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ABSTRACT
The ability to calculate backlog bounds is of key importance
for buffer sizing in packet-switched networks. In particu-
lar, it is critical to capture the statistical multiplexing gains
which, in turn, calls for stochastic backlog bounds. The
stochastic network calculus (SNC) is a promising method-
ology to compute such stochastic backlog bounds. So far
in the literature SNC-based backlog bounds apply only to
an arbitrary, but fixed single point in time. Yet, from the
network engineering perspective, one would rather like to
have a sample path backlog bound, i.e., a bound that ap-
plies (with a certain fixed violation probability) all of the
time. While, in general, such bounds are hard to obtain we
investigate in this paper how sample path backlog bounds
can be computed over finite time horizons. In particular,
we show how a simple extension of the known SNC results
can lead to sub-optimal bounds by deriving an alternative
methodology (based on extreme value theory) for bounding
the backlog over finite time horizons. Interestingly, none
of the two methods completely dominates the other. For
the new method we also discuss how it can be evolved into
a corresponding calculus for network analysis analogous to
the existing SNC.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Modeling techniques

General Terms
Theory

Keywords
Stochastic Network Calculus, Extreme Value Theory, Back-
log Bounds

1. INTRODUCTION
Buffer sizing is a very important task in planning and con-
trolling a packet-switched network. Since the early days of

packet-switched networks it has seen much treatment [15],
continues to be investigated intensively these days (see, e.g.
[1, 13] and very likely will remain an important topic in
the future. Thus, it is important to characterize the backlog
process q(n) in a queueing system (here, we assume discrete-
time). The difficulty in doing this lies in the stochastic na-
ture of arrivals and being able to capture the resulting sta-
tistical multiplexing effect, which can be seen as the raison
d’être of packet-switched networks. In particular, one is in-
terested in probabilistically bounding the backlog. Ideally,
the following sample path bound could be calculated

P(∀ n : q(n) > Bε) ≤ ε⇔ P(max
n≥1

q(n) > Bε) ≤ ε.

Yet, such a sample path bound on the backlog process is un-
der most practical circumstances quasi-deterministic, i.e., ε
only takes values 0 or 1. Stochastic network calculus (SNC)
is a recent theory which among other performance measures
allows to compute bounds on the backlog in a queueing sys-
tem. In short, it allows to compute the following pointwise
backlog bound:

P(q(n) > Bε) ≤ ε ∀ n ≥ 1

This, however, is often not quite what a network engineer
desires as, in the course of time (or, more technically, on
the actual sample path of the system), this bound does not
give direct information on how often the backlog bound Bε
will be violated. Therefore, in this paper, we in a certain
sense aim at the middleground between these two extremes
by finding ways to calculate sample path backlog bounds
over finite time horizons of the form

P(∀ n ≤ N : q(n) > Bε) ≤ ε⇔ P( max
1≤n≤N

q(n) > Bε) < ε.

The power of such a finite sample path backlog bound lies
in its ability to answer relevant network engineering ques-
tions like: What is the probability that my system exceeds
a certain backlog of Bε in the next N time steps? In fact,
it may even be a way to work out the (infinite) sample path
bound from above if a deterministic bound on the dura-
tion of a backlogged period is available (this is the case for
example when multiple independendent regulated flows are
multiplexed as e.g. in [6, 22, 16, 21]).

As we will see in the course of the paper, it is possible to
directly transform the SNC-based pointwise backlog bound
into a finite sample path backlog bound (simply using Boole’s
inequality). Yet, this already ”feels” sub-optimal as the vio-
lation probability ε grows linearly with the time horizon N ,



although it is of course bounded by 1. We substantiate this
uneasiness of directly applying the SNC results in this way
by developing an alternative method to bound backlogs on
finite sample paths. The new method naturally lends itself
to the calculation of finite sample path backlog bounds and
always results in violation probabilities of less than 1. It
is based on a simple observation of the system dynamics as
well as on extreme value theory (EVT), a tool mainly used in
financial and actuarial mathematics to calculate the proba-
bility of rare events involving some extremal expression. The
new method delivers better bounds than the direct applica-
tion of existing SNC results, thus exemplifying the problem
with simply using Boole’s inequality to arrive at finite sam-
ple path backlog bounds which was its main purpose in this
work. However, motivated by these results we also see the
potential for developing an alternative SNC, thus enabling
to analyse more complex network scenarios. To that end,
we also demonstrate how the corresponding operations, like
multiplexing of flows, computation of output bounds, and
leftover service computation can be performed.

The rest of the paper is organized as follows: In Section 2 we
discuss related work. In Section 3 we briefly review the ba-
sics for this work, including our network model and a short
introduction into SNC (concretely, we focus on Chang’s ver-
sion of the SNC [5], which is based on moment generating
functions (MGF), which is why it is also often simply called
MGF-Calculus). In Section 4, we show how to achieve finite
sample path backlog bounds using our alternative method
and compare it in numerical examples with the direct appli-
cation of the SNC-based bounds in Section 5. In Section 6,
we illustrate how the new method can be applied to more
complicated network scenarios using an example. Section 7
concludes the paper and provides an outlook to future work.

2. RELATED WORK
From the domain of classical queuing theory, it is known
that exact calculations of the buffer occupancy distribution
(in our terms the steady-state backlog distribution) are only
possible for some simple source models [17]. However, what
has been demonstrated in the literature is that powerful
techniques such as large deviations [20], local limit theo-
rems [18], or extreme value theory [10] can provide approx-
imations that work well in the asymptotic domain. As we
are, however, interested in non-asymptotic bounds rather
than asymptotic approximations for the backlog process,
these results, while being interesting and inspiring, do not
quite fit our needs. Furthermore, these methods are typi-
cally very specifically tailored e.g. to certain assumptions on
the arrival processes. In contrast, we follow the framework-
oriented approach of SNC where we try to keep the analysis
as generic as (far as) possible.

There have been several approaches to develop an SNC: The
most prominent branches are the MGF calculus by Chang
[4], later refined by Fidler in [11]; the statistical network
calculus by Liebeherr et al. [3], extensively and nicely de-
veloped in [8]; and the work of Jiang which is well collected
in [14]. We do not want to discuss their different merits and
drawbacks here (an excellent survey can be found in [12]),
but will focus on the MGF calculus in the rest of the paper
as it is probably the most popular among those three (ad-
mittedly superficially judging based on citation counts from

Google Scholar). Anyway, we found none of them or any
derivative work to deal with sample-path backlog bounds
over finite time horizons as discussed in Section 1. In fact,
most SNC papers are very much focussed on delay as per-
formance measure with a few exceptions (e.g. [7]), yet all of
these calculate pointwise backlog bounds.

3. PREPARATIONS
Throughout the paper, we assume time to be discrete, whereas
data can be either discrete or continuous.

3.1 Arrival and Service Processes
We describe the arrival and departure processes at some
node as sequences of non-negative real numbers, which can
be random. For this denote by J the space of sequences of
non-negative random variables. We denote such a sequence
by e.g. (an)n∈N and the cumulative distribution function
(cdf) of one element of the sequence by Fa. Further we define
I as the space of sequences of non-negative i.i.d. random
variables. Clearly I ⊂ J . For the rest of this work capital
letters denote the cumulatives of such sequences, for example
if (an)n∈N ∈ J we have

A(n) :=

n∑
m=0

am

where - as usual - the empty sum is zero, i.e. A(0) = 0.
For the case, that an = c for some c and all n ∈ N almost
surely, we just write (an)n∈N = c. Sometimes it will be con-
venient to use the zero as index expanding the set (an)n∈N
to (an)n∈N0 . In this case we always set a0 = 0.

A service process at some node is instead given by a doubly
indexed stochastic process e.g. S(m,n) with:

0 ≤S(m,n) ∀ m,n ∈ N
S(m,n) ≤S(m,n′) ∀ m ∈ N and n ≤ n′

In the special case of S(m,n) = S(n) − S(m) for some S
non-decreasing, we can consider the increments (sn)n∈N ∈ J
with sn := S(n− 1, n). We will then just speak of a service
(sn)n∈N. We say a node offers service S if for every arrival
(an)n∈N ∈ J and its corresponding departures (dn)n∈N ∈ J
holds:

D(n) ≥ min
0≤k≤n

{A(k) + S(k, n)}

with equality if Lindley’s equation is fulfilled:

q(n+ 1) = max{0, q(n) + a(n+ 1)− s(n+ 1)}

3.2 Stochastic Network Calculus
In this work, we follow the framework of (σ(θ), ρ(θ))-calculus
or simply MGF-Calculus, as presented in [5]. The basic idea
is to bound the MGF of the arrivals and service by some
exponential. This of course only works, if the correspond-
ing MGF exists. Next, we define how exactly these bounds
are calculated and display some results, which allow us to
analyse networks and achieve backlog bounds. The proofs
for the lemmata in this subsection are omitted and can be
found either in [2] or in [5].

Definition 1 (Arrivals and Services). An arrival



(an)n∈N ∈ J is (σ(θ), ρ(θ))-bounded iff for some θ > 0:

sup
k≥0
{E(eθ(A(n+k)−A(k)))} ≤ enθρ(θ)+θσ(θ) ∀ n ∈ N

If this is fulfilled we write (an)n∈N � (σ(θ), ρ(θ)).

A service S is (σ(θ), ρ(θ))-bounded iff for some θ > 0:

sup
k≥0
{E(e−θS(k,n+k))} ≤ enθρ(θ)+θσ(θ) ∀ n ∈ N

If this is fulfilled we write S � (σ(θ), ρ(θ)).

Note that if S � (σ(θ), ρ(θ)) then ρ(θ) is usually negative.

Now assume a node with service (sn)n∈N ∈ J serves two
arrival processes (ān)n∈N ∈ J and (an)n∈N ∈ J , where
(ān)n∈N has a higher priority than (an)n∈N. Then the low-
priority flow receives only the service, which is left over
by the high-priority flow. In expression, if we denote by
(sn)n∈N ∈ J the leftover service, we have:

sn = max{0, sn − ān − q(n)}

where q(n) denotes the queue of the prioritized flow at time
n, i.e. q(n) = Ā(n − 1) − D(n − 1). This scenario can
be generalized to doubly indexed services S and we get the
following for the leftover service:

Lemma 2 (Leftover Service). In the above situation
we have

(Sn)n∈N � (σa(θ) + σS(θ), ρa(θ) + ρS(θ))

if S and (an)n∈N ∈ J are stochastically independent.
If they are not stochastically independent we still have (using
Hölder’s inequality)

(Sn)n∈N � (σa(qθ) + σS(pθ), ρa(qθ) + ρS(pθ))

where 1
p

+ 1
q

= 1.

Lemma 3 (Multiplexing). If we have two stochasti-

cally independent arrivals (a
(1)
n )n∈N ∈ J and (a

(2)
n )n∈N ∈ J ,

which are (σa(i)(θ), ρa(i)(θ))-bounded (i = 1, 2), then it holds
for the multiplexed flow that

(a(1)
n + a(2)

n )n∈N � (σa(1)(θ) + σa(2)(θ), ρa(1)(θ) + ρa(2)(θ))

For the case that the arrivals are not stochastically indepen-
dent, we still have

(a(1)
n +a(2)

n )n∈N � (σa(1)(qθ)+σa(2)(pθ), ρa(1)(qθ)+ρa(2)(pθ)).

Lemma 4 (Output bound). Let

(an)n∈N � (σa(θ), ρa(θ))

and

S � (σS(θ), ρS(θ)).

Denote the output of the node by (dn)n∈N ∈ J , in the case
of independence between arrivals and service we get:

E(eθ(D(n)−D(m)))

≤eθ(σa(θ)+σS(θ))e(n−m)θρa(θ)
m∑
k=0

ekθ(ρa(θ)+ρS(θ))

for all m,n ∈ N with m ≤ n. Also

(dn)n∈N � (σa(θ) + σS(θ) + σ̃(θ), ρa(θ))

with:

σ̃(θ) =
1

θ
log(1− eθ(ρa(θ)+ρS(θ)))−1

For the dependent case we similarly get

(dn)n∈N � (σa(qθ) + σS(pθ) + σ̃(qθ, pθ), ρa(qθ))

with

σ̃(qθ, pθ) = (1− eθ(ρa(qθ)+ρS(pθ)))−1

and 1
p

+ 1
q

= 1.

Lemma 5 (Backlog Bound). In the same situation as
in the previous lemma it holds for all n ∈ N:

P(q(n) ≤ x) ≤ e−θxeθ(σa(θ)+σS(θ))
n∑

m=0

emθ(ρa(θ)+ρS(θ))

if (an)n∈N is stochastically independent of S. If this is not
the case we have

P(q(n) ≤ x) ≤ e−θxeθ(σa(qθ)+σS(pθ))
n∑

m=0

emθ(ρa(qθ)+ρS(pθ))

for all n ∈ N and p, q such that 1
p

+ 1
q

= 1.

Here we see, that the violation probability of exceeding a
certain backlog is only valid for a single point in time n.
To achieve a finite sample path bound we might use the
following simple inequality:

P( max
1≤n≤N

q(n) < B) = P

(
N⋂
n=1

q(n) < B

)
≤

N∑
n=1

P(q(n) < B)

However by just adding the violation probabilities, we see
them (nearly) linearly increasing for growing N . Hence,
the violation probabilities grow until they reach the value 1
and are useless henceforth. To achieve a finite sample path
bound with violation probability ε, we have to choose the
parameter B in such a way that for large intervals of length
N the violation probability for the pointwise backlog bound
is of order ε

N
. Two questions arise at this point. First: how

large do we need to choose B, i.e., what is the quality of
our bound, for a given violation probability ε and interval
length N? Second: Can we do something smarter than just
adding the violation probabilities? The next chapter deals
with the second question, while the numerical evaluations in
chapter 5 give us some insights on the first question.

4. ALTERNATIVE BOUND
First, we take a look at a bound, which is valid for finite
sample paths“by nature”. For this denote by EµN the number
of arrivals an up to time N exceeding some value µ:

EµN :=
N∑
n=1

1{an>µ} ∈ {0, . . . , N}

The arrivals exceeding µ form a subsequence of (an)n∈N,
which will be denoted by (ani)i∈{0,...,EµN}

.



Theorem 6. Assume a node with service S and an in-
coming flow described by (an)n∈N ∈ J . Then the following
finite sample-path backlog bound holds for all µ ∈ [0,∞):

P( max
1≤n≤N

q(n) > B)

≤ 1−
N∑
m=0

P(EµN = m)

· P
({ ⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)µ
}

∩
{

max
1≤i≤m

ani ≤ µ+
B

m

}∣∣∣EµN = m
)

And if S is stochastically independent of (an)n∈NJ we have:

P( max
1≤n≤N

q(n) > B)

≤ 1− P
( ⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)µ
)

·
N∑
m=0

P(EµN = m)P
(

max
1≤i≤m

ani ≤ µ+
B

m

∣∣∣∣EµN = m

)

Proof. Assume for a while that EµN = m and

max
1≤i≤m

ani ≤ µ+
B

m

and

S(k, n) ≥ (n− k)µ ∀ 0 ≤ k ≤ n ≤ N
holds. Then we can imply for every n ∈ {1, . . . , N}:

q(n) = A(n)−D(n) ≤ max
0≤k≤n

{A(n)−A(k)− S(k, n)}

= max
0≤k′≤n

{A(n)−A(n− k′)− S(n− k′, n)}

= max
0≤k′≤m

{A(n)−A(n− k′)− S(n− k′, n)}

∨ max
m+1≤k′≤n

{A(n)−A(n− k′)− S(n− k′, n)}

≤ max
0≤k′≤m

{
k′
(
µ+

B

m

)
− k′µ

}
∨ max
m+1≤k′≤n

{
m

(
µ+

B

m

)
+ (k′ −m)µ− k′µ

}
= B

Hence we get by the law of total probability:

P( max
1≤n≤N

q(n) > B)

= 1− P( max
1≤n≤N

q(n) ≤ B)

= 1−
N∑
m=0

P(EµN = m)P( max
1≤n≤N

q(n) ≤ B|EµN = m)

≤ 1−
N∑
m=0

P(EµN = m)

· P
({ ⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)µ
}

∩
{

max
1≤i≤m

ani ≤ µ+
B

m

}∣∣∣EµN = m
)

For the case of independence we continue by applying
P(A ∩B|C) = P(B|C)P(A|B ∩ C)

= 1−
N∑
m=0

P(EµN = m)P(
⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)µ|EµN = m)

· P
(

max
1≤i≤m

ani ≤ µ+
B

m

∣∣∣∣EµN = m

)
= 1− P(

⋂
1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)µ)

·
N∑
m=0

P(EµN = m)P
(

max
1≤i≤m

ani ≤ µ+
B

m

∣∣∣∣EµN = m

)

In this bound the parameter µ is left open as subject to
optimization. Note that there are no assumptions about the
service or the arrivals having corresponding MGFs or being
i.i.d. sequences. Further, we see that the above bound is
always smaller 1, as we expect it of a violation probability.
For the special case of S(k, n) = S(n)−S(k) the probabilities
simplify to:

P( max
1≤n≤N

q(n) > B)

≤ 1− P( min
1≤n≤N

sn ≥ µ)

·
N∑
m=0

P(EµN = m)P
(

max
1≤i≤m

ani ≤ µ+
B

m

∣∣∣∣EµN = m

)

The above bound relies only on the analysis of an expression
of the form:

P( max
1≤n≤N

~xn ≤ ~y)

where (~xn)n∈N ∈ J d is a sequence of d-dimensional random
vectors and y ∈ Rd. Describing this probability is one of the
main goals of Extreme Value Theory. The above probability
is well studied under different assumptions on (~xn)n∈N (see
for example [19, 10, 9]). The following very small selection
of results from EVT assumes d = 1 and (xn)n∈N ∈ I.

If we denote by Fx the distribution of xn we have:

P( max
1≤n≤N

xn ≤ y) = FNx (y)

For simple distributions Fx we can directly use the result in
the previous theorem to compute finite sample-path back-
log bounds. However taking the N -th power of F might
be computationally very unstable and the question arises if
this expression cannot be approximated by some other ex-
pression which is easier to calculate. It is clear that in this
case, without some kind of scaling, the above probability just
converges to either zero or one. Hence we ask for sequences
αN , βN such that:

P( max
1≤n≤N

xn ≤ αNy + βN )
N→∞−−−−→ G (1)

for some non-degenerate distribution G. We present here
some results, as they can be found in [19], to address this
question.



4.1 A Brief Introduction to EVT
Denote the right endpoint of some distribution F by
x0 := sup{y : F (y) < 1}.

Definition 7 (von Mises Function). We call a dis-
tribution F a von Mises function if there exists a z0 < x0

such that for all z0 < x < x0 and some c > 0 holds

1− F (x) = c exp

(
−
∫ x

z0

1

f(u)
du

)
where f(u) > 0 for all z0 < u < x0 and absolutely con-
tinuous on (z0, x0) and limu↑x0 f

′(u) = 0. We call f an
auxiliary function.

The notion of von Mises functions is very important, since
one can show that every von Mises function, as defined
above, converges to the Gumbel distribution in the sense
of (1). Another important equivalent definition (under the
assumption that F is twice differentiable) is the von Mises
condition. For this define the function φ by

φ := − log(− log(F )).

Definition 8 (von Mises Condition). We say a dis-
tribution F fulfills the von Mises condition if:

h(x) : =

(
1

φ′(x)

)′
= − logF (x) +

F (x)F ′′(x) logF (x)

(F ′(x))2

x→x0−−−−→ 1

If some distribution F fulfills the von Mises Condition define
g(x) := supy≥x |h(x)| and f(x) := 1

φ′(x)
.

One can show that the von Mises condition is fulfilled iff F is
a twice differentiable von Mises function. We use the above
condition, since it is not only sufficient for the convergence
of F to the Gumbel distribution in the sense of (1), but also
allows us to derive the speed of convergence.

Lemma 9. Let (an)n∈N ∈ I and the corresponding distri-
bution Fa fulfills the von Mises Condition. Then holds for
all N ∈ N and x ≥ 0:

P( max
1≤n≤N

an ≤ xβN + αN ) ≤ Λ(x)− e−1g(αN )

Here Λ(x) = exp(−e−(x)) is the Gumbel distribution,

φ(αn) := logn and βn := F (αn)
nF ′(αn)

.

There exist similar conditions and results for the conver-
gence to the Fréchet or the Weibull distribution (again in
the sense of (1)). As example we give here the parallel re-
sults for a convergence against the Fréchet distribution.

Definition 10 (von Mises Condition II). We say a
differentiable distribution F fulfills the von Mises condition
for some α > 0 if:

h(x) := xφ′(x)− α =
xF ′(x)

F (x)(− logF (x))
− α→ 0

Under the assumption that F is differentiable one can show
that this condition is equivalent to

lim
x→∞

xF ′(x)

1− F (x))
= α

for some α > 0. These conditions imply, that the distribu-
tion F converges to the Fréchet distribution in the sense of
(1).

Lemma 11. Keeping the notations of Definition 10 let
(an)n∈N ∈ I and Fa be its corresponding distribution ful-
filling the second von Mises condition. Then holds for all
N ∈ N and x ≥ 0:

P( max
1≤n≤N

an ≤ xβN ) ≤ Φα(x) + 0.2701 · (α− g(βn))−1g(βn))

where Φα(x) = exp(−x−α) is the Fréchet distribution,
g(x) = supy≥x |h(y)| and βn is given by − logF (βn) = n−1.

In the following we only need the case of convergence to the
Gumbel distribution. However, we wanted to point out that
for some distributions one needs to check another von Mises
condition and gets a different convergence speed.

The von Mises condition takes a similar role, as the existence
of the moment generating function for the MGF-calculus
in the previous section. Yet, there exist a lot of distribu-
tions, which fulfill the von Mises conditition without having
a MGF. Some heavy-tailed examples are the Cauchy distri-
bution, the Fréchet distribution itself and the Pareto distri-
bution which all converge to the Fréchet distribution in the
sense of (1). Another difference is that achieving backlog
bounds in the way of theorem 6 is not tied to the von Mises
condition, but instead to the analysis of:

P
({ ⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)µ

}

∩
{

max
1≤i≤m

ani ≤ µ+
B

m

}∣∣∣∣EµN = m

)
When analysing whole networks the above service and ar-
rivals can be the result of network operations, as for example
when arrivals (an)n∈N at some node are actually the output
of another node, with its own service and other arrivals. So,
in general it is hard to use theorem 6 directly. To solve this
we compare the service or the arrival distribution to other
distributions, which we know more about. If, for example,
the arrivals (an)n∈N are the output of another node, we re-
formulate them in terms of the service and the arrivals of this
preceding node. This allows us to investigate more complex
network scenarios.

4.2 Network Operations
We prove now a series of results which follow this idea and
are in their structure similar to the results in subsection 3.2.

Lemma 12 (Output Bound). Let S be the service of
some node, serving the arrivals (an)n∈N ∈ J and denote
by (dn)n∈N ∈ J the departures of that node. Then for all



x ∈ [0,∞) and µ ∈ [0, x] holds:

P( max
1≤n≤N

dn ≤ x)

≥ P
({

max
1≤n≤N

an ≤
x

N
+
N + 1

N
µ

}
∩
{ ⋂

1≤n≤N
0≤k≤n−1

S(k, n− 1) ≥ (n− 1− k)µ

})

Proof. By the definition of service we know:

dn = D(n)−D(n− 1)

≤ D(n)− min
0≤k≤n−1

{A(k) + S(k, n− 1)}

≤ max
0≤k≤n−1

{A(n)−A(k)− S(k, n− 1)}

= max
0≤k≤n−1

{
n∑

l=k+1

al − S(k, n− 1)

}

= max
0≤k≤n−1

{
an − S(k, n− 1) +

n−1∑
l=k+1

al

}

Assume now for a while that

ak ≤
x

N
+
N − 1

N
µ ∀ k = 1, . . . , N

and

S(k, n− 1) ≥ (n− 1− k)µ ∀ 0 ≤ k < n ≤ N

holds, for some µ ∈ [0, x]. Then we would have:

max
1≤n≤N

0≤k≤n−1

{
an − S(k, n− 1) +

n−1∑
l=k+1

al

}

≤ max
1≤n≤N

0≤k≤n−1

{ x
N

+
N − 1

N
µ− (n− 1− k)µ

+ (n− 1− k)
( x
N

+
N − 1

N
µ
)}

= max
1≤n≤N

0≤k≤n−1

{ x
N

+
N − 1

N
µ

+ (n− k − 1)
( x
N

+
N − 1

N
µ− µ

)}
=
x

N
+
N − 1

N
µ+ (N − 1)

( x
N

+
N − 1

N
µ− µ

)
= x

Hence, we get for all µ ∈ [0, x]:

P( max
1≤n≤N

dn ≤ x)

≥ P

(
N⋂
n=1

max
0≤m≤n−1

{
an − S(k, n− 1) +

n−1∑
l=k+1

al

}
≤ x

)

≥ P
({

max
1≤n≤N

an ≤
x

N
+
N − 1

N
µ

}
∩
{ ⋂

1≤n≤N
0≤k≤n−1

S(k, n− 1) ≥ (n− 1− k)µ

})
.

The parameter µ ∈ [0, x] is subject to optimization and it is
easy to check, that there is no gain in letting µ being larger
than x. Note that in the special case (sn)n∈N = c we can
choose µ optimally by µ = x and get the (somewhat trivial)
bound:

P( max
1≤n≤N

dn ≤ x) ≥ P( max
1≤n≤N

an ≤ x)

Lemma 13 (Leftover Service). Assume again the sce-
nario as presented before lemma 2. It holds for all x ∈ [0,∞)
and µ ∈ [0,∞):

P
( ⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)x
)

≥ P
(
{ max

1≤n≤N
ān ≤ µ} ∩

{ ⋂
1≤n≤N
0≤k≤n

S(k, n) ≥ (x+ µ)(n− k)
})

Proof. Let x ∈ [0,∞). Assume for a while that

max
1≤n≤N

ān ≤ µ

and

S(k, n) ≥ (x+ µ)(n− k) ∀ 0 ≤ k ≤ n ≤ N

holds. Then we have for all 0 ≤ k ≤ n ≤ N :

S(k, n) = max{0, S(k, n)−A(n) +A(k)}

= max{0, S(k, n)−
n∑

l=k+1

al}

≥max{0, (x+ µ)(n− k)− (n− k)µ} = x(n− k)

Hence: The assertion follows then, as in the previous proof.

Again we can consider the special case (sn)n∈N = c. Then
the optimal µ is given by c− x if x ∈ [0, c], resulting in:

P( min
1≤n≤N

sn ≥ x) ≥ P( max
1≤n≤N

an ≤ c− x)

Lemma 14 (Multiplexing). Let (a
(i)
n )n∈N ∈ J be two

arrivals (i = 1, 2). Define an := a
(1)
n + a

(2)
n for all n ∈ N.

Then for all x ∈ [0,∞) and µ ∈ [0, x] holds:

P( max
1≤n≤N

a(n) ≤ x) ≥ P({ max
1≤n≤N

a(1)
n ≤ x− µ)}

∩ { max
1≤n≤N

a(2)
n ≤ µ})

The proof is very similar to the arguments in the previous
proofs and hence omitted.

We can use these operations to compute backlog bounds
at nodes which lie in the middle or at the end of a network
path. In the next section, we show how the presented results
of EVT and network operations work together, to achieve a
finite sample-path backlog bound, which is competitive to
the corresponding MGF-calculus bound.



5. NUMERICAL EVALUATION
To compare the two methods we investigate the following
scenario: We have a constant rate node, which serves a high
and a low priority flow, denoted by (ān)n∈N and (an)n∈N,
respectively. We are interested in the finite sample-path
backlog bound for the low priority flow. For the sake of
simplicity, we consider the high and low priority flows to be
i.i.d. exponentially distributed with parameter λ, i.e.

Fā(x) = Fa(x) = 1− e−λx ∀ x ∈ [0,∞)

and equal to zero for all x ∈ (−∞, 0). The service rate of
the node is given by c.

5.1 MGF-Calculus Bound
Denote the leftover service at the node by (sn)n∈N ∈ J .
First we derive the (σ(θ), ρ(θ))-bound for the arrivals:

sup
k≥0

E(eθ(Ā(n+k)−Ā(k))) =

n∏
m=1

E(eθām)

=

(
λ

λ− θ

)n
= eθnρ(θ)

with ρ(θ) := 1
θ

log( λ
λ−θ ) and θ ∈ (0, λ). Hence the high and

low priority flows are (0, ρ(θ))-bounded. Using Lemma 2
and the fact that a constant rate node is (0, c)-bounded we
have for the leftover service

(sn)n∈N � (0, ρ(θ) + c).

Hence we can use lemma 5 to calculate the following finite
sample path backlog bound:

P( max
1≤n≤N

q(n) ≥ B) ≤ min
0≤θ<λ

N∑
n=0

e−θB
1− eθ(n+1)(2ρ(θ)+c)

1− eθ(2ρ(θ)+c)

= min
0≤θ<λ

N∑
n=0

e−θB
1−

(
λ
λ−θ

)2(n+1)

e−θ(n+1)c

1−
(

λ
λ−θ

)2

e−θc

To compute a competitive backlog bound we optimize the
parameter θ numerically.

5.2 Alternative Bound
We keep the previous notations and begin as in the proof of
theorem 6. Now denote by EµN the number of low priority
arrivals, which exceed the value µ and denote these arrivals
by the subsequence (ani)i∈{0,...,E

µ
N
}. We then have:

P( max
1≤n≤N

q(n) > B)

≤1− P( min
1≤n≤N

sn ≥ µ)

N∑
m=0

P(EµN = m)

· P
(

max
1≤n≤m

aj ≤ µ+
B

m

∣∣∣∣EµN = m

)

and with Lemma 13

≤1− P( max
1≤n≤N

ān ≤ c− µ)

N∑
m=0

P(EµN = m)

· P
(

max
1≤n≤m

aj ≤ µ+
B

m

∣∣∣∣EµN = m

)
≤1− P( max

1≤n≤N
ān ≤ c− µ)

N∑
m=0

P(EµN = m)

· P
(

max
1≤n≤m

aj ≤
B

m

)
In the last step we have used the memoryless-property of
the exponential distribution and that the arrivals are i.i.d.

Due to the simple nature of the arrivals we have the choice to
use the EVT-approximation or directly compute the above
expression by using P(max1≤n≤N an ≤ x) = FNa (x). We
perform both in order to test the quality of the EVT ap-
proximation. To use the von Mises condition one can eas-
ily verify that the exponential distribution with parameter
λ fulfills the conditions of Lemma 9 with the norming se-
quences

αn = − log(1− e−1/n)

λ

and

βn =
1

nλ(e1/n − 1)

and g given by:

g(x) = − log(1− e−λx)

e−λx
− 1

Inserting this into our backlog bound yields:

P( max
1≤n≤N

q(n) > B)

≤ 1−
(

exp(−e−γN (λ(c−µ)+log(1−e−1/N )))− g̃(N)
)

·
N∑
m=0

P(EµN = m)
(

exp(−e−γm(λ B
m

+log(1−e−1/m)))− g̃(m)
)

where

g̃(n) :=
1

e · n(1− e−1/n)

and

γn := n(e
1/n − 1).

Similar to the MGF-bound we optimize a parameter - in this
case µ ∈ [0, c] - numerically to achieve a competitive backlog
bound.

5.2.1 Results
To present the results we choose c = 1 and investigate dif-
ferent utilizations of the node. The utilization of the node is
given by u = 2

λ
. In our experiments we ask for the smallest

B we can choose, such that we do not exceed a certain vio-
lation probability. This violation probability is set to 10−6

and 10−9 in the experiments. Of course the results are de-
pendent on the considered sample path length N . To find
reasonable values of N we simulated the queuing system and



0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Utilization

B
ac

kl
og

Alt. bound without EVT
Alt. bound with EVT
MGF

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Utilization

B
ac

kl
og

Alt. bound without EVT
Alt. bound with EVT
MGF

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Utilization

B
ac

kl
og

Alt. bound without EVT
Alt. bound with EVT
MGF

Figure 1: From top N = 10, N = 20, N = 40. ε = 10−6.
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Figure 2: From top N = 10, N = 20, N = 40. ε = 10−9.



observed the duration of the backlogged periods. The start-
point of a backlogged period is defined as the timestep, in
which the node starts to accumulate backlog and the end-
point is defined as the next timestep thereafter, in which no
backlog occurs any more at the node. In the simulations, we
observed 100,000 backlogged periods under different utiliza-
tions. For example, for a utilization of 80%. we obtained an
average period-length of 3.2 and 99.9% of the periods had
a length smaller than 37. For this reason we considered for
our scenario sample path lengths of N = 10, N = 20 and
N = 40.

The results for B under different utilizations are displayed in
Figures 1 and 2. We can make different observations from
the graphs. First we can compare the alternative bound
with and without EVT-approximation, which are shown in
the graph by the blue dashed line and the solid black line,
respectively. We see that the approximation is very close
and we do not loose much by it. This gives us hope that
the approximation is also a good choice for more complex
arrivals, in which we cannot use a direct computation. We
also see that the alternative method outperforms the MGF-
method, given by the dotted red line, in the region of lower
utilizations. However the alternative method has for large N
some tipping point after which, only by an immense incre-
ment of B the wished violation probabilities can be achieved.
Comparing the three methods under increasing N the MGF-
method loses the least. All three methods are quite robust
against the transition from a violation probability of 10−6 to
10−9, however the MGF-method seems to loose a bit more
here.

6. TWO NODE SCENARIO
In this example we show how the results of chapter 3.2 and
chapter 4 work together to achieve a backlog bound in more
complex networks. The considered example is similar to the
just analysed one, but instead of traversing a single node,
we now have to cross two nodes. Both nodes are constant
rate servers and the priorities of the flows are preserved in
the transition from the first to the second node. For this
scenario we denote the intermediate flows by (̄in)n∈N ∈ J
and (in)n∈N ∈ J .

6.1 MGF Bound
We start by computing bounds for the intermediate flows.
Using our previous results we obtain

(̄in)n∈N � (σ̄(θ), ρ(θ))

with σ̄(θ) = 1
θ

log(1− eθ(ρ(θ)+c1))−1 and

(in)n∈N � (σ(θ), ρ(θ))

with σ(θ) = 1
θ

log(1−eθ(2ρ(θ)+c1))−1. This leads to a leftover
service at the second node (sn)n∈N ∈ J with

(sn)n∈N � (σ̄(θ), ρ(θ) + c2)

We can now compute the backlog bound at the second node,
but have to watch out for a stochastic dependency between
the leftover service at the second node and the intermediate
low priority arrivals. This dependency results from the fact
that after the first node the two intermediate arrivals are de-
pendent, which in turn makes the leftover service (which is a

function of the high priority intermediate arrivals) stochas-
tically dependent:

P( max
1≤n≤N

q(n) > B)

≤
N∑
n=1

e−θBeθ(σ(qθ)+σ̄(pθ))
n∑

m=0

emθ(ρ(qθ)+ρ(pθ))

By the dependence of the two intermediate flows, we now
have a second parameter p, next to θ, which we need to
optimize. In more complex scenarios a large set of these
parameters can occur. In practice this means that often
the parameters need to be set to certain values, to keep the
formulas tractable (in our example a convenient choice of p
would be 2). This leads to looser bounds.

6.2 Alternative Bound
For the EVT-bound we also have to consider the depen-
dencies, but there is a way to get rid of them. However,
we have to pay this way by a much worse bound. De-
note by (tn)n∈N ∈ J the service at the second node and
by (tn)n∈N ∈ J the leftover service at the second node. We
start similar as in the case of one node, but we cannot use
the law of total probability.

P( max
1≤n≤N

q(n) > B)

≤ 1− P
({

min
1≤n≤N

tn ≥ µ
}
∩
{

max
1≤n≤N

in ≤ µ+
B

N

})
≤ 1− P

({
max

1≤n≤N
īn ≥ c2 − µ

}
∩
{

max
1≤n≤N

in ≤ µ+
B

N

})
≤ 1− P

({
max

1≤n≤N
ān ≤

c2 − µ
N

+
N − 1

N
µ′
}

∩
{

max
1≤n≤N

an ≤
µ+ B

N

N
+
N − 1

N
µ′′
}

∩
{

min
1≤n≤N

sn ≥ µ′
}
∩
{

min
1≤n≤N

sn ≥ µ
′′
})

≤ 1− P
({

max
1≤n≤N

ān ≥
c2 − µ
N

+
N − 1

N
c1

}
∩
{

max
1≤n≤N

an ≤
µ+ B

N

N
+
N − 1

N
µ′′
}

∩
{

max
1≤n≤N

an ≥ c1 − µ
′′
})

≤ 1− P
({

max
1≤n≤N

ān ≥
c2 − µ
N

+
N − 1

N
c1

}
∩
{

max
1≤n≤N

an ≤
µ+ B

N

N
+
N − 1

N
µ′′ ∧ c1 − µ′′

})
with µ ∈ [0, c2] and µ′′ ∈ [0, B

N
+ µ]. The optimal µ′′ can be

found by setting

B
N

+ µ

N
+
N − 1

N
µ′′ = c1 − µ′′

Using the independence of (an)n∈N and (ān)n∈N, we eventu-
ally get the backlog bound:

P( max
1≤n≤N

q(n) > B) ≤ P
(

max
1≤n≤N

ān ≤
c2 − µ
N

+
N − 1

N
c1

)
· P

(
max

1≤n≤N
an ≤

(N − 1)c1 + µ+ B
N

2N − 1

)



7. CONCLUSION AND OUTLOOK
In this paper, we have dealt with the practically important
issue of sample path backlog bounds and have compared
two methods to achieve such backlog bounds. The first is
derived directly from the MGF-calculus, which cannot be
optimal, since the violation probabilities are simply added,
leading to a linear growth, which eventually exceeds 1. The
second is a new method, which asks directly for finite sample
path backlog bounds and is based on extreme value theory
results. We have shown how to extend this new bound to
an alternative SNC, which can be applied to more complex
networks. Comparing the two methods in a simple example
shows no clear winner: while the EVT-bound has trouble
with high utilizatione it outperforms the MGF-bound for
smaller utilizations. Nevertheless, we see by this that the
new method provides an alternative, which needs to be con-
sidered, to achieve low sample path backlog bounds. Besides
this the new bound has same interesting conceptual prop-
erties. First it does not rely on the existence of an MGF.
Hence by this method we can tackle also heavy-tailed dis-
tributions and to some extent solve dependent cases. Fully
exploring and exploiting these conceptual strengths will be
subject to future work. In general, we also believe that our
new method is supported by a versatile tool: EVT. With its
help computationally problemtic expressions can be approx-
imated. For future work the results of EVT can be mined
to include a broader class of sequences, such as non-i.i.d.
arrivals or stochastically dependent arrival flows. Further
directions to which this theory can be extended include con-
catenation results and sample-path delay bounds.
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