∈[s,r]

ÃU (q, q) +
∑
q∈[r,t]

ÃV (q, q)}

≥Wo(s, t)− ÃW (s, t),

and hence W is a separable dynamic server for the tandem as well. It is easy to see
that its defect equals AU +AV . �

The above two operations allow to deal with a class of subadditive networks.

Lemma 23. Any feedforward network consisting of separable dynamic Ui-servers
(i ∈ 1, . . . , N) with strict priority scheduling and �ows Aj (j ∈ 1, . . . ,M) is subad-
ditive with appropriate defect.

Proof. W.l.o.g we assume all AUi = 0. We prove only the more general
continuous case. Pick any �ow Aj and denote the indices of the service elements on
its path by i1, i2, . . . , iK . Assume for a moment only one cross-�ow Al interfering
with Aj , i.e., it has higher priority on at least one of the service elements. We show
now, that extending Al and increasing its priority above Aj on the whole path
preserves the bounds' correctness. Denote by Uk the available service for �ow Aj
at service element ik, before subtracting Al. Denote by Bj the departures of Aj
from the network, then we have

Bj ≥ Aj ⊗ (U1 −Al,1 ⊗ . . .⊗ UK −Al,K),

where some of the cross�ows Al,k are equal to zero, if the cross�ow does not interfere
with the service for Aj at service element Uk. Let k′ be the index of the service
element at which Al interferes with the path of Aj for the �rst time. Due to
causality we must have Al,k′ ≥ Al,k for any k ∈ {1, . . .K}. Hence:

Bj ≥ Aj ⊗ (U1 −Al,k′ ⊗ . . .⊗ UK −Al,k′),

and Theorem 22 leads to a single separable service by:

Wo(s, t) =

ˆ t

s

K∧
k=1

uik(x)dx

ÃW (s, t) =

ˆ t

s

al,k′(x)dx+K
∑
q∈[s,t]

Ãl,k′(q, q),

and W is subadditive with defect KAl,k′ . We can now perform this procedure
again, but for all �ows interfering with Aj leading to:

Bj ≥ Aj ⊗ (U1 −
∑
l∈L

Al,k′l , . . . , UK −
∑
l∈L

Al,k′l)
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where L is the set of indices of all interfering �ows. By applying Theorem 22 as
before, we obtain a single separable service element W with the same Wo and

ÃW (s, t) =

ˆ t

s

∑
l∈L

al,k′l(x)dx+K
∑
q∈[s,t]

∑
l∈L

Ãl,k′l(q, q)

The defect on its subadditivity is K
∑
l∈LAl,k′l . �

In the above proof, we used that we can extend any cross-�ow interfering with
the �ow of interest on the latter's whole path. Depending on the actual network
topology, this meth-od can become arbitrarily loose. We know from DNC that, for
example in nested topologies, better service descriptions are available [16]. Such im-
provements rely on the structure of the considered network and a suitable ordering
demultiplexing and convolution operations. These service descriptions, however,
are in general not subadditive.

While the above lemma characterizes a fairly large class of networks to be
subadditive, the question rises, if one can improve Lemma 23 similarly, without
losing subadditivity. We provide a simple example for this, if the cross�ows can be
partitioned. To that end, consider again the service elements ik lying on the path
of our �ow of interest. We denote all �ows sharing the same service element on
their way through the network by Fk. We say the cross-�ows can be partitioned,
if we can �nd a (non-trivial) partition

⋃
Pm = {i1, . . . , iK}, such that⋃

ik∈Pm1

Fk ∩
⋃

ik∈Pm2

Fk = ∅

We denote all �ows lying in one set of this partition by Pm :=
⋃
ik∈Pm Fk and the

sum of the corresponding �ows by Am(s, t) =
∑
j∈Pm Aj(s, t). We can now improve

on the above lemma, without losing subadditivity:

Corollary 24. Consider a �ow of interest Aj and its corresponding parti-
tioned network. The subadditive dynamic W -server for �ow Aj can be improved
to:

Wo(s, t) =

ˆ t

s

K∧
k=1

uik(x)dx

ÃW (s, t) =

ˆ t

s

∨
m

Am(x)dx+
∑
m

|Pm|
∑

q∈J∩[s,t]

Ãm(q, q)

with defect
∑
m |Pm|Am.

Proof. Assume �rst that we can order the partition, such that for all ik ∈ Pm
holds either ik < ik′ or ik > ik′ for all ik′ ∈ Pm′ and m 6= m′. We use the partition
on the involved service elements and apply Lemma 23 on each set Pm locally, to
achieve separable service descriptions Wm with:

Wo,m(s, t) =

ˆ t

s

∧
k∈Pm

uk(x)dx

ÃW,m(s, t) =

ˆ t

s

Am(x)dx+ |Pm|
∑

q∈J∩[s,t]

Ãm(q, q)
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and defect |Pm|Am. Then, in a second step, we apply Lemma 23 again on the
service elements Wm. If the partitions cannot be ordered as above, it is easy to
see, that we can �nd a �ner partition, which can be ordered, and delivers the same
result. �

To sum up, we have proven the existence of subadditive service descriptions for
any feed-forward network under strict priority scheduling. Those in turn can be
plugged into the feedback-inequality and allow us to analyse the end-to-end WFC
service. Corollary 24 gives a simple example on how one can take advantage of
the network's topology to achieve better subadditive service descriptions. More
sophisticated exploitation of topological characteristics are left to future work.

5.4. Numerical Evaluation

We consider the following scenario: The feedback loop consists of two service
elements. The service element U is a constant rate server with rate u, which serves
a high-priority cross-�ow AU . The service element V is a constant rate server with
rate v and cross-�ow AV . We de�ne a certain kind of arrival process in this section
and use continuous time, to display our results in their generality. All arrival �ows
in our scenario are de�ned by the compound of two processes each. We illustrate
this for the arrival �ow A: we use two sequences of i.i.d. exponentially distributed
random variables (Xn)n∈N and (Xj

n)n∈N. Now de�ne A by A(t) = Ac(t) + Aj(t),
such that Ac is a piecewise linear function with rates Xn and Aj is a sequence of
jumps at times N0 of size Xj

n, i.e.:

Ac(t)−Ac(s) = (t− s)Xn, s, t ∈ [n, n+ 1] and n ∈ N0

Ãj(s, t) =

{
Xj
n if s = t and s ∈ N0

0 if t− s < 1 and s /∈ N0

We assume in this section that all sequences Xn, X
j
n, . . . are stochastically indepen-

dent. To obtain an MGF-bound for these arrivals we need

Lemma 25. Be A as de�ned above with Xn and Xj
n being any sequence of i.i.d.

random variables, with E(eθXn) ≤ eθρc(θ) and E(eθX
j
n) ≤ eθρj(θ), respectively, for

all 0 < θ < θ∗, some θ∗ > 0 and ρ being an increasing function. Then we have for
all 0 ≤ s ≤ t and 0 < θ < θ∗:

E(eθA(s,t)) ≤ eθ(t−s)(ρc(θ)+ρj(θ))+θρj(θ)
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Proof. The proof is just keeping track of the single MGFs of all involved Xn

and Xj
n, if s, t /∈ N0:

ΦA(s,t)(θ) = E(e
θ((dse−s)Xbsc+

∑btc
n=dse(Xn+Xjn)+(t−btc)Xdte))

= E(eθ((dse−s)Xbsc))E(e
θ(

∑btc
n=dseXn+Xjn)

)E(eθ((t−btc)Xdte))

≤ eθ(dse−s)ρc(θ(dse−s)) ·
btc∏

n=dse

E(eθXn+Xjn) · eθ(t−btc)ρc(θ(t−btc))

≤ eθ(dse−s)ρc(θ)
btc∏

n=dse

eθρc(θ)+θρj(θ)eθ(t−btc)ρc(θ)

= eθ(t−s)(ρc(θ)+ρj(θ))

However if s, t ∈ N0 we need to replace
∏btc
n=dse E(eθX

j
n) by

∏t
n=s E(eθX

j
n) ≤

eθρj(θ)(t−s+1). �

If not speci�ed di�erently we use the following parameters in this section: the
exponential rates of the processes Xn, X

j
n, . . . are all choosen equally to λ = 8 and

the service rates are u = v = 1. We evaluate the bound at time t = 5 (note: this
is only important for the throttled case, as the unthrottled bound is independent
of t) and ask for a delay of T = 10. We numerically optimized over the parameter
θ and have chosen a reasonable discretization parameter δ by hand. Checking the
bound derived in Equation (5.2.3), we see that the di�erence between the throttled
and unthrottled case comes in form of adding the probability P(E). Assuming a
constant window size Σ(t) ≥ Σ, this is given in our case by:

1− (F2Xj (Σ))bt+Tc ≤ 1− (1− e−λΣ − e−λΣλΣ)(t+T )

The delay bound for the unthrottled case is calculated from Theorem 8.

5.4.1. Convergence to Unthrottled System. When we compare the bounds
for the throttled and the unthrottled system we see two di�erences. The �rst is
the additive component P(E), which decreases for increasing window sizesΣ. The
second is a di�erence in the delay-calculation: the throttled system uses the ser-
vice resulting from Theorem 22, which takes the server V into account. Figure
5.4.1 shows in black lines, how the bounds evolve for an increasing window size and
di�erent rates u = 1, 1.2, 1.5. One sees that the throttled systems converge to a
bound which lies above the bound of the corresponding unthrottled systems (red
lines), which is due to adding V to the system.

5.4.2. Dependence on Delay. Next, we investigate how the delay parameter
T in�uences the scenario, as it appears in both parts of the bound for the throttled
system (improving the delay-bound for increasing T , while worsening the bound in
the probability P(E)). To make this e�ect visible, we keep the window size at Σ = 5
and the other parameters as before. In Figure 5.4.2, one can observe how increasing
the parameter T �rst leads to an improvement of the bound; yet, increasing the
delay, the throttled part starts to dominate the bound and it slowly worsens with
further increase of T .
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CHAPTER 6

General Case

We revisit the solution of Theorem 5. Without further assumptions, we need
to �nd an MGF-bound in the sense of (2.0.3) for the end-to-end service:

Usys =

( ∞∧
n=0

(Ufb)
(n)

)
⊗ U(s, t),

where Ufb represents the whole feedback-loop. Just applying the de�nition of the
MGF we obtain

ΦUsys(s,t)(−θ)

=E(e−θ
∧

(Ufb)
(n)⊗U(s,t)) = E(

∞∨
n=0

e−θU
(n)
fb ⊗U(s,t)).

A naive approach would be to use E(X ∨ Y ) ≤ E(X) + E(Y ) for some positive
random variables X and Y , resulting in:

ΦUsys(s,t)(−θ) ≤
∞∑
n=0

E(e−θU
(n)
fb ⊗U(s,t))

This however is problematic, since �nite representations as in (2.0.3) for U
(n)
fb with

n→∞, are hard to achieve, even if Ufb consists of a single server U and the window
element Σ only.

Remembering condition (3.0.9) we choose another path here. To �x notations,
insert for the placeholder in Figure 2.0.1 a dynamic V -server, such that Ufb(s, t) =
U ⊗ V (s, t) + Σ(t). We saw in the univariate case for b < Σ an easy solution to
the feedback inequality. The same holds for the bivariate setting with a dynamic
window; assume it holds for all s ≤ t:

(6.0.1) U ⊗ V (s, t)− (U ⊗ V )(2)(s, t) ≤ b ≤ Σmin(t)

with Σmin(t) := mins≤t{Σ(s)}. Then we have:

Ufb ⊗ Ufb(s, t)
= min
s≤r≤t

{U ⊗ V (s, r) + Σ(r) + U ⊗ V (r, t) + Σ(t)}

≥ min
s≤r≤t

{U ⊗ V (s, r) + U ⊗ V (r, t)}+ Σmin(t) + Σ(t)

≥U ⊗ V (s, t) + (Σmin(t)− b) + Σ(t)

≥Ufb(s, t)

and Ufb is subadditive.

28
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We use this property to achieve a service description for the whole system by:

Usys(s, t)

=Ufb ⊗ U(s, t) = (1 ∧ Ufb)⊗ U(s, t)

=U(s, t) ∧ min
s≤r≤t

{(U ⊗ V )⊗ U(s, r) + Σ(r) + U(r, t)}

≥U(s, t) ∧ (U ⊗ V )⊗ (U ⊗ V )(s, t) + Σmin(t)(6.0.2)

(??)

≥ U(s, t) ∧ U ⊗ V (s, t)− b+ Σmin(t)

≥U(s, t) ∧ U ⊗ V (s, t)(6.0.3)

=U ⊗ V (s, t).

In (6.0.2) and (6.0.3), we used the monotonicty of min-plus convolution: U(s, t) ≥
U ⊗ V (s, t) for any V with V (t, t) = 0 for all t. So, under the assumption of (6.0.1)
we obtain the same service for the throttled system as for an unthrottled one where
the servers U and V would have to be traversed. Hence, we are interested in the
probability of (6.0.1) happening and call that event E. With this information at
hand we can analyse the whole system by:

P(dsys(t) > x)

=P(dsys(t) > x |E)P(E) + P(dsys(t) > x | ¬E)P(¬E)

≤P(dU⊗V (t) > x) + P(¬E)

Where P(dU⊗V > x) can be calculated by applying Theorem 3 and Theorem 8.
We now discuss condition (6.0.1) and its corresponding probability. For ease of

notation, we leave the placeholder blank, i.e., U ⊗ V = U .
One can rewrite (6.0.1) by:

max
0≤s≤t

{U(s, t)− U ⊗ U(s, t)} ≤ b,

which is just the expression we arrive at when bounding the bu�er in bivariate
deterministic network calculus, if feeding a ��ow�' U in a dynamic U ⊗ U -server.
Such stochastically dependent systems can be analysed in MGF-Calculus by using
Hölder's inequality. For this assume some MGF-bounds of the form (2.0.2) and
(2.0.3) for U (we denote the σ and ρ corresponding to bound (2.0.2) by σ and ρ to
distinguish them from the ones used in (2.0.3)). The probabilistic backlog bound
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in such a system is ( 1
p + 1

q = 1
p′ + 1

q′ = 1):

P(q(t) > b) ≤ P( max
0≤s≤t

{U(s, t)− U ⊗ U(s, t)} > b)

≤ e−θb
t∑

s=0

E(eθ(U(s,t)−U⊗U(s,t)))

≤ e−θb
t∑

s=0

(E(epθU(s,t))
1/p(E(e−θqU⊗U(s,t))

1/q

≤ e−θb
t∑

s=0

eθρ̄(pθ)(t−s)+θσ̄(pθ)(E(e−θqU⊗U(s,t))
1/q

≤ e−θb+θσ̄(pθ)
t∑

s=0

eθρ̄(pθ)(t−s)

·
( t∑
r=s

eθqρ(qp
′θ)(r−s)+θqσ(qp′θ)eθqρ(qq

′θ)(t−r)+θqσ(qq′θ)
)1/q

≤ e−θb+θσ̄(pθ)+θσ(qp′θ)+θσ(qq′θ)

·
t∑

s=0

eθρ̄(pθ)(t−s)eθρ(qp
′θ)(t−s)

( t−s∑
r′=0

eθq(ρ(qq
′θ)−ρ(qp′θ))r′

)1/q

We have used Cherno�'s inequality in the second line and Hölder's inequality in
line 3 and 5. If we assume, w.l.o.g. that q′ > p′ holds, we have that the last sum is
convergent in t. We denote the limit of that series just by B and can proceed with:

P(q(t) > b)

≤ e−θb+θ(σ̄(pθ)+σ(qp′θ)+σ(qq′θ))B

t∑
s=0

eθρ̄(pθ)(t−s)+θρ(qp
′θ)(t−s)

≤ e−θb+θ(σ̄(pθ)+σ(qp′θ)+σ(qq′θ))B

t∑
s′=0

eθ(ρ̄(pθ)+θρ(qp
′θ))s′ .

The above sum, however, does in general not converge. This is due to the three
inequalities:

ρ̄(θ) ≥ −ρ(θ) ∀ θ ≥ 0,

ρ̄(pθ) ≥ ρ̄(θ) ∀ p ≥ 1,

ρ(qθ) ≤ ρ(θ) ∀ q ≥ 1.

For the case q′ = p′ = 2, the exponents in the last sum vanish and the expression
reduces to t− s+ 1 ≤ eθ(t−s) 1

θ , such that the bound becomes:

P(q(t) > b)

≤ e−θb+θ(σ̄(pθ)+2σ(2qθ))
t∑

s′=0

eθ(ρ̄(pθ)+θρ(2qθ)+
1
qθ )s′ .

Note that the system
U−→ U → U is unstable (the concatenation of the two servers

with service U ⊗ U is at most as large as the arrivals U), which is why the above
bound is valid only for any �nite time t.



6. GENERAL CASE 31

Overall, we can summarize our �ndings in the main result of this work:

Theorem 26. Consider a WFC system as in Figure 2.0.1 with the placeholder
being a dynamic V -server. Let 1

p + 1
q = 1

p′ + 1
q′ = 1 and q′ > p′. Assume the

following MGF-bounds on U ⊗ V :

E(e−θU⊗V (s,t)) ≤ eθρ(θ)(t−s)+σ(θ)

E(eθU⊗V (s,t)) ≤ eθρ(θ)(t−s)+σ(θ).

The whole system ful�lls the probabilistic delay-bound:

P(dsys(t) > x) ≤ P(dU⊗V (t) > x)

+ e−θΣmin(t+T )+σE(θ,p,p′)B

t+T∑
s=0

eθρE(θ,p,p′)s

with

σE(θ, p, p′) = σ(pθ) + σ(qp′θ) + σ(qq′θ)

ρE(θ, p, p′) =

{
ρ(pθ) + ρ(qp′θ) if p′ 6= 2

ρ(pθ) + ρ(2qθ) + 1
qθ if p′ = 2

B =


(

1
1−eθq(ρ(qq′θ)−ρ(qp′θ)

)1/q

if p′ 6= 2

1 if p′ = 2

and dU⊗V being the delay of an unthrottled tandem consisting of a dynamic U - and
V -server.

We want to emphasize that with this theorem it is for �rst time possible to
analyse a general WFC system in the context of SNC. Our solution does not rely
on the subadditivity of U or V directly, in contrast to what was presented in
Chapter 3 and 5. Instead we ask for the probability of failing the subadditivity
by at least the window size Σ, which allows an analysis of general service elements
inside the feedback loop. Note that U and V do not need to be single service
elements themselves, they could instead result from Theorem 3 or include further
elements (like �xed delay-elements or scaling elements [9]).

Remark 27. It is interesting to note, that, if U ⊗V is subadditive already, we
have P(¬E) = 0 and the whole system's service reduces immediately to

Usys(s, t) = U(s, t) ∧ U ⊗ V (s, t) + Σmin(t).

One can directly apply Theorem 8 on Usys to achieve an end-to-end delay bound in
this case. Further, we observe that step (6.0.3) is not a necessary one. We could,
for example, shift b below Σmin(t) and continue directly with:

(6.0.4) Usys(s, t) ≥ U(s, t) ∧ U ⊗ V (s, t) + Σmin(t)− b.

We can then apply Theorem 26 on this Usys (which is at least as large as U ⊗ V ).
One can view this as a shift in the violation probabilities towards the subadditive
part (event E) of the bound. We investigate this tradeo� in the following section.
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6.1. Numerical Evaluation

In this section, we investigate how the bound derived in Theorem 26 evolves in
its parameters. Further, we quantify the impact of WFC on the delay of the system,
by comparing it to a similar unthrottled system. For this section we assume U to be
a constant rate server Uo(s, t) = u(t− s), which also serves a cross�ow AU (s, t) at
higher priority than B. A well-known result in SNC states that B receives a service
U(s, t) = u(t− s)−AU (s, t). Similarly, we insert for the placeholder in Figure 2.0.1
a service element V , which also o�ers a constant rate Vo(s, t) = v(t−s) shared with
a higher priority cross�ow AV (s, t), such that V (s, t) = v(t − s) − AV (s, t). Note
that both service descriptions are subadditive by themselves, but when applying
Theorem 3 this property is lost.

To account for the typically smaller size of acknowledgements �owing back to
the throttle, we assume v > u. The cross�ows in this example consist of i.i.d. expo-
nentially distributed increments aU (t) and aV (t), respectively. The arrivals to the
WFC system, denoted by A also consist of i.i.d. exponentially distributed incre-
ments. All �ows are stochastically independent of each other. More sophisticated
cross�ows or arrivals are possible to analyse, as well as dropping the independency
assumption, yet this is not the focus of our evaluation. We further assume a con-
stant window-size Σ, for all times t ≥ 0.

A corresponding unthrottled system would just consist of the �ow A being fed
into the service element U , thus Theorem 8 could be applied directly.

To achieve reasonable values in the bounds of Theorem 8 and Theorem 26,
we numerically optimized the parameter θ and the Hölder-pairs p, q, p′, q′. If not
speci�ed otherwise we used the following set of parameters in our calculations: the
bound is taken at time t = 5 and asks for a delay T = 10, i.e., we consider the
probability P(dsys(5) > 10). The parameter of the exponential distributions for
the arrivals and cross-�ows is given by λ = 4 (we assume all three �ows to have
the same rate λ for simplicity), while the server-rates are u = 1 and v = 2. This
corresponds to a utilization of 50% and 25%, respectively. We present the results
for a window size of Σ = 15.

6.1.1. Throttled vs. Unthrottled System. First we want to compare the
system to its unthrottled counterpart. To that end, we alter the arrival rates λ,
resulting in utilizations from 30% to 80%. We plot the corresponding violation
probabilities for the performance bounds on a logarithmic scale for the throttled,
as well as the unthrottled system. We did this for di�erent window-sizes Σ =
10, 15, 20. The results are displayed in Figure 6.1.1 as black and blue lines for the
throttled and unthrottled system, respectively. As expected, the throttled system
behaves better, the larger Σ is; for Σ = 20 the throttled system behaves almost
identically to the unthrottled one.

6.1.2. Dependence on Delay. A major di�erence between the unthrottled
and the throttled analysis lies in the dependency on the delay T . While for the
unthrottled system an increase in T leads to a decrease in the violation probability,
we see in the bound of Theorem 26, that the term P(¬E) increases in T . In Figure
(6.1.2), one sees for the black line how the bound evolves for an increasing T . The
two red lines show how the bound di�ers when choosing b = Σ

2 ,
9Σ
10 as suggested

in Remark 27 (Equation (6.0.4)). The trend here for larger T is, that the bound
becomes worse, the larger the di�erence between b and Σ is. However, for small
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Figure 6.1.1. A graph showing the violation probabilities de-
pending on the utilization of throttled (black) and unthrottled
(blue) systems for di�erent window sizes. The red lines are equal
to 1, 10−3 and 10−6.

0 5 10 15 20 25 30

1e
−

05
1e
−

04
1e
−

03
1e
−

02
1e
−

01

Delay T

V
io

la
tio

n 
P

ro
b.

b = 0.5 Sigma
b = 0.9 Sigma

Figure 6.1.2. A graph showing how the bound evolves when in-
creasing the delay T . The red colored lines represent a shift towards
the violation probability of event E.

values of T there is a very slight improvement for b = 9Σ
10 and even for b = Σ

2 . In this
scenario, trading a higher violation probability for the event E is not worthwhile
the gain from a better service description Usys.

To investigate the composition of the delay bound further, we separated the
two parts of the bound in Figure (6.1.3). The blue circles correspond to the delay-
part of the violation probability P(dU⊗V (t) > x) and the red circles correspond to
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Figure 6.1.3. A graph showing the di�erent components of the
violation probability: the blue circles are the delay-part, while the
red circles represent the subadditivity-part. The black circles are
the sum of both parts. The lines show the same for di�erent shifts
towards the violation probability P(¬E).

the violation probability of event E, while the solid black circles are the sum of
both. It can be clearly observed that from a certain point onwards the probability
P(¬E) dominates the overall violation probability. The additional lines drawn into
the graph, show how the di�erent parts of the bound are a�ected when we use
b = Σ

2 ,
3Σ
4 ,

9Σ
10 in Equation (6.0.4). It can be seen that the delay-part (blue) of the

probability experiences no considerable change, while the probability of violating
event E (red) increases signi�cantly, when b < Σ.

6.1.3. Convervence to Unthrottled System. In Figure (6.1.4), we con-
sider the convergence of the throttled system towards the unthrottled one when
increasing the window size. Clearly, from Theorem (26) the violation probability
P(¬E) vanishes for increasing window sizes. However, the throttled system does
not fully converge to the unthrottled one, since the delay-part of the bound still
di�ers:

P(dU (t) > T ) ≤ P(dU⊗V (t) > T ).

The size of the gap, which cannot be closed by increasing the window size further
is completely dependent on the service descriptions U and V . We present in the
graph the same system as before, but vary v = 2, 1.5, 1.1. One can see clearly how
the gap to the delay of the unthrottled system (red) increases, when reducing the
rate of v.
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Figure 6.1.4. A graph showing the convergence of the throttled
system towards the unthrottled one, when increasing the window
Σ. The red line is the bound for the unthrottled system. The black
lines show the throttled system, for di�erent rates of v.



CHAPTER 7

Conclusion and Outlook

In this work, we have dealt with the long-standing problem of analysing WFC
systems in SNC.While such feedback loops had been solved in deterministic network
calculus more than a decade ago, its counterpart in the stochastic setting has been
a well-known open problem [14, 11, 12, 7]. We presented how far subadditive
service carries DNC solutions for WFC systems into stochastic network calculus.
In that discussion, we encountered the very general notion of σ-additive operators
and saw as a tractable example a feedback-loop containing a single subadditive
server. Unfortunately, this method reaches the end of the road as soon as operators
appear which no longer commute, or are not idempotent. This is not untypical in
applications, for example if tandems of servers are involved.

Therefore, we approached the problem in two di�erent ways and hence, for the
�rst time, successfully analysed general WFC systems in the context of SNC. For
the �rst method, we identi�ed subadditivity and its weaker defective version as key
for tackling WFC in SNC. Building upon this property we gave the �rst stochastic
performance bounds in WFC systems. Although the assumption of subadditive
service is rather strong, we were able to identify feed-forward networks with strict
priority scheduling as subadditive networks. Future work on this method includes
focusing on more general topologies or schedulers (e.g. FIFO).

In the second method instead of assuming subadditive service elements, we
leverage the stochastic nature of the problem and ask for the probability of the
feedback loop not being subadditive. This e�ectively allows the analysis of WFC
systems in MGF-based network calculus. The resulting bounds consist of two parts:
�rst, a delay-bound of a conventional unthrottled system, containing the feedback
loop as service; second, a probability of violating the subadditivity, by more than
the window size. The structure of our result makes a direct comparison between
throttled and unthrottled systems possible. The presented method uses a backlog

bound for the system
U−→ U ⊗ U →. The �arrivals� ' and �service� ' in this scenario

are strongly correlated. While using Hölder's inequality deals correctly with that
dependence, it also neglects its possible advantages. As the arrivals and the ser-
vice in this system are positively correlated one can hope to improve the bounds
signi�cantly, when taking the dependencies into account.

The analysis of WFC systems in stochastic network calculus is not completed
yet, but has rather just begun. While the now available methods can handle varying
window sizes Σ, they can take only limited advantage of their variations.

Besides improving both methods with respect to tightening the bounds, one
can extend and built upon this work: one direction is to break the �end-to-end�
feedback-loop into several hops, resulting in a tandem of WFC systems. Another
interesting question would be how to e�ectively handle stochastic dependencies

36
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between the �upstream�-service U , the �down-stream�'-elements and the window-
process Σ. Answering this will push the applicability of SNC even further. By
better grasping the occuring dependencies one can eventually aim at analysing
systems like the window-controlled TCP in SNC.
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