The DISCO Stochastic Network Calculator Version 1.0 -
When Waiting Comes to an End

Michael A. Beck
University of Kaiserslautern
Distributed Computer Systems Lab (DISCO)
Germany

beck@cs.uni-kl.de

ABSTRACT

The stochastic network calculus (SNC) is a recent method-
ology to analyze queueing systems in terms of probabilis-
tic performance bounds. It complements traditional queue-
ing theory and features support for a large set of traffic
arrivals as well as different scheduling algorithms. So far,
there had been no tool support for SNC analyses. There-
fore, we present the DISCO Stochastic Network Calcula-
tor (DISCO-SNC) version 1.0, a Java library supporting the
modelling and analysis of feedforward queueing networks us-
ing the SNC. The DISCO-SNC allows to calculate proba-
bilistic delay and backlog bounds given a feedforward topol-
ogy consisting of work-conserving servers and a set of flows
traversing the network. While the DISCO-SNC is still in
its infancy it is designed in a modular fashion to allow for
an easy extension of, e.g., traffic types and scheduling al-
gorithms; furthermore, it performs the optimization of free
parameters as they usually appear during SNC analyses due
to the application of the Chernoff bound or Hélder inequal-
ity. Apart from this core functionality, the DISCO-SNC also
provides a flexible GUI to make the SNC accessible even for
SNC-unexperienced users.

General Terms
Theory

Keywords

network calculus, tool suport, performance bounds

1. INTRODUCTION

The stochastic network calculus (SNC) emerged as a use-
ful alternative methodology to analyze queueing networks
[11, 2, 6, 8]. The SNC can circumvent technical difficulties
in scenarios involving, e.g., non-Poisson traffic or complex
statistical dependencies by resorting to inequalities instead
of striving for exact results. Thus, it allows to compute rig-
orous probabilistic bounds on performance measures such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ValueTools’13, December 10 — 12 2013, Turin, Italy

Copyright 2013 ACM 978-1-4503-2539-4/13/12 ...$15.00.

Jens Schmitt
University of Kaiserslautern
Distributed Computer Systems Lab (DISCO)
Germany

jschmitt@cs.uni-kl.de

as delay, backlog, and throughput, or, even the capacity of
networks.

Mathematically, it is related to the theory of effective
bandwidth [9] and its older ”brother”, the deterministic net-
work calculus (DNC) [10]; in fact, it could also be viewed as
their combination in a uniform (and generalized) framework.
The SNC can deal with a large set of different arrival mod-
els (Poisson, Markov-modulated fluids, fractional Brownian
motion, to name a few) and also allows to track per-flow
performance under different scheduling disciplines such as
FIFO, SPQ, GPS, and EDF. Furthermore, and may be most
outstanding, it allows for an elegant end-to-end analysis for
what is called convolution-form networks [4], i.e., queueing
networks for which the end-to-end service can be expressed
in terms of a (min-plus) convolution of the service processes
at each server. Convolution-form networks hold the promise
to be characterize a larger set of queueing networks than
the classical product-form networks known from traditional
queueing theory.

The main approaches to formulate the SNC can be found
in [11, 2, 6, 8]. Recently, the dust has settled and the relation
between these different flavours of SNC has been understood
better [5]. The SNC turned out to be very useful in many
applications; here we name a few less obvious use cases:
overloaded FIFO queues [3], power grid [16], airplane cabin
network [12].

Despite all this progress and development of the SNC,
there has been no publicly available tool support for the
SNC so far. The only tools available are for the DNC ! [14,
1, 13, 15]. This is somewhat surprising as SNC analyses can
benefit even more from tool support, because besides the
analysis of larger scenarios which cannot be done manually
any more there is also the issue of numerical optimization of
free parameters. These free parameters are the result from
numerous invokations of "approximations” like the Chernoff
bound or Holder inequalities. Indeed, their optimization has
largely been neglected in literature so far. To do so, however,
requires an SNC tool again. Thereofore, we present the first
publicly available SNC tool: the DISCO Stochastic Network
Calculator (DISCO-SNC) version 1.0.

A slight, but notable exception to this statement
can be found on the Properbounds project webpage:
http://www.ikt.uni-hannover.de/properbounds.html;
here, one can find two interesting programs: the Network
Analyzer, a demo Java applet, and the Backlog Calculator
which allows for a single node backlog analysis. While
interesting, both are stand-alone programs and are not
conceived as tool support yet.

2. BASICS OF SNC

As stated above there exist different formulations of the
stochastic network calculus. We decided on the o (), p(6)-
calculus as presented in [2, 6]. Due to its compact formula-
tion, it allows an elegant algorithmic approach to complex
scenarios.

For presentation, we briefly present the basic concepts and
results of the o(0), p(#)-calculus.

Definition 1. We call a sequence of non-negative, real ran-
dom variables (an)nen a flow and introduce its cumulative
arrivals up to time n by:

A(n) == Z a(t)
i=1
A flow is o(0), p(f)-bounded for some 6, if the following
moment-generating functions exist and are bounded by

R (/A=) < 8p(6)(n=m)+05(6)
for all 0 < m < n.

Similarly to the arrivals the service is described by a bound
on its moment generating function:

Definition 2. A doubly indexed stochastic process S with
0 < S(m,n) and S(m,n) < S(m,n’) for all0 <m < n < n'
is said to be a dynamic S-server, if for all arrivals-flows A
and all n € Ny holds

D(0,n) > Og}cign{A(O, k) + S(k,n)},

where D describes the output of the dynamic S-server.

A dynamic S-server is o(6), p(#)-bounded for some 0, if
the following moment-generating functions exist and are
bounded by

(e~ 0S(mm)) < (0p(O)(n—m)+05(0)

for all 0 < m < n.

For analysing feed-forward networks, it is necessary to cal-
culate leftover service and output bounds. For the former,
imagine a service element to handle two flows. We can com-
pute a o(0), p(0)-bound for the service the low-priority ar-
rivals receive:

THEOREM 1. Assume two flows A1 and Az and a dy-
namic S-server handling both flows at the same time. This
service element is a dynamic Si-server for Ax with

Si(m,n) :== S(m,n) — A1 (m,n)

In the case of A1 and S being stochastically independent, we
further have a os,(0), ps, (0)-bound on S; with:

05,(0) == 04,(0) +05(0), ps,(0) = pa,(0) + ps(6)

Calculating bounds on the output is crucial, since it allows
to treat them again as arrival flows.

THEOREM 2. Let A be fed into a dynamic S-server. As-

sume A and S to be stochastically independent and ps(0) <
—pa(0). Then the output D is o(0), p(0)-bounded with

o(0) i= o4 (0) + o5 (0) — %log(l R NOREON

Note that in both the above theorems we did assume stochas-
tic independence between arrivals and the dynamic S-server.
In fact one can drop this assumption, but in this case Holder
parameters must be introduced. For some % + % = 1 the
bound on the leftover service reads:

o5, =0a,(p9) +os(q), ps, = pa, (p) + ps(qb)

Similarly, we get in the stochastically dependent case for the
output bound:

o(8) = ca(ph) +os(qh), p(0) = pa(ph) + ps(qh)

One more theorems is needed, providing us the performance
bounds we are looking for:

THEOREM 3. Let A be oa(0),pa(0)-bounded and S be
05(0), ps(0)-bounded. Denote by D the output of S corre-
sponding to A. In case A is stochastically independent of S
we have:

[P’(q(n) > 1) < 69(0A(9)+Us(9)*w) . (1 _ 69(PA(9)+PS(9)))*1

P(d(n) > N) < Ca@+os@+psON) (1 _ 0(pa(@)+ps(0))=1

Here g(n),d(n) denote the backlog and the virtual delay at
time n, respectively. In the case of stochastic dependence be-
tween A and S one can introduce Holder parameters. Note
that the above bounds are dependent on 6 and potentially
on several Holder parameters. For a reasonable bound, op-
timization over these parameters is needed.

3. WHAT DISCO-SNC CAN DO FOR YOU

DISCO-SNC shall allow for an easy extension to change
it to its users’ needs. Hence, DISCO-SNC follows a modular
design, allowing to easily implement, for example, a new
arrival model, without the need of dealing with the other
parts of the tool. For the same reason large parts of the
DISCO-SNC work on a symbolic level, with (mathematical)
functions, instead of numbers. To give some insights on the
DISCO-SNC, we present what modules exist and how they
work together.

3.1 Arrivals

In MGF-calculus, arrivals are described by their o (), p(6)-
bounds and are hence represented in the DISCO-SNC as a
pair of mathematical functions. These functions are imple-
mented symbolically. For example, a constant rate arrival is
represented by o(6) = 0 and p(#) = c. Hence adding a new
arrival flow simply requires to initialize Arrival objects with
the corresponding o (6) and p(#). The Arrival class itself pro-
vides methods to evaluate the expression e??(9)(n=m)+0(0)
as well as constructing the o(0) and p(0) of an output, given
an arrival and service description, i.e., it is able to perform
Theorem 2. Further an Arrival object keeps track of its
stochastic dependencies to other network-elements and up-
dates them during usage of the Theorems 1 and 2.

Arrival (function s, function r){
this.r = r;
this.s = s;}
double evaluate (t,n,m){
return exp(tx*s.getValue(t)
+t*xr.getValue(t)*(n—m))
Arrival output(arrival, service

i}
)

apply theorem 2;}

Code 1: Arrival Class in Pseudocode

3.2 Service

The description of service elements parallels the one of
arrivals. They are also represented by two functions o(6)
and p(0). The service-class provides a method to perform
theorem 1 (again, while keeping track of stochastic depen-
dencies).

3.3 Analysis

To calculate a specific performance measure at some point
in the network (i.e., a backlog- or delay-bound for a specific
flow at a specific node) two steps must be performed: First,
a symbolic analysis is performed, resulting in expressions
as seen in 3, which afterwards - in a second step - must
be optimized over their free parameters. In general, the
computation of several leftover service and output bounds
must be performed, before 3 can be applied. We plainly call
this first step analysis. For the sake of brevity, we do not go
into the details of different analysis techniques.

The analysis step is represented by its own (abstract) class
and users can modify or extend it for their own type of anal-
ysis. So far, the DISCO-SNC alreday provides a simple, yet
effective analysis. The pseudo-code of it can be seen in code
2. It works as follows: Output- and service-bounds are suc-
cessively computed until Theorem 3 can be used. For this
a stack is used, containing all service elements, for which
descriptions to all incoming arrivals are available. Service
elements are popped and "serve” their arrival with the high-
est priority. This means output- and service bounds are cal-
culated, which might lead to new service elements getting
pushed onto the stack. This procedure is continued until the
flow of interest and the service of interest is known or the
stack is empty. In the former case the performance bound
can be calculated. In the latter case an analysis with the
methods presented in theorems 1-3 is not possible because
the network/flow combination is not feed-forward. Note that
the analysis takes place on a symbolic level and is just a ma-
nipulation of the o- and p-functions of the involved arrivals
and service elements.

Arrival analyze(Vol,Fol){

//Initializes the stack of wvertices

for (entry vertices){

if (entry.canServe()) stack.push(entry);

}

successful=false

//Serve until Fol and Sol are characterized
while (! stack .isEmpty ()){

current_v = stack.pop();
flowID = current_v.whoHasPriority ();
next_v = successor (current_v ,flowID);

//Checks for Sol and Fol
if (current_v = Vol && flowID == Fol){

bound = calcBound (flowID, current_v);
successful = true;
break;

//Calculates output leftover service
output = current_v.serve ();
next_v.learnArrival (output);

| Delta | rus | rs | bas | bs |

0.05 ~ 1sec. | = 3 min. 60.3 60.285
0.04 ~ 1sec. | ~7min. | 53.013 | 52.155
0.03 ~ 1lsec. | ~®37min | 52.035 | 52.035

Table 1: Runtimes and delay bounds of HJ heuristic
and systematic (S) search at different granularities.

//Pushes next vertez
if (next_v.canServe()) stack.push(next_v);
//Pushes current verter if needed
if (current_v.canServe())
stack.push(current_v);

return bound;

}

Code 2: analyze method in Pseudocode

3.4 Optimization

As stated above, the analysis part only performs theorem
3, without actually using any numbers or even optimizing
free parameters. This is done separately in a (abstract) class.
Again users can implement their own type of optimization
(or heuristic) by extending that class.

Sinc we change from a pure symbolic view to a numerical
view, this is normally the part where runtime is crucial. A
good algorithm can shorten runtime drasticallyat this point.
The DISCO-SNC allows to efficiently compare optimization
methods and heuristics for their performance in runtime and
accuracy. To demonstrate this, we implemented two opti-
mization methods: The first one is a plain systematic search
through the entire search space. The second implementation
is based on the Hooke and Jeeves (HJ) heuristic [7]: starting
at some point in the search space, we check its neighbours’
values and move to the best of them. This is repeated un-
til no neighbour offers an improvement over the value of
the current point. Although being prone to get stuck in lo-
cal minima, in some preliminary experiments showed, that
the functional structure of the performance bounds (after
the symbolic analysis) often allows near-optimal results in a
short runtime.

To give some intuition about the gain in runtime, we set
up a toy example, consisting of three flows and seven nodes.
The solution space consists here of § and four pairs of Holder
parameters. We present the results delivered by the system-
atic search and the HJ heuristic in table 3.3. Each line
represents a different granularity A on the search space, i.e.,
the difference between two different values for 6. For the
granularity of Holder parameters, note first that they come
in pairs, of which one is always < 2 and the other > 2. The
granularity describes in this case the difference between two
choices of the smaller one of the Holder parameter-pair.

3.5 Graphical User Interface

Last, but not least the DISCO-SNC features a simple,
but useful GUI (see figure 1), allowing users, an easy access
to most parts of the DISCO-SNC. It provides information
about the service elements in the network as well as the
arrival flows traversing it. Adding and removing service el-
ements and arrivals can be easily done within the GUI, as
well as calculating performance bounds under the selection

2| disco - Stochastic Network Calculator W S wor 0 T

File

Add Flow |

Remove Flow |

Add Vertex ‘

Remove Vertex ‘

Analyze Network

Calculate Bound

Calculate Inverse Bound

Flow D

Init Arr.

Route Priorities

Holder-Granularity

Rhein 1

(0,exp_arr(2

[1,2,3,4,56][55,5,5,5,

Theta

Saar 2

(0,exp_arr(5s....

[4,5, 6] [10, 10, 10]

Optimization Type:

Lauter 3

(0,exp_arr(20

[2,4, 8] [20, 20, 20]

Flow of interest:

Select the type of bound:

Node

Flows

Adam

[{1=5}

|Matthias

{3=20, 1=5}

ive the maximal violation probability:

| [

0,05—

ity

0,05~

Heuristic

\Analysis Type: Simple Analysis

Rhein

Vertex of interest: Steffen

BACKLOG

0.0001|

Hao

[{1=5}

example.snc loaded

Poe

{1=5, 2=10, 3=20}

Jens

{2=10,1=5}

Daniel

IEEaFN ey ey

{1=5, 2=10, 3=20}

Steffen

{1=5}

of the analysis and optimization method. Further loading

and saving scenarios is possible.
The GUI itself is separated from the core of the program,

allowing users to write their own GUI (or extending the

existing one).

Figure 1: Screenshot of the DISCO-SNC

4. CONCLUSION AND OUTLOOK

We presented the version 1.0 of DISCO-SNC, the first
publicly available tool supporting stochastic network calcu-

[6]

[7]

8]

lus analyses. The core functionality was described and ex-
emplified, in particular the optimization module has prelim-
inarily been evaluated with respect to the tradeoff between
quality of the bounds vs. run time.
Future work items are abundant:
other scheduling disciplines, more sophisticated network anal-
ysis methods (similar to what is known from DNC [14]),
global optimization over free prarameters, inclusion of other

flavours of SNC (tail bounds), and much more. So, while this

more traffic models,

list is somewhat embarrassingly long, we still believe to have
made a promising first step towards a useful tool supporting

SNC analyses, hopefully helping other SNC researchers as

well as raising interest from so far non-SNC researchers.

5. REFERENCES

[1] A. Bouillard and E. Thierry. An algorithmic toolbox
for network calculus. Discrete Event Dynamic
Systems, 18(1):3-49, Mar. 2008.

2]

C.-S. Chang. Performance Guarantees in

Communication Networks. Telecommunication
Networks and Computer Systems. Springer-Verlag,

2000.

F. Ciucu, O. Hohlfeld, and L. Chen. On the
convergence to fairness in overloaded fifo systems. In

Proc. of IEEE INFOCOM, pages 1988-1996, 2011.

F. Ciucu, J. Schmitt, and W. H. On expressing

networks with flow transformations in

(13]

(14]

(15]

(16]

convolution-form. In Proc. of IEEE INFOCOM, pages
1979-1987, 2011.
F. Ciucu and J. B. Schmitt. Perspectives on network

calculus: no free lunch, but still good value. Proc. of
ACM SIGCOMM, Aug. 2012.

M. Fidler. An end-to-end probabilistic network
calculus with moment generating functions. In Proc.
of IEEE IWQoS, pages 261-270, June 2006.

R. Hooke and T. A. Jeeves. Direct search solution of
numerical and statistical problems. J. ACM,
8(2):212—229, Apr. 1961.

Y. Jiang and Y. Liu. Stochastic Network Calculus.
Springer, 2008.

F. P. Kelly. Notes on effective bandwidths. In F. P.
Kelly, S. Zachary, and I. Ziedins, editors, Stochastic
Networks: Theory and Applications, number 4 in
Royal Statistical Society Lecture Notes, pages
141-168. Oxford University Press, 1996.

J.-Y. Le Boudec and P. Thiran. Network Calculus A
Theory of Deterministic Queuing Systems for the
Internet. Number 2050 in Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany, 2001.

C. Li, A. Burchard, and J. Liebeherr. A network
calculus with effective bandwidth. Technical Report
(CS-2003-20, University of Virginia, Nov. 2003.

J. Scharbarg, F. Ridouard, and C. Fraboul. A
probabilistic analysis of end-to-end delays on an afdx
avionic network. Industrial Informatics, IEEE
Transactions on, 5(1):38-49, 2009.

H. Schioler, H. P. Schwefel, and M. B. Hansen. Cync:
a matlab/simulink toolbox for network calculus. In
Proc. of ACM Valuetools, pages 60:1-60:10, 2007.

J. Schmitt and F. Zdarsky. The DISCO Network
Calculator - a toolbox for worst case analysis. In Proc.
of VALUETOOLS. ACM, Nov. 2006.

E. Wandeler and L. Thiele. Real-Time Calculus
(RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

K. Wang, F. Ciucu, C. Lin, and S. Low. A stochastic
power network calculus for integrating renewable
energy sources into the power grid. IEEE Journal on
Selected Areas in Communications: Smart Grid
Communications Series, 30:1037-1048, 2012.

