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Abstract—Response time bounds are important for many
application scenarios of wireless sensor networks (WSN). Often,
during the planning phase of a WSN its topology is not known.
It rather results from a deployment process. This makes the
provision of deterministic response time bounds difficult. In this
paper, we strive for statistical response time bounds in WSNs
that take the stochastic nature of the deployment process into
account. Based on a Monte Carlo method we derive estimates
for quantiles of the maximum response time distribution under
uncertainty about the topology. In numerical experiments we
show that the long but light tail of this distribution causes
considerably lower bounds compared to the deterministic one
even under small violation probabilities and, yet, on the other
hand compare favourably with the median of the distribution.

Index Terms—Performance Bounds, Wireless Sensor Net-
works, Quantile Estimation.

I. INTRODUCTION

There are many applications of wireless sensor networks
(WSN) that require bounds on the response time of any
sensor node to report on events. Response times depend on
a number of factors, most importantly: the traffic intensity
and its pattern, the forwarding capabilities of the nodes, their
lifetime goals and thus their duty cyle, and the topology of
the WSN. Sensor network calculus [1], [2] is a method to
compute reponse time bounds based on these factors. Usually
such calculations are carried out during the planning phase of
a WSN in order to support decisions like how many nodes
and sinks are required, etc. In fact, most of the above factors
can be assumed to be known or controllable. Yet, the topology
of the WSN is often not perfectly known in advance. So, the
sensor network calculus cannot be directly applied. To the
best of our knowledge, the only work that tries to factor in
the uncertainty about the topolgy of a WSN due to random
deployment is [3]. In that work, worst-case topologies have
been proven in the framework of deterministic sensor network
calculus, thus arriving at deterministic response time bounds.

In this paper, we show that under uncertainty about the
topology worst-case response time bounds can be far off from
realistic response times. We show that the discrepancy mainly
depends on the degree of uncertainty about the topology.
Most importantly, we demonstrate that by departing from
deterministic worst-case bounds to statistical bounds we can
improve the bounds considerably without losing too much
assurance. This statement is substantiated by a Monte Carlo

based method to compute statistical response time bounds with
a controllable precision.

II. SENSOR NETWORK CALCULUS

This is a basic overview of the Sensor Network Calculus
(SNC). Detailed explanations can be found in [1], [2].

A. Basic Sensor Network Calculus

To apply the basic SNC, the network topology has to be
known. For example, a tree-structured network topology with
a sink at the root and n sensor nodes can be used. Next,
the network traffic has to be described in terms of the so-
called arrival curves for each node. An arrival curve defines
an upper bound for the input traffic of a node. Leaf nodes
in the network must handle traffic according to the sensing
function they perform; for example, a node might sense an
event and create a data packet at the maximum rate of one
packet every second. This sensing pattern can be expressed as
an arrival curve αi. Non-leaf nodes handle traffic according to
their own sensing pattern and the traffic they receive from other
nodes. To calculate the output, the so-called service curve βi
is used. The service curve specifies the worst-case forwarding
capabilities of a node. The necessary forwarding latencies are
defined by the nodes’ forwarding characteristics. From the
arrival and service curves, it is possible to calculate the output
bounds for each node. Using those bounds, it is possible to
compute the effective input ᾱi for each node. After that, the
local per-node delay bounds Di for each sensor node i can be
calculated according to basic network calculus results [4]:

Di = h(ᾱi, βi) = sup
s≥0
{inf{τ ≥ 0 : ᾱi(s) ≤ βi(s+ τ)}}.

To compute the total information transfer delay D̄i for a given
sensor node i, the per-node delay bounds on the path P (i) to
the sink need to be added:

D̄i =
∑

j∈P (i)

Dj

Clearly, a bound on the maximum information transfer de-
lay in the sensor network can then be calculated as D =
maxi=1,...,N D̄i. The whole procedure is called total flow
analysis (TFA) because the entire traffic arriving at a given
node is treated in an aggregate fashion. Examples for the use
of this calculus can be found, e.g., in [5]–[7].



B. Advanced Sensor Network Calculus
Although, TFA is a straightforward method for applying

network calculus in the domain of wireless sensor networks,
there is room for improvement with respect to the quality
of the calculated performance bounds. This is because of the
fact that a concatenation result for consecutive nodes offering
service curves is not exploited by TFA. In particular, we
can exploit and even extend the concatenation result towards
the so-called Pay Multiplexing Only Once analysis (PMOO)
described in [8], to compute an end-to-end service curve for
the specific flow of interest from one sensor node to the sink.
Due to the sink-tree structure of the network, all flows that
join the flow of interest remain multiplexed until the sink,
making it possible to calculate the total information transfer
delay D̄i for a given sensor node i by using a flow-specific
end-to-end service curve. PMOO can be shown to deliver a
tight bound for sink-trees of homogeneous nodes [9]. When
compared to the addition of the nodal delay bounds, as done
by TFA, this results in considerably less pessimistic bounds as
each interfering flow’s burst has to be taken into consideration
only once.

C. Worst-Case Topologies
The most direct usage of the sensor network calculus

assumes a known topology. Yet, this is exactly where we want
to part from in this paper. Previous work of ours established for
certain (but typical) WSN scenarios the concept of worst-case
topologies [3] with respect to the maximum response time.
Under no knowledge at all about the topology this may result
in very conservative bounds. Therefore the work in [3] also
reasoned about the worst-case topology when at least some
restrictions could be made. Here we provide the basic notions
and the central result from [3]:

Definition 1. ((o, d)-Constrained Tree) A tree is (o, d)-
constrained if all of its nodes have an outdegree of less than
o and none is more than d edges away from the root.

Definition 2. (Maximally Deep (o, d)-Constrained Tree) A
tree with n nodes is a maximally deep (o, d)-constrained tree
if it is (o, d)-constrained and the sum of distances from each
node to the sink

∑N

i=1
di is maximal. (di denotes the number

of edges from node i to the root), i.e., there is no other (o, d)-
constrained tree with a larger sum of distances.

Theorem 3. In a homogeneous sensor network of n nodes
each with an token bucket arrival curve αr,b, a rate-latency
service curve βR,T and an (o, d)-constraint on the topology, a
sensor network topology which consists of as many nodes as
possible below the node next to the sink and has a maximally
deep (o, d)-constrained tree below this node constitutes a worst
case topology with respect to the maximum response time.

An important contribution of this paper is to investigate
how conservative these deterministic response time bounds are
in terms of random deployment processes and to devise an
approach to provide for statistical response time bounds.

III. MODELING THE DEPLOYMENT PROCESS

In this section, we discuss how to model deployment
processes that involve a certain degree of uncertainty. We
abstract the actual deployment process to the determination of
the sensor nodes’ locations. Together with routing this directly
results in uncertainty about the topology of the WSN.

The conceivable deployment processes, e.g. by airplane
or human operators, are usually modeled by spatial point
processes. In the following two subsections we introduce
deployment models with different assumptions on the degree
of structure and randomness of this point process.

A. Uniform Random Deployment

Deployment processes with a high amount of uncertainty
can be most easily modeled by a uniform random placement
of the sensor nodes over the sensor field. This is essentially
equivalent to a spatial Poisson process, where however the
number of random points in the plane is set deterministically.

Specifically, for each sensor node both coordinates are gen-
erated independently by a random number generator delivering
uniformly distributed values.

B. Statistically Disturbed Grid Deployment

Uniform random deployment models a completely random
deployment process, but there may often be some structure.
We want to reflect this by a partial random deployment model.
In our case, the deployment process strives to achieve a grid
layout of the sensor nodes as this results in a number of
desirable characteristics, e.g., with respect to coverage [10].
However, we assume a perfect grid layout not to be achievable
or resulting in a too costly deployment process and thus model
a grid deployment approximation called statistically disturbed
grid which is similar to the approach used in [11].

Definition 4. (Statistically Disturbed Grid) Given a set L of
locations generated by overlaying a regular n ∗ n grid on the
sensor field F, we define for each l ∈ L an area Dl of possible
locations for sensor node l by

Dl := {l′ ∈ F : d(l, l′) < rdisturbance},

where d(a, b) denotes the Euclidean distance between posi-
tions a and b and rdisturbance denotes the so-called disturbance
radius. A statistically disturbed grid is now generated by
choosing for each sensor node l a position from Dl according
to a uniform random distribution.

With the disturbance radius, we can control how accurate a
regular grid layout (rdisturbance = 0) is approximated.

IV. COMPUTING STATISTICAL RESPONSE TIME BOUNDS

In this section, we introduce our approach to compute
statistical bounds on maximum response times in WSNs with
random deployment. Basically, we propose a Monte Carlo
method for the estimation of quantiles of the maximum re-
sponse time. The maximum response time of a given topology
can simply be calculated using SNC as detailed in Section II.
However, the actual topology is the result of a random process



which lets the deployment become a random variable itself.
Relating the known distribution function for the random vector
of node positions (e.g., a uniform random distribution) to a
distribution function for the topology is next to impossible.
Thus, we resort to randomly sampling the probability space of
possible topologies by implementing a Monte Carlo simulation
[12]:

1) Define a domain of possible inputs.
In our case, the domain is the set of possible sink-trees.

2) Generate inputs randomly from the domain using a
certain specified probability distribution.
The probability distribution of the sink-tree topologies
depends on the deployment process. In any case, gener-
ating node distributions randomly and applying a routing
scheme leads to a set of random sink-tree topologies.

3) Perform a deterministic computation using the inputs.
In this step, we have to work out the maximum response
time for each topology generated in Step 2. This can be
done based on the determinstic calculations using SNC.

4) Aggregate the results of the individual computations into
the final result.
Using order statistics we estimate different quantiles
of the maximum response time distribution over the
probability space of random topologies as induced by
the respective random node distribution. The precision of
this estimation is calculated based on a Chernoff bound
approach as presented in [13].

Results from Monte Carlo methods can always be improved by
generating more random samples in Step 2. Yet, this has to be
weighted against the additional computational effort (mainly
incurred in Step 3). Based on a prescribed precision for the
quantile estimator (Step 4) we can work out the required num-
ber of random topologies to be generated beforehand. Some
of the mathematical details are given in the next subsection.

V. EXPERIMENTS

A. Experimental Setup

In this section, we specify the assumptions and actual
parameter settings for the numerical experiments we perform
to investigate statistical response time bounds. We try to
choose the parameters based on realistic values for sensor
nodes, traffic demands, and deployment model parameters.
Since some of the parameters may have an important effect on
our bounds we treat them as primary factors and evaluate them
for several levels. As a benchmark for our statistical bounds
we select the worst-case topology based approach from [3].

1) Sensor Node and Traffic Characteristics: The sensors
are modeled to be identical and consisting of an IEEE
802.15.4-compliant transceiver as well as a sensing unit that
periodically generates some measurement data.

To obtain quantifiable ratios between worst-case response
times of independently generated topologies we set the pa-
rameters in such a way that sensor network calculus’ PMOO
analysis is still able to compute finite bounds. This is a non-
trivial task as there is uncertainty about the topology and

therefore the load can only be estimated in advance. The main
factors are the number of sensors n, the sensors’ service curve
βR,T and the arrival curve αr,b. Let n′ denote the number of
flows crossing a node, then the PMOO delay bound is finite
iff R ≥ n′ ∗ r, i.e., every node in one hop distance to the sink
is able to forward all data flows from the subtree below it.

The arrival rate r can be kept small by efficient encoding.
Accordingly we chose αr,b = α280[ bs ],280[b]

, leaving at least 4
bytes of the IEEE 802.15.4 frame for a sensor’s measurements.

The transmission rate ttx of IEEE 802.15.4 is rtx = 250kb
s .

Yet, we want to take duty cycling, i.e., the ratio ρ of periods
of operation divided by all periods, into account. The service
rate is thus reduced to R = rtx×ρ. The investigated levels of
ρ in our experiments are ρ = 0.25 and ρ = 1, i.e., there is no
duty cycling. In the former case R = 62.5kb

s , which yields a
maximal subtree size of

⌊
62500
280

⌋
= 223 nodes.

2) Network Characteristics: The deployment area is mod-
eled as a unit square. In order to enforce finite response time
bounds with high probability, we chose the uniform random
deployment and statistically disturbed grid deployments with
rdisturbance ∈ {0.01, 0.03, 0.05}. These deployment models,
greedy perimeter stateless routing, and a transmission range of
0.15 result in maximum distances of 5 to 6 hops to the central
sink. We chose to the deploy n = 302 sensors as three models
are grid approximations and a deployment of more than 1000
nodes leads to subtrees exceeding the maximal size.

3) Precision of the Statistical Bounds: The number of
topologies to generate is defined by the desired precision for
the statistical response time bounds. As we move closer to the
actual worst-case topology, a high precision becomes more
costly. So, the maximum number of topologies to generate is
determined by the maximum quantile. We decided to estimate
a maximum quantile of p = 0.99. Referring to the Charnoff
bound approach in [13], we set the values of δ = 0.01 and
ε = 0.01, such that for all quantile estimates of the maximum
response time bounds r̂p it applies that

P (r̂p ∈ [r0.99p, r1.01p]) ≥ 0.99,

or, in particular, for p = 0.99

P (r̂0.99 ∈ [r0.9801, r0.9999]) ≥ 0.99.

This results in the necessity of

N ≥
⌈

2(1 + 2× 0.01)

0.99× 0.012
ln

(
2

0.01

)⌉
= 109178

generated topologies for each configuration of parameters.
Thus, we chose to set N = 110, 000 in all our experiments.

4) Worst-Case Response Time Bounds: To benchmark the
results from our method of computing statistical bounds, we
compare them against worst-case bounds derived based on [3].
To that end, we require an (o, d)-constraint on the maximum
subtree of the WSN. Under our previous assumptions, there
is in fact no better bound for d than the number of sensor
nodes n. As this would lead to infinite delay bounds for
all our investigated scenarios, we needed a more competitive
alternative. Therefore, we extracted the maximum subtree size



Figure 1. Response time for 302 sensors and cycle ρ = 0.25 (a), ρ = 1 (b)

n′ and the resulting depth d from each generated topology
set and used these values together with o = ∞ to invoke
Definition 2 from [3] (see Section II) in order to calculate the
worst-case response time bound.

B. Numerical Results

In this section, we present the numerical results of our
experiments. In particular, we compare our statistical response
time bounds with deterministic worst-case bounds. Thereby,
we analyze the effect of some parameters on the achievable
bounds like the degree of the deployment process randomness.

1) Quality of the Bounds: In Figure 1, we show the
analytical worst-case bound from [3] (wc analy), the worst
response time encountered in the Monte Carlo simulation (wc
experim), and several quantile estimates computed based on
our Monte Carlo method. Besides the usually interesting high
quantiles we also provided the 0.5-quantile, i.e., the median.

For a duty cycle of ρ = 0.25, the analytical worst-case,
while not being totally unrealistic in terms of overshooting
on observed response time bounds in simulations, can be
considerably improved by statistical bounds. The actual gain
depends on the deployment model; this is to be analyzed in
the next subsection in more detail. Further, it can be observed
that the 99%-quantile is only slightly higher than the median,
which makes the statistical approach even more attractive as
it indicates that the maximum response time distribution has a
rather long, but light tail. By releasing some assurance on the
response time bound we can bring the quantile pretty close to
the average behaviour of the system (assuming that the median
characterizes average behavior).

2) Factor Analysis: In this section, we further analyze the
bounds’ dependencies on some factors. While we performed
an extensive analysis, we limit our presentation on the deploy-
ment model being used and the duty cycle of the nodes.

Deployment Models. By investigating different deployment
models (see Section III) we analyze the effect of the degree
of uncertainty about the topology. The results are depicted
in Figure 1(a) for a duty cycle of 0.25. Clearly, the higher
the degree of uncertainty, the higher the difference between
worst-case and statistical reponse time bounds. In fact, only
the worst-case bound is affected by the increasing uncertainty.
As mentioned before, the statistical response time bound rep-
resented by the 99% quantile stays very close to the median of
the maximum response time distribution under all deployment
models, which is actually the best one could hope for.

Duty Cycle. To investigate the effect of duty cycling on the
response time bounds we performed a set of experiments with
no duty cycling, i.e., ρ = 1. The results are shown in Figure
1(b). In contrast to Figure 1(a) which contains the results for
equal settings except for ρ the delays are much lower. More
interestingly, we can observe that the differences between
worst-case und statistical response time bounds are no longer
as pronounced as before. Apart from the almost deterministic
deployment (stat. grid r = 0.01), the deployments achieve
more or less the same results. It is also interesting to note
that the analytical worst case bounds are experienced under
all deployment models. The reason for this behavior lies in
the fact that without duty cycling the topological influence is
mainly reduced to the size of the maximum subtree of the
WSN, which provides for less variability of the respective
maximum response time bound distribution.
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