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Abstract Network calculus provides a mathematical framework for de-
terministically bounding backlog and delay in packet-switched networks.
The analysis is compositional and proceeds in several steps. In the first
step, a general feed-forward network is reduced to a tandem of servers
lying on the path of the flow of interest. This requires to derive bounds on
the cross-traffic for that flow. Tight bounds on cross-traffic are crucial for
the overall analysis to obtain tight performance bounds. In this paper,
we contribute an improvement on this first bounding step in a network
calculus analysis. This improvement is based on the so-called total flow
analysis (TFA), which so far saw little usage as it is known to be inferior
to other methods for the overall delay analysis. Yet, in this work we show
that TFA actually can bring significant benefits in bounding the bursti-
ness of cross-traffic. We investigate analytically and numerically when
these benefits actually occur and show that they can be considerable
with several flows’ delays being improved by more than 40% compared
to existing methods – thus giving TFA’s existence a purpose finally.

1 Introduction

Network Calculus (NC) is a versatile methodology for queueing analysis of re-
source sharing systems. The high modeling power of NC has been transposed
into several important applications for network engineering problems, tradition-
ally in the Internet’s Quality of Service proposals IntServ and DiffServ, and more
recently in diverse environments such as wireless sensor networks [17], switched
Ethernets [12], data centers [19], or System-on-Chip [15].

A network calculus analysis requires a feed-forward network in order to avoid
cyclic dependencies between flows and thus be able to compute flow character-
istics inside the network. In fact, the typical first step in a NC analysis, given a
flow of interest (foi), is to reduce the feed-forward network to a tandem consisting
of the servers on the foi’s path. To that end, arrival constraints of the foi’s cross-
traffic burstiness and rate have to be computed. Accurate burstiness constraints
are indeed crucial for the subsequent tandem analysis to achieve accurate end-
to-end performance bounds. As we discuss in Section 2, much research has been
invested in tightening the tandem analysis, silently assuming that the reduction
step from the feed-forward network to the tandem had already been performed.
However, this step becomes very important for the quality of the bounds in



larger feed-forward networks. Consequently, we deal with this reduction step in
our work and present a method to tighten the bounds on the burstiness of cross-
traffic. Somewhat surprisingly, we achieve this by applying the so-called total
flow analysis (TFA) to compute bounds on the server backlog just before the
analyzed flow’s path. This is surprising because the TFA has a “bad reputation”
as an overall analysis method. This is due to its inferior results when bounding
a foi’s end-to-end performance metrics since it cannot exploit the pay burst only
once phenomenon (PBOO, see Section 3).

The beneficial effect of our burstiness bounding step is based on the following
basic, intuitive insight: At the output of a server, any combination of flows can
be at most as bursty as the maximum data backlog at this server. Based on this
insight we formally prove how to characterize the output of a flow by its input
arrival curve and the server backlog bound. The new burstiness bound can be
exploited to potentially reduce cross-traffic arrival bounds that were computed
conventionally with the (min,+)-deconvolution.

In fact, as we discuss below, this does not always lead to improved bounds, yet
it works from certain utilizations onwards and can be considerable. The reasons
why TFA can help here become clear in our detailed treatment below, but here
is an intuition: TFA’s aggregate (total) perspective avoids making too many
assumptions on the relative priorities between flows. In contrast, the conventional
method does so by separating cross-traffic flows from each other.

In short, we contribute a new method to compute arrival bounds for cross-
traffic on a foi’s path. It is based on backlog bounds from TFA. The rest of this
paper is structured as follows: In Section 2 we discuss related work. Section 3 pro-
vides the necessary background and notation on feed-forward analysis with NC.
The alternative way to calculate the output bound of a traffic flow is presented
and proved in Section 4. Next, the rationale behind the new burstiness bound-
ing procedure in feed-forward networks as well as a detailed discussion on the
conditions when it can improve the existing methods is presented in Section 5.
Results from numerical evaluation concerning larger feed-forward networks are
reported in Section 6, before the paper is concluded in Section 7.

2 Related Work

As mentioned above, most work in network calculus focused on the second step
in a feed-forward network analysis, where the problem has already been reduced
to a tandem. There is a whole evolution from simple, but conservative methods
to sophisticated, tight analyses which can be very involved computationally (see
[6,11] for recent overviews).

However, the first step of the feed-forward network analysis, bounding the
cross-traffic burstiness, has so far been largely neglected. Most work starts di-
rectly with the tandem analysis or suggests to use straightforward techniques
from basic NC results (more details are given in Section 3). An exception can
be found in [10], where, for a single node under arbitrary multiplexing of sev-
eral flows, tight output descriptions are derived for a single flow. However, when



targeting a feed-forward network, we need to bound cross-flows that may have
traversed several servers with potentially many other flows joining and leaving
it. Hence, much more work is needed here.

In previous work of ours, we already addressed the cross-traffic arrival bound-
ing. In [4], we focused on algorithmic efficiency and targeted a distributed execu-
tion of the analysis. In [5], we achieved more accurate bounds by improving the
overall cross-traffic arrival bounding procedure. The results of this paper allow
to further improve these bounds.

3 Network Calculus Background

Data Arrivals and Forwarding Service

Flows are characterized by functions cumulatively counting their data. They
belong to the set F0 of non-negative, wide-sense increasing functions:

F0 =

�
f : R! R+

1 | f (0) = 0, 8s  t : f (s)f (t)

 
, R+

1 :

= [0,+1) [ {+1} .

We are particularly interested in the functions A(t) and A

0
(t) cumulatively

counting a flow’s data put into a server s and put out from s, both until time t.
These functions allow for simple definitions of performance measures.

Definition 1. (Backlog and Delay) Assume a flow with input function A tra-
verses a system S and results in the output function A

0. The backlog of the flow
at time t is defined as

B(t) = A(t)�A

0
(t).

The (virtual) delay for a data unit arriving at S at time t is defined as

D(t) = inf {⌧ � 0 | A(t)  A

0
(t + ⌧)}.

Note, that the order of data within the flow needs to be retained for the
(virtual) delay calculation [16].

NC operates in the interval time domain, i.e., its functions of F0 bound the
maximum data arrivals of a flow during any duration of length d.

Definition 2. (Arrival Curve) Given a flow with input A, a function ↵ 2 F0 is
an arrival curve for A iff

8t 8d, 0  d  t : A(t)�A(t� d)  ↵(d).

For example, sensors reporting measurement values may generate packets of
size b that are periodically sent with a minimum inter-arrival time t

�

. Then, the
data flow they generate has a maximum data arrival rate of r =

b

t

�

in the fluid
model of F0. The resulting shape of the arrival curve is commonly referred to as
token bucket and belongs to the class F

TB

⇢ F0:

F
TB

= {�
r,b

| �
r,b

(0)= 0, 8d > 0 : �

r,b

(d)= b + r · d}.

Scheduling and buffering leading to the output function A

0
(t) depend on a

server’s forwarding. It is lower bounded in interval time as well.



Definition 3. (Service Curve) If the service provided by a server s for a given
input A results in an output A

0, then s offers a service curve � 2 F0 iff

8t : A

0
(t) � inf

0dt

{A(t� d) + �(d)}.

For example, TDMA channel access [13], duty cycling sensor nodes [2], as
well as the service offered by Ethernet connections [12] can be modeled with
so-called rate-latency service curves F

RL

⇢ F0:

F
RL

= {�
R,T

|�
R,T

(d) = max{0, R · (d� T )}.

A number of servers fulfill a stricter definition of service curves that guar-
antees a higher output during periods of queued data, the so-called backlogged
periods of a server.

Definition 4. (Strict Service Curve) Let � 2 F0. Server s offers a strict service
curve � to a flow iff, during any backlogged period of duration d, the output of
the flow is at least equal to �(d).

The Network

In general, networks are modeled as graphs where a node represents a network
device like a router or a switch. Devices can have multiple inputs and multi-
ple outputs to connect to other devices. This network model does not fit well
with NC’ server model for queueing analysis. NC therefore analyzes so-called
server graphs. Assuming that a network device’s input buffer is served at line
speed, queueing effects manifest at the output buffers. These are modeled by the
graph’s servers. For instance, in wireless sensor networks, nodes usually possess
a single transmitter. Thus, one sensor node corresponds to one server and the
transmission range defines the server graph’s links [2,4].

(min,+)-Operations

Network calculus [8,9] was cast in a (min,+)-algebraic framework in [14,7]. The
following operations allow to manipulate arrival and service curves while retain-
ing their worst-case semantic.

Definition 5. ((min,+)-Operations) The (min,+) aggregation, convolution and
deconvolution of two functions f, g 2 F0 are defined as

aggregation: (f + g)(t) = f(t) + g(t),

convolution: (f ⌦ g)(t) = inf

0st

{f(t� s) + g(s)},

deconvolution: (f ↵ g) (t) = sup

u�0
{f(t + u)� g(u)}.

The service curve definition then translates to A

0 � A⌦ �, the arrival curve
definition to A ⌦ ↵ � A, and performance characteristics can be bounded with
the deconvolution ↵↵ �:



Quantifier Definition
F Generic notation for a flow aggregate

{f
n

, ..., f

m

} Flow aggregate containing flows f

n

, ..., f

m

hs
x

, . . . , s

y

i Tandem of consecutive servers s

x

to s

y

↵

f , ↵F Arrival curve of flow f , set of flows F
↵

f

s

, ↵F
s

Arrival bound at server s

�

s

Service curve of server s

�

l.o.f , �l.o.F Left-over service curve

Table 1. Network calculus notation for flows, arrivals and service.

Theorem 1. (Performance Bounds) Consider a server s that offers a service
curve �. Assume a flow (aggregate) with arrival curve ↵ traverses the server.
Then we obtain the following performance bounds for the flow:

delay: 8t 2 R+
: D (t)  inf{d � 0 |(↵↵ �) (�d)  0} =: h(↵, �),

backlog: 8t 2 R+
: B (t)  (↵↵ �) (0) =: v(↵, �),

output: 8d 2 R+
: ↵

0
(d)= (↵↵ �) (d),

where the delay and backlog bounds are abbreviated by D and B, respectively, as
they hold independent of parameter t and ↵

0 is an arrival curve for A

0.

The delay bound equals the horizontal deviation between ↵ and �, h (↵, �).
In case the arrival curve belongs to a single flow, the order of data within this
flow must be retained (FIFO per µFlow property [16]). In case ↵ belongs to a
flow aggregate, FIFO multiplexing between the aggregated flows is additionally
required (cf. Definition 1). In contrast, for the backlog bound, i.e., the vertical
deviation v(↵, �), no FIFO assumptions are required.

Analyzing a flow in an end-to-end fashion while considering cross-traffic on
its path is enabled by the following theorems. Table 1 provides the notation
required to analyze such a path tandem of servers.

Theorem 2. (Concatenation of Servers) Consider a flow (aggregate) F crossing
a tandem of servers hs1, . . . , sni and assume that each s

i

, i 2 {1, . . . , n}, offers
a service curve �

s

i

. The overall service curve offered to F is their concatenation

�

s1 ⌦ . . .⌦ �

s

n

=

O
n

i=1
�

s

i

Theorem 3. (Left-Over Service Curve) Consider a server s that offers a strict
service curve �

s

. Let s be crossed by two flow aggregates F0 and F1 with aggregate
arrival curves ↵

F0 and ↵

F1 , respectively. Then F1’s worst-case residual resource
share under arbitrary multiplexing at s, i.e., its left-over service curve at s, is

�

l.o.F1
s

= �

s

 ↵

F0

with (�  ↵) (d)

:

= sup {0  u  d | (� � ↵) (u)} denoting the non-decreasing up-
per closure of (� � ↵) (d).



Network Analysis

A network calculus analysis computes the end-to-end delay bound for a specific
flow (flow of interest, foi). Conceptually, algebraic NC is compositional and its
feed-forward analyses proceed in two steps [3,4]:

1. First, the analysis abstracts from the feed-forward network to the flow of
interest’s path (a tandem of servers). This step is enabled by recursively
decomposing the server graph into tandems [5] and bounding the output
arrivals of cross-traffic with Theorem 1, the output bound. After this step,
a bound on the worst-case shape of cross-flows is known at the location
of interference with the foi. Then, the following step need not consider the
part of the network traversed by cross-flows nor the potentially complex
interference patterns they are subject to.

2. The foi’s end-to-end delay bound in the feed-forward network can now be
calculated with a less complex tandem analysis. The foi’s end-to-end left-over
service curve is derived and the delay bound computed.

The second step of the feed-forward analysis (FFA) procedure has seen much
treatment in the literature. Effort constantly focused on improving the ability
to capture flow scheduling and cross-traffic multiplexing effects and thus provide
more accurate delay bounds. One of the earliest improvements was made with
the step from the total flow analysis to the separate flow analysis.

Total Flow Analysis (TFA) [9]: The Total Flow Analysis directly ap-
plies the basic results from Theorem 1. Given the arrival curve for the totality
of flows (a flow aggregate) present at a server and the server’s service curve,
TFA allows to derive deterministic worst-case bounds on the delay a flow (ag-
gregate) experiences when crossing the analyzed server as well as the server’s
buffer requirement for handling all traffic without suffering from overflows. The
backlog bound coincides with the total buffer demand of a server. The TFA is a
server-local analysis, i.e., all bounds it derives hold for a specific server and the
totality of traffic crossing it, not for a single flow of interest because flows are
not analyzed individually. When TFA is used as a tandem analysis in FFA-step
2 of the above scheme, the flow of interest’s end-to-end delay bound is computed
by summing up the server-local delay bounds on its path.

The Separate Flow Analysis (SFA) and the PBOO-effect [14]: The
TFA delay bound can be improved by separating the analysis’ flow of interest
from its cross-traffic. In this preparatory step, the so-called left-over service curve
calculation, cross-traffic arrivals are subtracted from the service curves in the
foi’s path. The SFA is a straight-forward, hop-by-hop application of Theorems 3
and 2: First subtract cross-traffic arrivals such that �s become �

l.o.fois and then
concatenate the left-over service curves. Deriving the delay bound with a single,
end-to-end left-over service curve considers the flow of interest’s burst term only
once. This effect is therefore called Pay Bursts Only Once (PBOO).

Note, that TFA and SFA both define the procedure for FFA-step 2 only. In
the first step of the feed-forward analysis procedure, only flows that eventually
interfere with the flow of interest are considered – cross-traffic arrival bounding is



therefore limited to these flows. They are separated from their own cross-traffic
and bounded in an aggregate fashion. The former defines the difference to the
TFA backlog bounding where all flows at a server are considered, regardless their
subsequent hop [14]. The latter defines the aggregate PBOO Arrival Bounding
(PBOO-AB) [5]. Thus, both approaches incorporate different degrees of flow
aggregation. We exploit a combination of both, yet without explicitly tracing
them throughout the entire arrival bounding [?] but with the TFA’s additional
benefits for bounding a server’s output burstiness.

4 An Alternative Output Bound

In this section, we derive an alternative output bound. As presented in Section 5
and numerically evaluated in Section 6, this alternative output bound enables
an improved arrival bounding step (FFA-step 1).

Let A, A

0 be input and output to/from a system. We assume to have an
arrival curve ↵ for the arrivals A and a service curve � offered by the system.
Let us further assume that the arrival curve ↵ is such that for d > 0 it can be
written as

↵(d) = ↵̃(d) + ↵(0

+
),

with ↵̃ being a concave function (defined for d > 0 by the above equation and
with ↵̃(0) = 0), and ↵(0

+
) = lim

d!0+
↵(d). Clearly, this means that ↵ is also a

concave function. Further note that, for instance, any concave piecewise-linear
arrival curve meets this condition, hence it is not restrictive in practice (e.g.,
the Disco Deterministic Network Calculator, DiscoDNC, uses such functions as
arrival curves [3]). As ↵̃ 2 F0 and is concave, it is also sub-additive, which is
crucial as we see below.

Noting that we can bound the backlog for any given arrival process A by

B(t) = A(t)�A

0
(t)  A(t)� (A⌦ �)(t) = sup

0ut

{A(t)�A(u)� �(t� u)},

we provide the alternative output bound in the following theorem.

Theorem 4. Under the above assumptions and notations, an output bound on
the departure flow (aggregate) A

0 can be calculated as

↵

0
(d) = ↵(d) + (v(↵, �)� ↵(0

+
)) · 1{d>0}.

Proof. Let s < t:

A

0
(t)�A

0
(s) = A(t)�A(s) + B(s)�B(t)

 A(t)�A(s) + B(s)

 A(t)�A(s) + sup

0us

{A(s)�A(u)� �(s� u)}

= sup

0us

{A(t)�A(u)� �(s� u)}

 sup

0us

{↵(t� u)� �(s� u)}



= sup

0us

{↵̃(t� u) + ↵(0

+
)� �(s� u)}

 sup

0us

{↵̃(t� s) + ↵̃(s� u) + ↵(0

+
)� �(s� u)}

= ↵̃(t� s) + sup

0us

{↵(s� u)� �(s� u)}

 ↵̃(t� s) + v(↵, �)

= ↵(t� s) + v(↵, �)� ↵(0

+
) = ↵

0
(t� s).

For s = t : A

0
(t)�A

0
(s) = 0 = ↵

0
(t�s). q.e.d.

Note that this result resembles a known basic result that can be found in
Chang’s textbook in Lemma 1.4.2 [7]. This lemma states that for a server with
a bound on the queue q̄ and a �

r,b

-constrained input, an output bound can be
given as �

r,b+q̄

. Besides generalizing this lemma, we point out that we actually
improve it, as we basically get rid of the burst term and would obtain �

r,q̄

as an
output bound under Chang’s assumptions.

5 TFA-assisted PBOO Arrival Bounding

In this section, we demonstrate how to exploit the basic insight about the alter-
native output characterization from the previous section. It gives us the choice
between the existing PBOO arrival bounding (PBOO-AB), which applies the
conventional output bound, and an approach where we use a backlog bound
for the cross-traffic and apply Theorem 4. This backlog bound is obtained from
TFA, i.e., it actually considers flows that demultiplex from cross-traffic and do
not interfere with the foi. In the following we discuss why and when this can
actually lead to an improvement.

Consider the network configuration of Figure 1 where f is the flow of interest,
xf is its cross-flow and xxf is the cross-traffic of xf . Although the network is
depicted as a tandem, we cannot apply a simple tandem analysis because the
flow of interest f does not cross all servers, i.e., cross-traffic arrival bounding
is necessary in this network: Deriving f ’s performance bounds with the SFA
requires bounding xf ’s arrival at s2, ↵

xf

s2
, (FFA-step 1) with PBOO-AB first.

It’s result is used to separate f by computing f ’s left-over service curve at s2

that is then used to derive f ’s delay bound (FFA-step 2).

f

xf

xxf

s0 s1 s2

Figure 1. Sample network.
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Figure 2. Different scaling behaviors of B

TFA

s1
and b

xf

s2
with respect to the network

utilization.

PBOO-AB retains the worst-case when arbitrarily multiplexing of flows, i.e.,
in contrast to FIFO multiplexing, data of xf may always be served after xxf ’s
data – independent of their relative arrival times. Thus, burstiness of ↵

xf

s2
, de-

noted by b

xf

s2
:= ↵

xf

s2
(0

+
), increases when more data of xxf arrives in shorter

intervals, i.e., its arrival curve ↵

xxf increases. In our illustrative numerical eval-
uation of this section, service curves are chosen to be rate latency functions
�

R,T

= �20,20 and arrival curves to be token buckets ↵ = �

r,10 where the rate r

is variable. In this parameterized homogeneous setting, ↵

xxf increases with pa-
rameter r that we use to show xf ’s worst-case burstiness increase with a growing
network utilization.

Figure 2 shows the utilization’s impact on the PBOO-AB burstiness of f ’s
cross-traffic, b

xf

s2
, and on the TFA backlog bound at server s1, B

TFA

s1
. TFA con-

siders all flows at s1 and derives the backlog bound based on their aggregate
arrival curve. Being the backlog of all incoming traffic at the server, i.e., a su-
perset of f ’s cross-traffic xf , B

TFA

s1
is also a backlog bound for xf . In Figure 2,

B

TFA

s1
scales linearly whereas b

xf

s2
scales super-linearly with the utilization. Con-

sequently, both curves intersect and b

xf

s2
exceeds B

TFA

s1
, such that using the TFA

backlog bound and Theorem 4 indeed achieves an improvement over PBOO-AB.
This can be explained by the derivation of the two values, B

TFA

s1
and b

xf

s2
.

For detailed information on how to compute the result of (min,+)-operations
for token-bucket arrival curves and rate-latency service curves, please refer to
the DiscoDNC documentation [1].
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xf
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=

⇣
↵

xf ↵ �

l.o.xf

hs0,s1i

⌘
(0)

=

�
↵

xf ↵
�
�

l.o.xf

s0
⌦ �

l.o.xf

s1

��
(0)



=

�
↵

xf ↵
��

�

s0  ↵

xxf

s0

�
⌦
�
�

s1  ↵

xxf

s1

���
(0)

=

�
↵

xf ↵
��

�

s0  ↵

xxf

�
⌦
�
�

s1  
�
↵

xxf

s0
↵ �

l.o.xxf

s0

����
(0)

=

�
↵

xf ↵
��

�

s0  ↵

xxf

�
⌦
�
�

s1  
�
↵

xxf ↵
�
�

s0  ↵

xf

s0

�����
(0)

= (�

r,10 ↵ ((�20,20  �

r,10)⌦ (�20,20  (�

r,10 ↵ (�20,20  �

r,10))))) (0)

(1)
=

⇣
�

r,10 ↵
⇣
�20�r,

410
20�r

⌦
⇣
�20,20  

⇣
�

r,10 ↵ �20�r,

410
20�r

⌘⌘⌘⌘
(0)

(2)
=

⇣
�

r,10 ↵
⇣
�20�r,

410
20�r

⌦
⇣
�20,20  �

r,

410r
20�r

+10

⌘⌘⌘
(0)

(3)
=

⇣
�

r,10 ↵
⇣
�20�r,

410
20�r

⌦
⇣
�20,20  �

r,

400r+200
20�r

⌘⌘⌘
(0)

(4)
=

⇣
�

r,10 ↵
⇣
�20�r,

410
20�r

⌦ �20�r,

8200
(20�r)2

⌘⌘
(0)

=

⇣
�

r,10 ↵ �20�r,

410
20�r

+ 8200
(20�r)2

⌘
(0)

(5)
=

✓
�

r,10 ↵ �20�r,

16400�410r
(20�r)2

◆
(0)

(6)
=

4000 + 16000r � 400r

2

400� 40r + r

2

We can see that b

xf

s2
monotonically increases because the numerator is larger as

well as faster growing than the denominator and the stability condition r  10

leads to an always positive denominator.
Next, let us see how the polynomial expression’s degree builds up during the

above derivation. Multiplication by the arrival rate is required to compute the
burstiness of an output arrival curve, i.e., every time we deconvolve – see steps
from (1) to (2) and from (5) to (6). Subsequent left-over service curve operations,
e.g., from (3) to (4), retain the rate in the latency term’s denominator, as does
the convolution of service curves in the step from (4) to (5). Deconvolution is
required for output bounding and thus occurs at every level of the recursive
arrival bounding procedure. In this example, xf is bounded in the first recursion
level and it requires bounding xxf in a second level; hence, we obtain a rational
function of degree 2 (with a pole at r = 20).

The TFA backlog bound derivation for server s1 proceeds as follows:

B

TFA

s1

(1)
= v

��
↵

xf

s1
, ↵

xxf

s1

 
, �

s1

�
= v

✓�
↵

xf

s0
, ↵

xxf

s0

 
↵ �

l.o.{↵xf

s1
,↵

xxf

s1
}

s0 , �

s1

◆
(2)
= v

��
↵

xf

s0
, ↵

xxf

s0

 
↵ �

s0 , �

s1

�
(3)
= v ((�

r,10 + �

r,10)↵ �20,20, �20,20)

(4)
= v (�2r,20 ↵ �20,20, �20,20)

(5)
= v (�2r,20+2r·20, �20,20)

= 80r + 20



The derivation takes advantage of aggregation in (1) and (3), which prevents
recursive cross-traffic arrival bounding in our example. xxf is not considered
cross-traffic of xf as both belong to the same flow aggregate and therefore no
action has to be taken to derive the left-over service curve at s0 in (2). The only
relevant deconvolution in B

TFA

s1
’s derivation is found in the computation of the

aggregate’s output bound after crossing s0. The deconvolution in the backlog
bounding operation v

��
↵

xf

s1
, ↵

xxf

s1

 
, �

s1

�
executed in the step from (4) to (5) is,

in contrast to the b

xf

s2
-derivation not affecting the polynomial expression’s degree

because its latency is not depending on r. Thus, the entire term grows linearly
with the flow arrival rate.

Remark 1. It is not possible to improve xf ’s output bound by using the backlog
bound for flow xf at server s1, i.e., B

xf

s1
, because B

xf

s1
and b

xf

s2
are equal due to

[14], Theorem 3.1.12, Rule 12:

B

xf

s1
=

��
↵

xf ↵ �

l.o.xf

s0

�
↵ �

l.o.xf

s1

�
(0)

=

�
↵

xf ↵
�
�

l.o.xf

s0
⌦ �

l.o.xf

s1

��
(0) = b

xf

s2

From this reformulated derivation of b

xf

s2
we obtain another explanation for its

function being of degree 1 in the above example: There is only one deconvolution.

Remark 2. Theorem 1.4.5 in Le Boudec and Thiran’s text book [14] presents
conditions for tight output arrival bounds. These are satisfied in both our deriva-
tions above, yet, we improve xf ’s output bound by incorporating B

TFA

s1
. At first

glance, this may seem like a contradiction, however, we gain tightness from ad-
ditional considerations of a feed-forward analysis that are not addressed in [14],
Theorem 1.4.5. It remains valid, yet only with respect to the given service curves
that, in turn, might be tightness-compromising left-overs like in Remark 1.

In a more complex feed-forward network, we often have multi-level recursions
for cross-traffic of cross-traffic in the arrival bounding phase of the derivations [5]
– also for the backlog bound at a server – and therefore polynomial expressions
of higher degrees occur in both alternative bounds on the output burstiness. For
the ease of presentation, we continue to illustrate the impact of the differing
scaling behaviors as well as the service curve latency and the initial burstiness of
flows in the simple network from Figure 1. In Section 6, we extend our evaluation
to more involved feed-forward networks.

Above, we discussed that left-over service curve computations retain the ar-
rival rate in their results’ latency term. For instance, the left-over latency at
server s0 is T

s0 ·Rs0+b

xxf

R

s0�r

xxf

= T

s0 +

r

xxf ·T
s0+b

xxf

R

s0�r

xxf

, i.e, it consists of a fixed and
a variable part. The fixed part is defined by the service curves’ initial latency
T

s0 = T

s1 = T

s2 =

:

T (equal for all servers in out homogeneous sample network)
whose influence on the total burstiness we evaluate – increasing T naturally de-
creases the impact of the variable part containing the crucial factor r. We check
T = 0, i.e., the natural lower limit of the latency, and T = 10

6, a value several
orders of magnitude larger than the service rate R = 20 and thus safe to be
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Figure 3. Relative difference: Influence of �’s latency T .

assumed as a realistic upper bound on T . The resulting range of T ’s impact is
depicted by the relative difference between B

TFA

s1
and b

xf

s2
in Figure 3. Most no-

tably, the network utilization required for the TFA backlog bound to outperform
the separated flow’s output burstiness is between 59% to 72% – that is, it always
exists and resides at utilizations considerably lower than the network’s capacity
limit. Moreover, b

xf

s2
’s relative benefit of 50% over B

TFA

s1
for low utilizations is

in fact small in absolute values (cf. Figure 2) whereas its disadvantage (right of
the intersection) grows fast to become large in absolute numbers.

Last, we evaluate the impact of the remaining variable parameter besides
utilization and the service curve latency: The initial burstiness of flows b in
the homogeneous network. We reduced the service curve latency’s influence by
assigning � = �20,0.1. Arrival curves are ↵ = �

r,b

where r is defined by the
network utilization (i.e., relative to the service rate R) and b is slowly increased
from 0 to the previously used value of 10. Figure 4 depicts the relative difference
between B

TFA

s1
and b

xf

s2
for three levels of network utilization: 59% and 72% (the

intersections of both values in the latency evaluation of Figure 3) as well as 100%.
We can see that the TFA backlog bound at server s1 is in fact always within the
output burstiness of the same utilizations found for the latency – for 59%, B

TFA

s1

is an asymptote when increasing b, and for 72% the b

xf

s2
-value starts at the server

backlog bound. The impact of initial burstiness of flows is similar to the latency’s
impact. For the maximum network utilization, b

xf

s2
always exceeds B

TFA

s1
by at

least 50% in our sample network, i.e., utilization remains most impactful.
Based on these observations, we propose to improve the arrival bound of a

flow (aggregate) with the TFA backlog bound and Theorem 4 applied at the last
hop of this flow (aggregate) – of course, only if it actually improves the bound.
We call this new method: TFA-assisted PBOO Arrival Bound.
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6 Feed-Forward Network Evaluation

The potential improvement of cross-traffic bounds can be quite considerable
in the small scenario of Section 5. Now we turn to the investigation of the
impact on the end-to-end delay bound of flows traversing larger feed-forward
networks. That is, we evaluate the improvements gained by reduced cross-traffic
interference that ultimately tightens delay bounds. We have extended the Disco
Deterministic Network Calculator (DiscoDNC) [3] with the TFA-assisted PBOO
Arrival Bounding in order to benchmark the resulting new variant against the
existing one without this improvement (plain PBOO-AB).

The exemplary network we generated for evaluation consists of 150 homoge-
neous servers with service curves �

R,T

= �200,0.1. 600 flows with random paths
and arrival curve ↵ = �2,0.1 were added to the network. They are supposed to
randomly generate hotspots of considerable, yet, uncontrolled utilization for the
evaluation. These hotspots see the highest numbers of flows such that the im-
pact of separation vs. aggregation can be observed – similar to heterogeneous
networks where some flows outweigh others. We chose a small initial burstiness
to additionally check the above claim that unavoidable burstiness increases are
sufficient to cause impact of the TFA’s assistance to the delay analysis.

The TFA-assisted PBOO-AB improved 369 out of 600 flow delay bounds
over those derived with plain PBOO-AB (see Figure 5). In total, 61.5% of flows
cross a hotspot that: 1) enables the TFA to aggregate flows such that its backlog
bounding requires less recursion levels, making it grow slower with the utilization,
and 2) has a utilization large enough to allow for its backlog bound to fall below
the output bound burstiness. For the 33% of flows with largest delay bound



0
2

4
6

8

Im
pr

ov
ed

 a
rri

va
l b

ou
nd

s 
du

rin
g 

an
al

ys
is

 [%
]

0 100 200 300 400 500 600

0
20

40
60

80

D
el

ay
 b

ou
nd

SFA with PBOO−AB
SFA with TFA−assisted PBOO−AB
Improved arrival bounds

0 100 200 300 400 500 600
Flow ID,

ordered by the delay bound of SFA with PBOO−AB

Figure 5. Delay analysis of a feed-forward network.

(using plain PBOO-AB), we achieved an average improvement of 17.93%, with
a maximum improvement of 44.41%.

The distribution of brown dots for these rightmost 200 flows in Figure 5
shows that this improvement was achieved without ever capping more than 2% of
the arrival bounds derived during the entire feed-forward analysis (right y-axis).
Moreover, it is clearly visible that an increased share of burstiness improvements
causes a larger delay bound reduction. For the rightmost 200 flows in Figure 5,
the dots form a pattern of three “peaks” whose beginning and end both demarcate
a step in the improved delay bounds depicted above them.

Another interesting observation is that these distinguishable peaks in im-
proved worst-case burstiness cause a non-uniform decrease of delay bounds. The
global network delay bound – the maximum delay bound of all flows in the net-
work – is not defined by the same flow anymore. Applying our new analysis, 11
flows that had a smaller delay bound than this flow now have a larger one. This
reordering indicates that even when delay bounds are just used as a relative
figure of merit, such as in design space explorations [18], an accurate network
delay analysis is important and the first step of the FFA procedure is crucial.

7 Conclusion

In network calculus, the Total Flow Analysis (TFA) had been abandoned since it
is inferior to other methods for overall network delay analysis. In this paper, we



demonstrate that the TFA can actually be very useful to improve the bounding
of cross-traffic arrivals in a feed-forward network. The trick is to use TFA’s
backlog bound as an upper bound on the burstiness at the servers where cross-
traffic joins the analyzed flow of interest. We showed that the improvement can
be quite significant, with some delay bounds reduced by more than 40%. So, we
see: There is a job for everyone!
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