
Boosting Sensor Network Calculus
by Thoroughly Bounding Cross-Traffic

Steffen Bondorf and Jens B. Schmitt
Distributed Computer Systems (DISCO) Lab, University of Kaiserslautern, Germany

Abstract—Sensor Network Calculus (SensorNC) provides a

framework for worst-case analysis of wireless sensor networks.

The analysis proceeds in two steps: For a given flow, (1) the

network is reduced to a tandem of nodes by computing the arrival

bounds of cross-traffic; (2) the flow is separated from the cross-

traffic by subtracting cross-flows and concatenating nodes on its

path. While the second step has seen much treatment, the first

step has not at all. This is in sharp contrast to the fact that arrival

bounding takes roughly 80% of the total analysis time and is

equally crucial for the tightness of the bounds. Therefore, we turn

our attention to this first SensorNC analysis step with the goal to

boost the performance and applicability of the overall framework.

The main technical contribution is a generalized version of

the concatenation theorem within the SensorNC setting. This

generalization is instrumental in simplifying and streamlining

the cross-traffic arrival bound computations such that run times

can be reduced by more than a factor of 5. Even more important,

it enables a localization of the information necessary to execute

the calculations at the node level, thus enabling a distribution of

the SensorNC analysis within a self-modeling WSN.

I. INTRODUCTION

Sensor Network Calculus (SensorNC) is a framework for
worst-case analysis of wireless sensor networks and as such
allows to derive tight upper bounds on end-to-end delay
for sensor-to-sink data flows as well as on maximum buffer
requirements for sensor nodes. SensorNC is strongly based
on network calculus [1], but partially slims it down (specific
arrival and service curves are used) and partially extends it
(feedforward network analysis). Since the initial proposal in
[2], it has been extended in several aspects: Multiple sinks
[3], in-network processing [4], improved delay analysis [5],
[4], and [6], to name a few. Furthermore, it was applied for
diverse purposes, e.g., to model and analyze cluster-tree based
IEEE 802.15.4 networks [7], [6], to evaluate traffic splitting
in meshed WSNs [8], or to plan the trajectories of multiple
mobile sinks in a large-scale, time sensitive WSN [9].

From a high-level conceptual point of view, the SensorNC
analysis is divided into two steps:

1) Cross-Traffic Arrival Bounding: For a specific flow of
interest, the interference of its cross-flows is captured in
terms of arrival curves at every node it traverses. Thus,
the focus is set on the flow of interest’s path. The result is
a tandem of nodes with each one potentially contributing
an interfering flow aggregate, i.e., a cross-traffic arrival
bound. This is illustrated in Figure 1(a).

2) End-to-end Service Curve Calculation: Given the
resulting tandem from Step 1, the end-to-end service

Flow of interest

(a)

0 200 400 600 800 1000

0
20

40
60

80
10

0

Random (5,20)−constrained sink trees

Network size [sensors]

Sh
ar

e
cr

os
s−

tra
ffi

c
ar

riv
al

 b
ou

nd
in

g
[%

]

(b)
Figure 1. Cross-Traffic Arrival Bounding: (a) Tandem abstraction; (b)
observed share of total calculation time.

curve for the flow of interest is calculated by perform-
ing a sequence of left-over service curve calculations
(subtraction of interfering flows) and concatenation of
nodes (using the min-plus convolution).

Several works have delved into the details of step 2, in
particular addressing the order in which to perform the op-
erations. In [10], it is shown that it is generally favorable
to perform the concatenation before the subtraction as much
as possible to achieve the so-called Pay Multiplexing Only
Once (PMOO) property. Yet, in [11] it is demonstrated that
this is not always optimal and instead an optimization-based
approach is proposed to deliver tight delay bounds. [12] further
details the optimization-based approach and establishes the
NP-completeness of finding tight delay bounds in general
feedforward networks. However, in [4] it is argued that for
single sink, homogeneous WSNs the PMOO analysis actually
coincides with the optimal solution.

Hence, much effort has been devoted to tune step 2 of the
analysis. In contrast, to the best of our knowledge, apart from
some preliminary investigations in [13] there is no work trying
to optimize step 1, the cross-traffic arrival bound calculation.
In the literature, it is either assumed that it has been performed

already or, as implied by the original SensorNC paper [2], it
is performed in a straightforward recursive manner, which can
actually yield sub-optimal bounds [13]. Moreover, step 1 ac-
tually consumes a high fraction of the computation time when
performing SensorNC analyses. To illustrate this, we show the
fraction of time invested for arrival bound computations to the
total run time for the analysis of random sink trees with a given
number of nodes in Figure 1(b). As can be observed, arrival
bound computations consume roughly 80% of the overall run
time of the analysis – independent of the network size. Thus,
improvements in the arrival bound computation are a very
promising candidate to tune the performance of SensorNC.

Therefore, in this paper, we focus on step 1 of the analysis
and improve on the cross-traffic arrival bound calculation in
several aspects. To that end, we generalize the classical con-
catenation theorem as it applies to tandems of nodes towards
a sink-tree structure. Equipped with this new generalized
concatenation theorem, we derive a new iterative algorithm to
perform the arrival bound calculation, which we implemented
with the DISCO Deterministic Network Calculator [14]. Using
this implementation, we demonstrate in Section V that run
times for SensorNC analyses can generally be decreased by a
factor of five without compromising arrival bound tightness.

However, we believe that the even larger impact of this
improved arrival bound calculation algorithm is in its superior
structure from the perspective of a distributed application of
the SensorNC, for example, in an in-network sensing task
admission control system as it would be desirable for large-
scale WSNs. In particular, using the conventional recursive
arrival bounding method for a distributed SensorNC would
require detailed knowledge at each node about large parts of
the network topology including paths of flows as well as their
merging points in order to trace flow transformations, quantify
cross-traffic and carry out an analysis. Moreover, even small
changes in the network’s defining parameters would lead to
recalculations of all bounds, although the change is only local.

In contrast, using the new iterative arrival bounding method
allows to virtually separate cross-flows from the aggregate they
are merged into and separately bound their impact on it. The
separation virtually shifts the aggregation of cross-flows to
the server where they influence another flow’s performance
characteristics. Thus, our analysis establishes locality in a way
such that we do not need access to topological information on a
cross-flow’s path, i.e., every flow can collect all the parameters
defining its effect – we call this flow-locality. Furthermore,
this flow-locality makes SensorNC much more resilient to
recalculations as the impact of parameter variations does not
propagate to flows not directly depending on this parameter.

Outline: The remainder of the paper is structured as
follows: Section II presents background on (sensor) network
calculus. In Section III, we present and prove the general-
ized concatenation theorem for improved cross-traffic arrival
bounding. In Section IV, we discuss the major shortcoming
of current SensorNC analyses and show how to overcome it
by applying our generalized concatenation theorem. Section
V evaluates the impact of our improvement and Section VI
concludes the paper.

II. BACKGROUND ON SENSOR NETWORK CALCULUS

Here, we present the basics of (sensor) network calculus.

A. Modeling of Flows and Performance Characteristics
In network calculus, flows are modeled as cumulative func-

tions, i.e., they are non-negative and wide-sense increasing:

F0=
�
f : R+ ! R+ | f(0)=0, 8s  t : f(t)�f(s)

.

In particular, we are interested in the functions A(t) and
A

0
(t) counting a flow’s data put into a system S up until time

t and put out from S until t. We further demand systems and
flows to preserve causality by fulfilling the flow constraint,
i.e., 8t 2 R+

: A(t) � A

0
(t).

These definitions allow us to define performance character-
istics of flows.

Definition 1. (Backlog and Delay) Assume a flow with input
function A traverses a system S and results in the output
function A

0. The backlog of the flow at time t is defined as

B(t) = A(t)�A

0
(t).

The (virtual) delay for a data unit arriving at S at time t is
defined as

D(t) = inf {⌧ � 0 | A(t)  A

0
(t+ ⌧)} .

B. Sensor Network Calculus Performance Analysis
In network calculus, we assume to only know bounding

functions on the actual flows. These functions are not defined
over the time of the observation t but over the duration of an
observation d. In particular, the input flow in (sensor) network
calculus is bounded by so-called arrival curves.

Definition 2. (Arrival Curve) Given a flow with input function
A, a function ↵ 2 F0 is an arrival curve for A iff

8 0  d  t : A(t)�A(t� d)  ↵(d)

Sensor network calculus further restricts the set of arrival
curves to token-bucket shaped traffic

FTB =

⇢
�

r,b

: R+ ! R+ | �
r,b

(0)= 0, 8
d>0

�

r,b

(d)= b+ r · d
�

✓ F0, r, b � 0.

Curves of FTB are well suited to bound periodically gen-
erated and reported measurement data. The burst parameter b
corresponds to the maximum size of a measurement and r =

b

p

bounds the long term rate of data generation, with p being the
sensing period.

Network calculus can be cast into a (^,+)-algebraic frame-
work over F0. A detailed treatment of (^,+)-algebra and net-
work calculus can be found in [15] and [1], [16], respectively.
Here, we only present the most important operations.

Definition 3. ((^,+)-Operations) The (^,+)-algebraic ag-
gregation, convolution and deconvolution of two functions
f, g 2 F0 are defined as

aggregation: (f + g) (d) = f (d) + g (d) ,

convolution: (f ⌦ g) (d) = inf

0sd

{f(d� s) + g(s)} ,

deconvolution: (f ↵ g) (d) = sup

u�0
{f(d+ u)� g(u)} .

Note that deconvolution is not exactly dual to convolution [1].
Aggregating arrival curves is crucial in SensorNC and can

simply be achieved by

Corollary 4. (Arrival Curve Aggregation in SensorNC) For
the aggregation of n arrival curves of FTB it holds that

nX
i=1

�

r

i

,b

i

= �

P
n

i=1 r

i

,

P
n

i=1 b

i

.

Defining curves characterizing the transformation a flow
experiences when traversing a system S , we need to use
convolution and deconvolution.

Definition 5. (Service Curve) If the service provided by a
system S for a given input function A results in an output
function A

0 we say that S offers a service curve � iff

A

0 � A⌦ �.

In SensorNC, service is given by rate-latency functions from

FRL =

�
�

R,T

: R+ ! R+ |�
R,T

(d) = max{0, R · (d� T)}

✓ F0, T � 0, R > 0.

For example, TDMA channel access [5] as well as duty
cycling nodes [17] can be modeled with these functions.

A number of systems fulfill, however, a stricter definition of
service curves which permits certain derivations that are not
permissible under the general service curve model [1].

Definition 6. (Strict Service Curve) Let � 2 F0. System
S offers a strict service curve � to a flow if, during any
backlogged period of duration d the output of the flow is at
least equal to �(d).

Most notably, the logical separation of a flow form an
aggregate requires a strict service curve.

Bounding a flow after traversing a system, i.e., deriving an
arrival curve that bounds A

0
(t), from a service curve and an

arrival curve for A(t) is done as follows:

Theorem 7. (Output Arrival Curve) Assume a flow f has
an arrival curve ↵ and consider f traversing the system S
offering a service curve �. After being transformed by S , i.e.,
at the system’s output, f is bounded by the arrival curve

↵

0
(d) =

�
↵

˙↵�

�
(d) .

=

(
0 if d = 0

(↵↵ �) (d) otherwise
.

The deconvolution does not guarantee (↵↵ �) (0) = 0 and
is thus not closed in F0. It has to be slightly augmented to
fulfill the arrival curve definition. This, however, does not
impact the performance bounds derivation.

Theorem 8. (Performance Bounds) Consider a system S
that offers a service curve �. Assume a flow f with arrival
curve ↵ traverses the system. Then we obtain the following
performance bounds for f :

backlog: 8t 2 R+
: B (t)  (↵↵ �) (0)

delay: 8t 2 R+
: D (t)  inf {d � 0 | (↵↵ �) (�d)  0}

α
iβ

α'si

si

Sensed input

Fsrc(si)

αsi
F(si)\Fsrc(si)

si

Forwarded sensor data

Figure 2. Sensor Network Model [2].

One of the strongest results of network calculus is the
concatenation theorem that enables us to investigate tandems
of systems as if they were single systems:

Theorem 9. (Concatenation Theorem for Tandem Systems)
Consider a flow that traverses a tandem of systems S

i

,
i = 1, . . . , n. Each S

i

offers a service curve �S
i

to the flow.
Then the concatenation of the n systems offers a service curve
nN

i=1
�S

i

to the flow.

Using the concatenation theorem for an end-to-end analysis,
it is possible to derive tight performance bounds on backlog
and delay; in contrast, a node-by-node application of Theorem
7 and Theorem 8 does, in general, not guarantee tightness.

C. Sensor Network Calculus System Model

Besides the basic assumptions from the previous subsection,
SensorNC also typically assumes a restriction on the topology
space: Network topologies are limited to sink trees with a
single sink (see Figure 2). While multiple sinks have been
addressed in [3], such topologies can be transformed into
a set of sink trees with one sink each without much loss
of precision. Anyway, apart from this restriction, we aim
for the greatest amount of generality possible. Therefore our
considerations neither requires sensors to be homogeneous nor
impose any restriction on the outdegree or maximum distance
to the sink as found in [2], [18], [19], [5]. We use the term
node synonymously with server and sensor because we assume
that every node provides both functionalities, sensing data and
relaying incoming flows.

III. THE GENERALIZED CONCATENATION THEOREM

The concatenation theorem is only applicable to a limited
set of network configurations. The topology must be a tandem
of servers and the flows need to traverse it entirely from
end-to-end. Otherwise the binary (^,+)-convolution ⌦ cannot
be used within the analysis. Naturally, networks are more
complex than such simple 1 : 1 input/output systems without
any internal addition of cross-flows. In this paper, we provide
a generalized version of Theorem 9 for arbitrary sink-tree
networks in SensorNC – exactly accounting for flow entan-
glement in these n : 1 input/output systems while preserving
tightness and achieving a high reduction of complexity.

To that end, we use the following two corollaries (from
Theorem 7 and 8, respectively).

Corollary 10. (Output Arrival Curve in SensorNC) Assume a
flow f with arrival curve ↵ = �

r,b

2 FTB traverses a system
S offering a service curve � = �

R,T

2 FRL. In SensorNC, f
is bounded at the output of S by the arrival curve

�

r

0
,b

0
(d) =

�
�

r,b

˙↵�

R,T

�
(d) =

(
0 if d = 0

�

r, b+ r·T (d) otherwise.

We can apply Corollary 10 to adapt Theorem 8.

Corollary 11. (Performance Bounds in SensorNC) Consider a
system S that offers a service curve � = �

R,T

2 FRL. Assume
a flow f with arrival curve ↵ = �

r,b

2 FTB traverses S . Then
we obtain the following SensorNC performance bounds:

backlog: 8t 2 R+
: B (t) = b+ r · T,

delay: 8t 2 R+
: D (t) = T +

b

R

.

Next, we prove that the above output arrival curve derivation
is distributive over flow aggregation in SensorNC.

Lemma 12. (Distributivity of ˙↵ with respect to +) For any
↵

f1
,↵

f2 2 FTB and � 2 FRL it holds that�
↵

f1
+ ↵

f2
�
˙↵� = ↵

f1
˙↵� + ↵

f2
˙↵�.

Proof: Let ↵

f1
= �

r1,b1 , ↵f2
= �

r2,b2 and � = �

R,T

.
From Corollary 10 it follows that�

↵

f1
+ ↵

f2
�
˙↵� =

�
(�

r1,b1 + �

r2,b2)
˙↵�

R,T

�
(d)

=

�
�

r1+r2, b1+b2
˙↵�

R,T

�
(d) .

If d = 0 we have ↵

f1
˙↵↵

f2
(d) = 0 and for d > 0 we get�

�

r1+r2, b1+b2
˙↵�

R,T

�
(d)

=

�
�

r1+r2, (b1+b2)+(r1+r2)·T
�
(d)

= (�

r1, b1+r1·T + �

r2, b2+r2·T) (d)

= (�

r1, b1+r1·T) (d) + (�

r2, b2+r2·T) (d)

=

�
�

r1,b1
˙↵�

R,T

�
(d) +

�
�

r2,b2
˙↵�

R,T

�
(d)

=

�
↵

f1
˙↵�

�
(d) +

�
↵

f2
˙↵�

�
(d).

The composition rule of ˙↵ follows from f ↵ g ↵ h = f ↵
(g ⌦ h) [1] by an argumentation similar to Lemma 12.

Lemma 13. (Composition of ˙↵) For f, g, h 2 F0 it holds that

f

˙↵g

˙↵h = f

˙↵ (g ⌦ h) .

SensorNC operates on curves shaped as required by the
distributivity. This allows to generalize the concatenation theo-
rem to SensorNC’s sink-tree networks. Table I summarizes the
notation required to precisely quantify all parameters involved.

Theorem 14. (SensorNC Concatenation Theorem) Consider
a set of flows F , |F | = n, with arrival curves ↵

f1
, . . . ,↵

f

n 2
FTB that originate in a sink tree. For the purpose of their
aggregate output bound calculation, the share of service
offered to each flow f 2 F from its source to the sink within
this aggregate is the concatenation of the service on its path.
Then, the entire flow aggregate’s output is bounded by

↵

0

sink =

X
f2F (sink)

0@
↵

f

˙↵
L(f,sink)O

i=0

�

P (f,i)

1A
.

Quantifier Definition
foi Flow of interest

sink Sink node of a (sub)tree
↵

f Arrival curve of flow f

F (s) Set of flows at server s
Fsrc (s) Set of flows originating in s

↵

f
s , ↵F

s Arrival bound of flow f , set of flows F at server s
↵s Abbreviation for ↵F (s)

s

x(f), x (F) All cross-traffic of flow f , set of flows F

x̄ (f, s) Newly merging cross-traffic of f at server s
P (f) Path of flow f

P (f, i) Server at location (index) i on f ’s path
L(f, s) Location (index) of server s on f ’s path P (f)

�s Service curve of server s
�

l.o.f Left-over service curve for flow f

Table I
SENSOR NETWORK CALCULUS NOTATION.

Applying Corollary 11, we can rephrase the equation to

↵

0

sink = �

r

0
sink,b

0
sink

with

r

0
sink =

X
f2F (sink)

r

f

b

0
sink =

X
f2F (sink)

0@
b

f

+ r

f ·
L(f,sink)X

i=1

T

P (f,i)

1A
.

Proof: First, we apply Corollary 10 to derive the tree’s
output from its sink’s input flows.

↵

0

sink =

X
f2F (sink)

⇣
↵

f

sink ˙↵�sink

⌘
Next, we virtually separate all flows from each other and estab-
lish a tandem topology in their point of view. We recursively
apply Corollary 10, Lemma 12 and Lemma 13 to the subtree
defining the involved output arrival bounds. Note, that every
server sees all flows crossing the subtree above it due to the
lack of demultiplexing in sink trees.

We start with the separation of a single flow f :
Without loss of generality assume L (f, sink) � 3. To navigate
through the sink tree, we use the function up(F, s, i) =S

f2F

P (f, L (f, s)� i), i 2 N+, that returns the set of servers
that are i hops upstream from server s, i.e., further away
from the sink, and are traversed by flows in F . Also let
s

f

i

= up ({f} , s, i) and sink = s0.

↵

0
sink = ↵

0
s0

=

X
f2F (s0)

�
↵

f

s0
˙↵�

s0

�
= ↵

s

f

1

˙↵�

s1
˙↵�

s0

+

X
s12up(F (s0),s0,1)\sf1

�
↵

s1
˙↵�

s1

�
˙↵�

s0 + ↵

Fsrc(s0)
˙↵�

s0

=

✓
↵

f

s

f

1

+ ↵

F

(

s

f

1)\{f}
s

f

1

◆
˙↵�

s1
˙↵�

s0

+

0@ X
s12up(F (s0),s0,1)\sf1

�
↵

s1
˙↵�

s1

�
+ ↵

Fsrc(s0)

1A
˙↵�

s0

= ↵

f

s

f

1

˙↵�

s1
˙↵�

s0 + ↵

F

(

s

f

1)\{f}
s

f

1

˙↵�

s1
˙↵�

s0

+

0@ X
s12up(F (s0),s0,1)\sf1

�
↵

s1
˙↵�

s1

�
+ ↵

Fsrc(s0)

1A
˙↵�

s0

= ↵

f

s

f

1

˙↵�

s1
˙↵�

s0 + ↵

F (s0)\{f}
s0

˙↵�

s0

= ↵

f

s

f

1

˙↵ (�

s1 ⌦ �

s0) + ↵

F (s0)\{f}
s0

˙↵�

s0

. . .

= ↵

f

s

f

2

˙↵
2O

i=0

�

s

f

i

+ ↵

F (s0)\{f}
s0

˙↵�

s0

. . .

= ↵

f

˙↵
L(f,s0)O
i=0

�

s

f

i

+ ↵

F (s0)\{f}
s0

˙↵�

s0

Next, we repeat the separation for the remaining flows in
F (sink) and get

↵

0
sink =

X
f2F (sink)

0@
↵

f

˙↵
L(f,sink)O

i=0

�

P (f,i)

1A
.

The SensorNC specific calculation follows from Corollaries 4,
10 and 11:

↵

0
sink = �

r

0
sink,b

0
sink

=

X
f2F

�

0
r

f

sink,b
f

sink

= �

P
f2F

(

r

f

sink)
0
,

P
f2F

(

b

f

sink)
0

withX
f2F (sink)

⇣
b

f

sink

⌘0
=

X
f2F (sink)

0@
b

f

+ r

f ·
L(f,sink)X

i=0

T

P (f,i)

1A
.

The simple tandem topology lacking any nesting of flows
is a special sink-tree network where the n : 1 input/output
relation is instantiated with n = 1. In this case, the generalized
concatenation theorem for SensorNC reduces to

↵

0

sink = ↵

f

˙↵
L(f,sink)O

i=0

�

P (f,i) ,

i.e., the output bound of Theorem 7 with the concatenated
service curve for tandems from Theorem 9.

The virtual separation establishes what we call flow-locality
within the derivation (see Figure 3; transition from (a) to (b)).
Compared to the previous computation, as shown in Figure
1(a), it is not required to bound a flow’s cross-traffic arrivals
recursively. This novel property allows for a simple two-tier
iteration over the cross-flows and their respective paths in order
to calculate a sink tree’s output arrival curve.

IV. IMPROVING SENSOR NETWORK CALCULUS ANALYSIS

In this section, we demonstrate the use of the new theorem
in the state-of-the-art network analysis for SensorNC, the Pay
Multiplexing Only Once (PMOO).

PMOO is a complex composition of the operations given
in Section II with the aim to provide an end-to-end left-over

(a) (b)

Figure 3. Sink-tree network with flow aggregation (a) converted to a set of
flow-local views by Theorem 14 (b).

service curve for the flow of interest of the analysis. Theorem
8 is then used to derive the flow’s performance bounds. Note,
that the PMOO analysis is designed for servers that preserve
the order of data within a single flow but arbitrarily multiplex
the data of different incoming flows.

Theorem 15. (PMOO �

l.o. foi in SensorNC [11]) The PMOO
end-to-end left-over service curve for a specific flow of interest,
�

l.o. foi, is given by
�

l.o. foi
= �

R

l.o. foi
, T

l.o. foi

with

R

l.o. foi
=

^
s2P (foi)

⇣
R

s

� r

x(foi)
s

⌘

T

l.o. foi
=

X
s2P (foi)

T

s

+

b

x̄(foi,s)
+ r

x(foi)
s

· T
s

R

l.o. foi

!
where all service curves on P (foi) are required to be strict.

As already shown in Figure 1(b), the most expensive part
of a SensorNC analysis is bounding arrivals of all cross-traffic
flows, ↵

x(foi)
s

, and the newly merging cross-traffic, ↵

x̄(foi,s),
along the flow of interest’s path. To derive a tight bound
it is necessary to correctly account for all flow transforma-
tions within the subnetwork abstracted by this analysis step.
Therefore, knowledge about the topology, nodal service, flow
transformations and flow merging locations is required. For
that reason, cross-traffic arrival bounding has so far been done
by an expensive recursion over the topology – from the server
on the flow of interest’s path towards each cross-flow’s sink.

Lemma 16. (Recursive Aggregate Arrival Bounding) Without
loss of generality we assume that server s has at least one sub-
tree with at least two levels. To navigate through this sink tree,
we use the function up(F, s, i) =

S
f2F

P (f, L (f, s)� i),
i 2 N+, that returns the set of servers that are i hops upstream
from s, i.e, further away from the sink, and are traversed by
the flows in F . Also let s

f

i

= up ({f} , s, i), s0 = s and
n = max {f 2 F |L (f, s)}. Then the recursive aggregate
arrival bound is derived as

↵

s

=

X
s12up(F (s),s,1)

�
↵

s1
˙↵�

s1

�
+ ↵

Fsrc(s)

=

X
s12up(F (s),s,1)

(

X
s22up(F (s1),s1,1)

�
↵

s2
˙↵�

s2

�
+ ↵

Fsrc(s1)

) + ↵

Fsrc(s)

. . .

=

X
s12up(F (s),s,1)

(. . .0@ X
s

n

2up(F (s
n�1),sn�1,1)

�
↵

s

n

˙↵�

s

n

�
+ ↵

Fsrc(sn�1)

1A
. . .

˙↵�

s1

�
+ ↵

Fsrc(s)

When the topology is traversed, intermediate arrival bounds
have to be computed at every server where multiple flows
merge. This needs to be done recursively, again.

In contrast to this recursive cross-traffic arrival bounding,
we can exploit the generalized concatenation theorem for
SensorNC. Yet, we first need to extend its capabilities to derive
bounds for subsets of flows in order to fulfill PMOO’s need
to separate the flow of interest from other flows.

Corollary 17. We can apply Theorem 14 to a subset of flows
F ✓ F (sink) with

�
↵

F

sink
�0

=

X
f2F

0@
↵

f

˙↵
L(f,sink)O

i=0

�

P (f,i)

1A
if the remaining flows in F (sink)\F have a lower priority
than those in F .

For the PMOO analysis, the flow of interest is always
considered to have the lowest priority among all flows. This
assumption preserves the worst-case semantic of (sensor)
network calculus. In order to account for it, we use Corollary
17 to separate cross-traffic from the flow of interest. Its bounds
can then be derived with the left-over service of Theorem 15
remaining after the cross-flows have been served.

We can now use the generalized concatenation theorem for
cross-traffic arrival bounding:

Theorem 18. (SensorNC Arrival Bounding) Given the flow of
interest, we can derive its cross-traffic arrival bound at any
server as follows:

↵

x(foi)
s

=

X
f2x(foi)\Fsrc(s)

0@
↵

f

˙↵
L(f,s)O
i=1

�

P (f,i)

1A
+ ↵

Fsrc(s)\x(foi)

Applying Theorem 8, we can rephrase the equation to

↵

x(foi)
s

= �

r

x(foi)
s

, b

x(foi)
s

with

r

x(foi)
s

=

X
f2x(foi)

r

f

b

x(foi)
s

=

X
f2x(foi)\Fsrc(s)

0@
b

f

+ r

f·
L(f,s)X
i=1

T

P (f,i)

1A
+ b

Fsrc(s)\x(foi)
.

Proof: The cross-traffic aggregate at , ↵x(foi)
s

, consists of
the sum of all cross-flows arriving from the subtrees upstream

from it as well as the cross-flows originating at it.

↵

x(foi)
s

=

X
s12up(F (s),s,1)

0@ X
f2F (s1)\x(foi)

0@
↵

f

˙↵
L(f,s1)O
i=0

�

P (f,i)

1A1A
+↵

Fsrc(s)\x(foi)

=

X
f2x(foi)\Fsrc(s)

0@
↵

f

˙↵
L(f,s)O
i=1

�

P (f,i)

1A
+ ↵

Fsrc(s)\x(foi)

Note that we can derive the newly merging cross-traffic
↵

x̄(foi,s) in the same way, yet, without the need of having
Corollary 17. By definition, the flows in ↵

x̄(foi,s) do not share
a previous server with the flow of interest. Thus, there is no
need to separate it from its cross-traffic as they never interfered
upstream of s.

Using the new bounding method from Theorem 18 instead
of the conventional one from Lemma 16 has several practical
advantages when applied in cross-traffic arrival bounding.
We conclude this section by discussing the most important
advantages before evaluating their impact in Section V:

Faster Computation. The arrival bounds for the entire cross-
traffic and for newly merging cross-flows, ↵x(foi)

s

and ↵

x̄(foi,s),
both depend on the flow of interest. Thus, in a self-modeling
WSN a sensor node needs to compute both bounds for each
flow to keep track of their state. With Theorem 18 we reduce
the computational effort of arrival bounding by establishing
flow-locality. The aggregation of individual cross-flow arrival
bounds is virtually shifted from locations in a subtree to the
server the bound is required. Thus, only flow-local results need
to be aggregated – this allows for reuse in the derivation of
a flow’s cross-traffic arrival bounds. In contrast, due to the
interweavement of the recursive Lemma 16 with the topology,
it was generally not possible to share any results between
the derivations of ↵

x(foi)
s

and ↵

x̄(foi,s) for different flows of
interest.

Lower Communication Overhead. Flow-locality also en-
ables to overcome the need for an additional protocol such
as Deluge [20] distributing the information required to derive
↵

x(foi)
s

and ↵

x̄(foi,s). If virtually separated, a flow’s arrival at
a server can be calculated hop-by-hop without compromising
tightness (Lemma 13). A flow can carry information about its
current arrival bound as payload, pushing the information to
all sensors concerned. Thus, the state is updated on demand,
i.e., independent of a polling interval, resulting in much less
communication.

Quick Reaction to Changes. The flow-locality also affects
the recomputation effort in case of parameter modifications.
Using the conventional method based on Lemma 16, locality
of a modified parameter did not matter much due to the com-
plex setting of flow aggregation locations; a change to a single
parameter always invalidated a large amount of the derivation’s
intermediate results and triggered expensive recomputations,
usually of the entire subtree. Theorem 18 prevents such an
invalidation from spreading to flows not directly affected by a
change, e.g., flows not crossing a sensor that adapted its rate,
and thus enables a quick reaction to changes.

0 20 40 60 80 100

5
10

15
20

25
30

Random (5,20)−constrained sink tree, 100 nodes

Flow ID

D
el

ay
 b

ou
nd

PMOO per cross−flow

Conventional
New

Figure 4. Delay bounds using different cross-traffic arrival bounding methods.

V. EVALUATION

We have extended the DISCO Deterministic Network Cal-
culator (DiscoDNC) [14] with the generalized concatenation
theorem in order to benchmark our results against existing
analyses. For that, we randomly created (o, d)-constrained
sink trees [19] with varying size, maximum outdegree o and
maximum depth d.

A. Tightness of Bounds

First, we investigate the impact of the generalized con-
catenation theorem on the tightness of bounds. We use the
delay bound as measure and benchmark the PMOO analysis
using Theorem 18 (“New”) against those using either recursive
arrival bounding (“Conventional”) or executing a separate
PMOO analysis for each cross-flow. The latter was chosen
because it also results in bounds with (restricted) flow-locality
– only the reuse of per-flow arrival bounds is permitted,
nothing more. Figure 4 shows the resulting delay bounds for
a random (5, 20)-constrained homogeneous sink tree with 100

servers, ↵ = �1,1 and � = �75,1.
Despite being flow-local, the generalized concatenation-

based arrival bounding preserves the tightness of the recursive
version whereas per-cross-flow PMOO bounding results in a
significant increase of delay bounds. The first observation is
a consequence of Lemma 12 and Theorem 14. The latter one,
PMOO per-cross-flows bounding’s inferiority, is due to the
following: There is no prioritization among flows in a cross-
traffic aggregate. Therefore, they need to be considered to
interfere with each other in the worst possible way when
applying PMOO naively to arrival bounding. That leads to
overly pessimistic cross-traffic arrivals and thus loose bounds.
The following corollary confirms this reasoning.

Corollary 19. For any partition F1 (s) , . . . , Fn

(s), n 2 N+,
of flows crossing a server s, SensorNC possesses the property

nX
i=1

⇣
↵

F

i

(s)
s

˙↵�

l.o. F
i

(s)
s

⌘
�

nX
i=1

↵

F

i

(s)
s

!
˙↵�

s

.

Proof: Without loss of generality assume a single server s
with service curve �

s

that is traversed by two flows f1 and f2

with arrival curves ↵

f1
s

and ↵

f2
s

, respectively. We know that
the left-over service cannot exceed the original service, i.e.,

0 200 400 600 800 1000

2
3

4
5

Random (5,20)−constrained sink trees

Network size [sensors]

C
om

pu
ta

tio
n

tim
e

re
du

ct
io

n

(a)

0 200 400 600 800 1000

0
20

40
60

80
10

0

Random (5,20)−constrained sink trees

Network size [sensors]
Sh

ar
e

cr
os

s−
tra

ffi
c

ar
riv

al
 b

ou
nd

in
g

[%
]

Conventional
New

(b)

Figure 5. (a) Computation time reduction and (b) share of the arrival bounding
on the overall computation time.

8f, s �

l.o. f 
N

s2P (f) �s

, and from Lemma 12 it follows
that

2X
i=1

�
↵

f

i

s

˙↵�

l.o. f
i

s

�
�

2X
i=1

�
↵

f

i

s

˙↵�

s

�
=

2X

i=1

↵

f

i

s

!
˙↵�

s

.

B. Computational Effort
SensorNC analyses have usually been carried out by a

central entity due to the knowledge about and control over
the information needed to derive bounds. The most prominent
example is a design space exploration evaluating the effect
of different system configurations on the performance. We
investigate the impact of Theorem 18 on the execution time of
an end-to-end analysis of all flows in the network. All servers
offer �1000,1 and generate a flow shaped with ↵0.001,0.1 in
order to guarantee for stability. We have created 40 random
(o, d)-constrained sink trees per network size. The results
constitute the average over the respective simulations.

Relative Improvements: Figure 5(a) shows the factor by
which computation times are reduced. Starting with small
network sizes, the effort needed to bound cross-traffic arrivals
naturally increases with the number of servers and therefore
the gain by our new method is getting bigger, too. However,
after this initial phase it converges to a value of ⇡ 5.7.
Figure 5(b) illustrates the according reduction of the arrival
bounding’s share of the overall analysis: From 80 to less than
15%. For small random sink trees the reduction highly depends
on the actual shape of the topology which explains the small
oscillation in the graph.

0 200 400 600 800 1000

0
10

20
30

40

Random (o,20)−constrained sink trees

Network size [sensors]

C
om

pu
ta

tio
n

tim
e

[s
]

Conventional, o=2
Conventional, o=5
New, o=2
New, o=5

(a)

0 200 400 600 800 1000

0
5

10
15

20
25

30
35

Random (5,d)−constrained sink trees

Network size [sensors]

C
om

pu
ta

tio
n

tim
e

[s
]

Conventional, d=10
Conventional, d=20
New, d=10
New, d=20

(b)

Figure 6. Scaling behavior when altering (a) the maximum out degree o and
(b) the maximum depth d.

Absolute Improvements: Figure 6 compares the scaling
behavior of the superior PMOO analyses. Both react similar to
changes of o (Figure 6(a)) and d (Figure 6(b)). While our new
method’s run time still scales proportionally to the network
size, it does so much slower. This is probably the best one
could hope for when improving SensorNC analysis without
compromising the tightness of the results.

Note that Figure 6 shows the computation times for the
analysis of a single network configuration averaged over 40

repetitions. When varying the configuration it is not only
sensible to experiment with different values for o and d or
test multiple deployments complying with the resulting (o, d)-
constraint, but also to test heterogeneous network configura-
tions by varying the two defining parameters of flows and
sensors independently. Thus, a design space exploration can
easily consist of tens of thousands of distinct analyses to be
executed. The overall execution time clearly has to scale in
this number.

C. SensorNC as a Distributed Service

A PMOO analysis with recursive bounding of cross-traffic
arrivals practically does not allow to distribute the execution
over the sensor network as it would essentially be equal to
the centralized execution. It thus imposes the need to gather
all the required information at each sensor; a characteristic we
conceptually evaluate in this section. The concatenation-based
arrival bounding method, however, can prevent this overhead
while simultaneously benefiting from the reduced computa-

tional effort. The flow-locality allows for a straightforward
distribution of the required information:

• Flows carry their current arrival bound as payload such
that it eventually reaches all the servers the flow traverses.

• Servers store each incoming flow’s arrival bound and then
adapt it according to the provided service curve.

To provide the information required in the left-over service
curve derivation of Theorem 15 and the performance bound
derivation of Corollary 11, some additional information in the
payload of a flow suffices:

• The residual service rate R

l.o. foi on its previous path;
crossed servers adapt it if necessary and store the value.

• The sum of latencies T experienced thus far; crossed
servers simply add their latency and store the value.

• The sum of merging cross-traffic bursts b

x̄(foi,s) up to the
current server; servers add the local value.

• Every flow needs to carry its original arrival curve in
order to derive its performance bounds.

This way every server is provided with all information.

Next, we evaluate the impact of the above scheme. We
consider a self-modeling WSN providing a task admission
control scheme based on delay bounds. As soon as a new task
is supposed to be added to the network, the WSN checks if it
can schedule the task’s data flow without compromising any
other flow’s delay constraint. In order to do so, it is necessary
to derive each flow’s delay bound under the hypothetical new
configuration. For simplicity of the comparison between the
recursive and the concatenation-based PMOO analysis, we
assume a fully occupied (o, d)-constrained sink tree when
evaluating the addition of a task at its root.

In such a sink tree, there are N

:

=

o

d+1�1
o�1 � 1 nodes above

the root, all of which hold information necessary to derive
delay bounds. Whereas the above scheme distributes this
information during normal operation, the previous, recursive
scheme requires two preceding phases to acquire it. In the
request phase, there is communication to N servers to query
their parameter settings and in the reporting phase N flows
answer the query (Figure 7). Note that these 2 ·N temporary
flows interfere with the existing traffic. They therefore need
to be scheduled at a lower priority so that they do not force
existing flows to violate their deadlines. Thus, termination of
the two phases is not guaranteed. In the new concatenation-
based scheme there is no such communication overhead.

Second, we compare the storage demand at a node. In
the recursive PMOO analysis, it was required to store all N
service curves of a subtree’s nodes, N arrival curves of the
flows originating in it and the N output arrival curves of flow
aggregates at each sensor node. In order to derive the latter
values, it is also necessary to have extensive knowledge about
the topology: Where do flows originate? Which paths do flows
take? Where do which flows aggregate? (see Figure 3(a)) In
contrast, the new analysis requires the arrival curves of all
N flows, their arrival bounds at the server as well as their
R

l.o. and
P

s2P (f) Ts

(which equals the recursive PMOO’s
storage demand for service curves). Additionally, a server has
to store the sum of each flow f ’s bx̄(f) along its path to execute

Task Task

(a) (b)

Figure 7. Task admission control in a (2, 3)-constrained sink tree: (a) Request
phase and (b) reporting phase.

Theorem 15. Further, the recursive analysis needs to store the
arrival bounds ↵

x(f)
s

and ↵

x̄(f,s), for the entire cross-traffic
and for newly merging cross-flows, respectively, for each flow
f at server s. In the new analysis, this is not necessary as
both values are simply derived by adding up already stored
values. Thus, the new scheme considerably reduces the storage
demand to execute a PMOO analysis.

Regarding the computational effort, a sensor node previ-
ously had to bound cross-traffic arrivals at all non-leaf nodes
above it, i.e., execute N � o · d operations, and compute
the output arrival curve at all upstream nodes [2], [18], i.e.,
execute another N operations. In the new scheme, a node
only computes the output arrival curve of flows crossing it,
i.e., it just executes N operations. In the second analysis
step, deriving PMOO’s arrival bounds, the computational effort
is reduced from a repetitive execution of the operations for
each flow, considering the unique aggregation on its path that
defines ↵

x(f)
s

and ↵

x̄(f,s), to adding up the per-flow bounds
that were derived only once. This reduction in complexity of
the analysis leads to faster computation times as discussed in
Section V-B. The effort to execute Theorem 15 stays the same.

With the generalized concatenation theorem we can keep
the communication overhead low, decrease storage demands
and reduce computational effort. All of this is achieved with
a simple scheme that allows to distribute the analysis over the
entire network.

VI. CONCLUSION

Of the two steps involved in network calculus performance
analysis, bounding a certain flow of interest’s cross-traffic
arrivals and deriving its delay and backlog bound, we focus
on the former one in this paper. Although much effort has so
far been invested in the latter one, we showed that typically
it only consumes around 20% of the computation time. The
high effort of cross-traffic arrival bounding is caused by the
degree it is interwoven with the topology it is applied to.
In order to break this dependency, we contribute a novel
theorem that generalizes the classical concatenation theorem –
which is only applicable to tandems of servers – to enable for
sink tree analysis. The generalized concatenation theorem for
sensor network calculus allows to bound arrivals of individual
cross-flows virtually separated from each other and from the
topology. Without compromising the quality of the bounds,
the separate results can be combined to the whole cross-
traffic aggregate’s arrival bound. This characteristic introduces

a so-called flow-locality that leads to considerably reduced
complexity and thus resource demand of the entire analysis
and also boosts resilience against recalculations caused by
parameter changes. We could decrease the share of arrival
bounding from 80% to less than 15% and thereby reduce the
overall time to completion of the analysis by more than a factor
of 5. The new flow-locality further provides the interesting
opportunity to distribute a network calculus analysis across a
sensor network in order to execute performance control and
monitoring tasks such as distributed admission control for
large-scale WSNs inside the network itself.

REFERENCES

[1] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer, 2001.

[2] J. B. Schmitt and U. Roedig, “Sensor Network Calculus – A Framework
for Worst Case Analysis,” in Proc. IEEE DCOSS, June 2005, pp. 141–
154.

[3] J. B. Schmitt, F. A. Zdarsky, and U. Roedig, “Sensor Network Calculus
with Multiple Sinks,” in Proc. of the Performance Control in Wireless
Sensor Networks Workshop at the IFIP NETWORKING, May 2006, pp.
6–13.

[4] J. B. Schmitt, F. A. Zdarsky, and L. Thiele, “A Comprehensive Worst-
Case Calculus for Wireless Sensor Networks with In-Network Process-
ing,” in Proc. IEEE RTSS, December 2007, pp. 193–202.

[5] N. Gollan and J. B. Schmitt, “Energy-Efficient TDMA Design Un-
der Real-Time Constraints in Wireless Sensor Networks,” in Proc.
IEEE/ACM MASCOTS, October 2007, pp. 80–87.

[6] A. Koubâa, M. Alves, and E. Tovar, “Modeling and Worst-Case Di-
mensioning of Cluster-Tree Wireless Sensor Networks,” in Proc. IEEE
RTSS, December 2006, pp. 412–421.

[7] P. Jurcik, A. Koubâa, R. Severino, M. Alves, and E. Tovar, “Dimension-
ing and Worst-Case Analysis of Cluster-Tree Sensor Networks,” ACM
Transactions on Sensor Networks, pp. 14:1–14:47, September 2010.

[8] H. She, Z. Lu, A. Jantsch, D. Zhou, and L.-R. Zheng, “Performance
Analysis of Flow-Based Traffic Splitting Strategy on Cluster-Mesh Sen-
sor Networks,” International Journal of Distributed Sensor Networks,
2012.

[9] W. Y. Poe, M. A. Beck, and J. B. Schmitt, “Achieving High Lifetime
and Low Delay in Very Large Sensor Networks using Mobile Sinks,”
in Proc. IEEE DCOSS, May 2012, pp. 17–24.

[10] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic, “Improving Performance
Bounds in Feed-Forward Networks by Paying Multiplexing Only Once,”
in Proc. GI/ITG MMB, March 2008, pp. 1–15.

[11] J. B. Schmitt, F. A. Zdarsky, and M. Fidler, “Delay Bounds under
Arbitrary Multiplexing: When Network Calculus Leaves You in the
Lurch ...” in Proc. IEEE INFOCOM, April 2008, pp. 1669–1677.

[12] A. Bouillard, L. Jouhet, and E. Thierry, “Tight Performance Bounds in
the Worst-Case Analysis of Feed-Forward Networks,” in Proc. IEEE
INFOCOM, March 2010, pp. 1–9.

[13] J. B. Schmitt and F. A. Zdarsky, “The DISCO Network Calculator – A
Toolbox for Worst Case Analysis,” in Proc. ValueTools, October 2006.

[14] S. Bondorf and J. B. Schmitt, “The DiscoDNC v2 – A Comprehensive
Tool for Deterministic Network Calculus,” in Proc. ValueTools, Decem-
ber 2014.

[15] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization
and Linearity: An Algebra for Discrete Event Systems. Wiley, 1992.

[16] C.-S. Chang, Performance Guarantees in Communication Networks.
Springer, 2000.

[17] S. Bondorf and J. B. Schmitt, “Statistical Response Time Bounds in
Randomly Deployed Wireless Sensor Networks,” in Proc. IEEE LCN,
October 2010, pp. 340–343.

[18] U. Roedig, N. Gollan, and J. B. Schmitt, “Validating the Sensor Network
Calculus by Simulations,” in Proc. Performance Control in Wireless
Sensor Networks Workshop at WICON, October 2007.

[19] J. B. Schmitt and U. Roedig, “Worst Case Dimensioning of Wireless
Sensor Networks under Uncertain Topologies,” in Proc. Workshop on
Resource Allocation in Wireless Networks at IEEE WiOpt, April 2005.

[20] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in ACM SenSys, November
2004, pp. 81–94.

