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Abstract—Current analysis methods for queueing systems
mostly aim at steady-state results. However, many applications
demand results for systems with a transient behavior. In com-
munication networks such transient phases arise from sleep
scheduling or the slow-start phase of TCP. In both examples the
service offered is separated into a transient and a steady-state
phase. In a larger context also the arrivals to a queueing system
can show transient behavior. The demand or availability of energy
in smart grids, the pool of data generated after the map phase
in big data applications, or the arrivals in public transportation
networks are a few examples. Analyzing these kind of systems
in a steady-state fashion (for example via queueing theory)
ignores their behavior in the transient phases. On the other
side the analysis of transient phases bears additional challenges.
This paper uses stochastic network calculus to describe the
non-stationary behavior of queueing systems. With the help of
bivariate arrival- and service envelopes time-variant performance
bounds are constructed. Two numerical examples exemplify the
framework created by these envelopes and compare it to the
time-invariant analysis.

I. INTRODUCTION

Many instances of queueing systems contain a transient
phase. In such a phase a significant change to the system’s
steady-state behavior occurs. Both, the arrival or the service
process, can be responsible for a transient phase: Transient
phases in the arrivals occur for example when a singular event
spawns a large number of jobs. Here the timing and the size of
the burst can be either deterministic or random. Depleting such
job pools [2] results in a transient phase, which ends after all
arrivals of the burst are processed. After that the system might
renew by accepting the next job pool or converge to a steady-
state. In [2] the result of the map phase in big data applications
is given as one example for such a job pool. In the broader
context of queueing networks also applications in caching
networks, traffic engineering, public transport networks, or
even evacuation scenarios spring to mind as further examples
of job pools.

Transient phases are not limited to the arrival process, but
extend to the service process as well. An omnipresent example
is the slow-start phase of TCP [15]. Similarly the setup time
– for example due to sleep scheduling – of service elements
mark another transient phase [1]. Moving more in the direction
of M/M/m/Setup-systems one might also think of additional
service being provided under high loads. This extra service can
also be of limited nature. An example could be the reserve
energy of a wireless sensor node, harvested in the sleep cycle

from renewable sources. Down-times of servers due to repairs
form another kind of transient phase. Again all of these phases
can, but do not have to, transition into a steady-state.

We see the variety of transient effects on a queueing system
is rich. Queueing theory on the other side focuses to analyze
the steady-state of a system. Traditionally the queueing system
is modeled by recurrent Markov chains and the resulting
performance measures are time-invariant. In contrast to that
we are interested in time-dependent bounds for transient
phases. There exist few results for such an analysis (e.g. [17],
[16], [9], [2]), but they are specific to particular problems
or queueing systems. A general method, which captures a
system’s performance in transient phases and in its transition
to the steady-state is missing.

Stochastic Network Calculus (SNC) [3], [12], [5], [13],
[10], [4], [8] offers a alternative approach to analyze queueing
systems. This methodology unites concepts from the theory
of effective bandwidths (as in [11]) and its predecessor deter-
ministic network calculus (see for example [12], [7]). Typical
performance bounds of SNC take the form

P(b(t) > x) ≤ ε, (1)

where b(t) denotes the backlog of the system at time t.
We see that these bounds depend on time t at which the
system is evaluated. This hints already towards an analysis
that might take the different behavior in transient phases into
account. Indeed large parts of SNC operate on a bivariate – and
hence time-variant – notation. However, the methodology itself
eventually retreats to univariate – and hence time-invariant
– bounding functions. As an effect SNC does not resolve
transient behavior either. In fact, the above formulated bound,
which depends on t, is in literature mostly replaced by a time-
invariant version:

lim
t→∞

P(b(t) > x) ≤ ε.

The recent paper of Becker and Fidler [1] describes a
performance bound which is truly time-variant, though. The
therein discussed scenario consists of a service element with
sleep scheduling. The wake up time of the service element
forms a transient phase. The crucial difference to previous
results is, that the bivariate description of the service element
is preserved throughout the analysis. This allows to analyze
transient phases as well as steady-states of the queueing system
with a single method.



This paper extends these bivariate descriptions to arrivals
as well. Furthermore the resulting functions are combined
into stochastic bounds on the backlog and the virtual delay
of a system, as in (1). We present two numerical exam-
ples with transient phases. In these the transient phases are
reflected directly in the achieved performance bounds. The
new bounds lie between two previously available results: 1) a
direct application of SNC to the transient phase and 2) an
analysis of the system, which neglects the transient phase
completely. Eventually these examples showcase the wide
variety of transient phases, which can be analyzed by this
framework.

II. STOCHASTIC NETWORK CALCULUS

We introduce the notations and results needed from network
calculus. For a detailed introduction see for example [3], [10],
[8]. For the ease of presentation we consider time to be slotted
and arrivals – such as a stream of data – use the fluid model.
Such an arrival flow is defined via the accumulated functions
A(t) =

∑t
s=1 a(s). Here A(t) denotes the number of arrivals

up to time t and a(s) is the increment in time-slot (s− 1, s].
The bivariate extension of A, defined by A(s, t) := A(t) −
A(s), simplifies later notations. The function A describes a
dimensionless quantity, which abstracts the arrivals to a system
(e.g. bits, jobs, or packets).

Now let U be a bivariate function, such that U(s, t) ≤
U(s, t′) for all t ≤ t′. The system processing the arrivals
is defined as a dynamic U -server, if for all A and time-pairs
s ≤ t holds

D(t) ≥ min
0≤s≤t

{A(s) + U(s, t)}. (2)

Here D denotes the cumulative departures of the system. The
right-hand side of Equation (2) is known as the min-plus
convolution of A and U at (0, t). This operator is defined
and denoted by

A⊗ U(s, t) = min
s≤r≤t

{A(s, r) + U(r, t)}.

The definition of a dynamic U -server is motivated by
Lindley’s equation. This equation describes the backlog
b := A(t) − D(t) at time t for a constant rate server with
rate u. Its implicit form reads

b(t) = max{0, b(t− 1) + a(t)− u}.

Equation (2) generalizes above by keeping the service rate
variable and replacing the equality by an inequality.

A dynamic U -server bounds the backlog of the system by

b(t)
(2)
≤ A(t)−A⊗D(0, t) = max

0≤s≤t
{A(s, t)− U(s, t)}.

When we analyze a queueing system the arrival and service
process are usually random. Hence, to achieve a quantifiable
statement about b(t) with the above, more information on A
and U is needed.

In the following A denotes a stochastic process indexed by
N and U denotes a stochastic process indexed by the pairs

s ≤ t with s, t ∈ N. The information we need to quantify b(t)
is given in the moment generating function (MGF) of A and
U . Denote the MGF of a random variable X by φX(θ) :=
E(eθX).

Definition 1. The flow of arrivals A (the service U ) has a
univariate bound f(θ, t−s) (g(−θ, t−s)) for some θ > 0 and
pair s ≤ t, if its MGF fulfills

φA(s,t)(θ) ≤ f(θ, t− s)
(
φU(s,t)(−θ) ≤ g(−θ, t− s)

)
.

The flow of arrivals A (the service U ) has a bivariate bound
f(θ, s, t) (g(−θ, s, t)) for some θ > 0 and pair s ≤ t, if its
MGF fulfills

φA(s,t)(θ) ≤ f(θ, s, t)
(
φU(s,t)(−θ) ≤ g(−θ, s, t)

)
.

Note that the bound on the service is indeed a lower bound,
as the MGF is evaluated for negative values. Clearly the second
pair of definitions generalizes the first one.

The following example is used later on in Section IV.

Example 2. We construct a Markov-modulated On-Off
(MMOO) flow by defining a discrete-time Markov chain Xt

on the states {0, 1}. Further define the increment process It
of i.i.d. variables. The arrivals increments are now defined by
a(t) = XtIt. The MGF of A is f(θ, t− s)-bounded (e.g. [3])
with

f(θ, t− s) := max
k∈{0,1}

Ek ·
maxi∈{0,1} vi

mini∈{0,1} vi
· π(E · T )t−s−1.

Here Ei := E(eθa(t) | Xt = i) and E is the diagonal matrix
with entries Ei. Further T is the transition matrix of the
Markov chain, vi is a positive eigenvector of ET , and π is
the spectral radius of a matrix. Similarly one can define more
general Markov-modulated arrivals.

The following performance bound is found for example in
[3], [5]. It uses univariate bounds on φA(s,t) and φU(s,t) to
bound the backlog or the virtual delay of a system. For an
input-output-pair A and D the virtual delay is defined by

d(t) = min{t′ ∈ N0 | A(t) ≤ D(t+ t′)}.

Theorem 3. Fix some θ > 0 and assume A and U to be
stochastically independent. If A and U are bounded for all
s ≤ t + T by f(θ, t − s) and g(−θ, t − s), respectively, it
holds

P(b(t) > x) ≤ e−θx
t∑

s=0

f(θ, s) · g(−θ, s) (3)

P(d(t) > T ) ≤
t+T∑
s=0

f(θ, t− s) · g(−θ, t+ T − s) (4)

for all x > 0 and all t, T ∈ N.

The proof is a notational variation of the one given for
example in [5]. We use this bound as a representative for the
time-invariant view on transient phases.

At this point the question rises if all one needs to do to
generalize Theorem 3 is to replace the functions f and g by



their bivariate versions. This is however not sufficient. The
structure of (3) and (4) enforces the violation probabilities
to increase strictly in t, no matter the actual behavior of the
underlying system. Hence a substituting f and g in Theorem
3 by their bivariate counterparts is not sufficient to capture the
transient phases of the queue.

III. NON-STATIONARY ARRIVAL AND SERVICE CURVES

To achieve time-variant performance bounds we need to
construct bivariate envelope functions from the MGF-bounds.
Becker and Fidler present this method for the service element
in [1]. The following theorem extends this to arrivals as well.

Theorem 4. Fix some t ∈ N and assume A is f(θ, s, t)-
bounded for all θ ∈ Θ (U is g(−θ, s, t)-bounded) and s ≤ t.
Then A (U ) has the following bivariate envelope:

P
( t⋂
s=0

A(s, t) ≤ Aε(s, t)
)
≥ 1− ε.(

P
( t⋂
s=0

U(s, t) ≥ Uε(s, t)
)
≥ 1− ε

)
with

Aε(s, t) = inf
θ∈Θ

0<δ<ε−1

1
θ (log f(θ, s, t) + δ(t− s)− log(δε)) .

(5)(
Uε(s, t) = sup

θ,δ>0
{ 1
θ (log(δε)− δ(t− s)− log g(−θ, s, t))}

)
Proof. We only construct the envelope for A, as the construc-
tion of Uε is analogue (see also [1]). Fix some θ ∈ Θ and
δ, ε > 0 such that δε < 1 and define Aεθ,δ(s, t) as in (5). Then

P
( t⋃
s=0

A(s, t) > Aεθ,δ(s, t)
)
≤

t−1∑
s=0

P(A(s, t) > Aεθ,δ(s, t))

≤
t−1∑
s=0

φA(s,t)(θ)e
−θAεθ,δ(s,t) ≤

t−1∑
s=0

φA(s,t)(θ)

f(θ, s, t)
e−δ(t−s)δε

≤ δε
t−1∑
s=0

e−δ(t−s) ≤ ε.

The inequalities are achieved by successively applying the
union-bound, Chernoff’s inequality, and the definition of Aεθ,δ .
The last step bounds the sum from above by

∫∞
0
e−δxdx. The

range of the union in the first line can be limited to the values
{0, . . . , t − 1} as A(t, t) = 0 < Aεθ,δ(t, t). Minimizing over
all choices for θ and δ completes the proof.

We now constructs stochastic performance bounds on the
backlog and the virtual delay from the bivariate envelopes.

Theorem 5. Fix some t. Let A be f(θ, s, t)-bounded for all
θ ∈ Θ and s ≤ t and U be g(−θ, s, t)-bounded for all θ > 0
and s ≤ t. Then holds

P(b(t) ≤ max
0≤s≤t

{Aε(s, t) + Uε(s, t)}) ≤ 1− 2ε (6)

for all ε > 0.

If U is g(−θ, s, t)-bounded for all t ∈ N, then also holds

P(d(t) ≤ min{T ′ ∈ N0 | Aε � Uε(t+ T ′, t) ≤ 0}) ≤ 1− 2ε

for all ε > 0, where

Aε � Uε(t+ T ′, t) := max
0≤s≤t+T ′

{Aε(s, t)− Uε(s, t+ T ′)}.

Proof. For brevity we give here the proof for the delay-bound
only. Equation (6) is a generalization of the bound in [1].

First fix some t ∈ N and ε > 0 and define

T := min{T ′ ∈ N0 | Aε � Uε(t+ T ′, t) ≤ 0}.

Assume for a while

A(s, t) ≤ Aε(s, t) for all s ≤ t
U(s, t+ T ) ≥ Uε(s, t+ T ) for all s ≤ t+ T.

Then holds

0 ≥ max
0≤s≤t+T

{Aε(s, t)− Uε(s, t+ T )}

≥ max
0≤s≤t+T

{A(s, t)− U(s, t+ T )}

= A(t)−A⊗ U(0, t+ T ) ≥ A(t)−D(t, t+ T ),

from which follows d(t) ≤ T . Rewriting this implication as
probabilities we get

P(d(t) ≤ T ) ≥P
( t⋂
s=0

A(s, t) ≤ Aε(s, t)

and
t+T⋂
s=0

U(s, t+ T ) ≥ Uε(s, t+ T )
)

≥ 1− 2ε

Note that the bivariate Aε must be extended to pairs s, t
with s > t to determine T . This is achieved by extending the
MGF-bounds for such values as well. Indeed the resulting Aε
generally becomes negative for such values. This ensures the
existence of a finite T for each t ∈ N.

IV. NUMERICAL EVALUATION

We now describe two scenarios with transient phases and
analyze them with the help of Theorems 3 and 5.

A. Scenario 1

The steady-state of this scenario is a queueing system,
which processes MMOO arrivals as presented in Example
2. To model variations in the available service we assume
U(t, t+1) (t = 0, . . . ,) to be an i.i.d. sequence of exponentially
distributed random variables with parameter λ. For more
realistic – and elaborate – models, which could be used here
instead, see for example [6], [10], [14].

We now add two transient phases to this system: processing
a large burst of arrivals, which arrives at time t = 1, forms
the first transient phase. Furthermore the system reacts by
activating additional, yet limited, resources. The depletion of
this extra-service forms the second transient phase. In the
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Fig. 1. Numerical Evaluation of Scenario 1 with deterministic C = 10uC .
The burst B is set to 25. The graph shows a bound on the backlog of the
system, which is broken with a probability of at most ε = 10−3. In the
first transient phase (denoted by I) the reserves are consumed. In the second
transient phase (denoted by II) the burst is processed, while the reserves are
emptied. Eventually the system enters the steady-state in III.

beginning both phases overlap. The question which of the
transient phases ends first depends on the size of the burst
and the reserves, respectively.

To apply Theorems 3 and 5 we must bound the total arrival
and service process.

1) Bounding the Total Arrivals: In addition to the Markov-
modulated arrivals we have a burst of size B arriving at time
t = 1. Hence the increments of the total arrivals Atot are
atot(1) = a(1)+B, atot(2) = a(2), atot(3) = a(3), . . ., where
B is a random variable independent of A. We can model
and bound Atot in different ways. First we could construct
a Markov chain, which equals the Markov chain of A, but
with a transient burst state added. The initial distribution of
X would be set, such that the chain starts in the burst-state
with probability one. After one time step the chain would move
to the recurrent subchain of A. As a result we would see a
burst in time-step 1 and the usual behavior of A afterwards.
However, finding corresponding MGF-bounds is harder in this
scenario compared to Example 2, as the involved Markov
chain is reducible.

The total arrivals Atot are easier bounded by exploit-
ing φAtot(s,t)(θ) = φA(s,t)(θ)φB(s,t)(θ), where B(s, t) =
B1{s=0}. Now A can be bounded by fA(θ, t − s) as in
Example 2 and all missing is a bound on φB(s,t)(θ) to achieve
φAtot(s,t)(θ) ≤ fB(θ, s, t)fA(θ, s, t). An easy – and univariate
– MGF-Bound on B is φB(s,t)(θ) = φB(θ), resulting in

φAtot(s,t)(θ) ≤ φB(θ) max
k∈{0,1}

Ek
maxi∈{0,1} vi

mini∈{0,1} vi
π(E ·T )t−s−1,

where the notations are the same as in Example 2.
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Fig. 2. Numerical Evaluation of Scenario 1 with random C and burst B = 25.
The graph shows a bound on the backlog of the system, which is broken with
a probability of at most ε = 10−3. The transient phases I and II are smoothed
out, due to C being a random variable. The system enters the steady-state III
after processing the burst B.

In contrast a bivariate bound on the MGF of Atot replaces
the factor φB(θ) in the above by φB(s,t)(θ).

2) Bounding the Service: We move now to the service
description. For simplicity the setup-time is set to zero (see the
second scenario for the modeling of setup-times). Similarly to
the arrivals we can split the service into two parts: the time-
invariant service U and the additional service taken from the
reserves. The capacity of the reserves is given by the random
variable C and we assume they are tapped with a deterministic
rate uC . As a result the reserves are depleted at time C

uC
.

Further C(s, t) = uC max{0,min{t, tC} − s} describes an
upper bound on the additional service in the interval (s, t],
where tC := b CuC c.

The MGF of the total service splits into φUtot(s,t)(−θ) =
φU(s,t)(−θ)φC(s,t)(−θ). However, if we want to find a uni-
variate gC(−θ, t−s) with φC(s,t) ≤ gC(−θ, t−s) we see, that
only gC = 1 fulfills this inequality for all pairs s, t. This is
due to the fact, that the considered interval (s, t] can always be
shifted beyond time tC , such that C(s, t) = 0. In expression,
the univariate formulation cannot resolve the transient phase
of the service.

For a bivariate gC consider the events {b CuC c = t} and
denote their probabilities by pt. Such an event means there
is enough capacity to provide t time-slots (but no more) of



TABLE I
PARAMETERS FOR SCENARIO 1 AND 2

Parameter Value
Transition Probability T00 0.7
Transition Probability T11 0.7
Arrival Rate in On-State λA 4
Service Rate λU 0.25
Rate of Additional Service uC 1
Expected Capacity 1/λC (Scenario 1 only) 10
Expected Setup-Time 1/pW (Scenario 2 only) 20

additional service. Then holds

φUC(s,t)(−θ)

=

∞∑
tC=0

E(e−θUC(s,t) | b CuC c = tC)ptC

≤
∞∑

tC=0

E(e−θmax{0,min{t,tC}−s}uC | b CuC c = tC)ptC

=

s∑
tC=0

ptC +

t∑
tC=s+1

eθ(tC−s)uCptC +

∞∑
tC=t+1

eθ(t−s)uCptC

for all s ≤ t.
The above bound can be used to construct a bivariate enve-

lope for Utot (Theorem 4). However, this requires knowledge
about the distribution of C. In this simple scenario we assume
C to be exponentially distributed with parameter λC . Inserting
the distribution of C and using the formula for geometric sums
the above becomes

φUC(s,t)(−θ) ≤ (1− e−λCuC(s+1))

+ (1− e(t−s)(θuC−λCuC))euC(θ−λC−λCs)

+ eθ(t−s)uCe−λCuC(t+1).

3) Evaluation: With the bivariate envelopes for arrivals and
service in place we can now analyze the system.

Figure 1 presents the numerical results for this scenario (for
a full list of the used parameters see Table I). It shows a
backlog bound in the sense of Equation (1) for varying t and
a fixed violation probability of ε = 10−3. For this graph the
quantities B and C are chosen non-random. The two transient
phases can be easily identified in that case. Figure 2, shows the
same scenario, but with C exponentially distributed instead.
We see the transient phases are smoothed out by doing so.

For comparison we included two univariate bounds: the
red lines show the backlog bound, when applying Theorem 3
directly. We see, that the time-invariant bounds cannot resolve
the transient phase: The backlog-bound does not decrease as
the system evolves. The blue lines represent a time-invariant
analysis but for a system without the transient phases. These
bounds exclude the additional burst and reserves. We actually
see a slight improvement compared to the results of Theorem
5, even after the steady-state is reached. This effect is due
to the parameter δ in Theorem 4, which effectively reduces
the long-term service rate slightly and similarly increases
the arrivals long-term rate. This gap is the price we pay to

capture the transient behavior at the beginning of the system’s
evolution.

B. Scenario 2

For this scenario we use the same steady-state system as in
Scenario 1.

Again we add two transient effects. The first is an initial
burst as before. The second is the activation of additional
resources, which happens after some setup time W . This is
a generalization to the model in [1]. Indeed if the service in
the “steady-state” would be zero our model would reduce to
the one in [1]. As in [1] we model the setup time by a random
variable W , which is geometrically distributed with parameter
pW . After the setup time the service element has access to
additional service V .

For the ease of presentation we assume again i.i.d. expo-
nentially distributed increments with parameter λV .

How to bound Atot was discussed in the previous scenario
already. We focus hence on the bounding of

φUtot(s,t)(−θ) = φU(s,t)(−θ)φV (s,t)(−θ).

For a univariate bound observe first, that V (s, t) ≥ V (0, t−s)
as the setup-time always starts in t = 0. Hence we have the
univariate bound

φV (s,t)(−θ) ≤ φV (0,t−s)(−θ)

=

∞∑
r=0

E(e−θV (s,t) |W = r)P(W = r)

=

t−s−1∑
r=0

( λ

λ+ θ

)t−s−r
(1− pW )rpW +

∞∑
r=t−s

(1− pW )rpW

= pW

( λ

λ+ θ

)t−s
·

1− ( (λV +θ)(1−pW )
λV

)t−s

1− (λV +θ)(1−pW )
λV

+ (1− pW )t−s

=: gV (−θ, t− s).

To bound φV (s,t)(−θ) with a bivariate function we note first

V (s, t) = max{0, t−max{s,W}}.

With an analysis very similar to the one in the previous
scenario we have

φV (s,t)(θ) =

(1− pW )t +

(
λV

λV + θ

)t−s
(1− (1− pW )s)

+

(
λV

λV + θ

)t−s(
pW (1− pW )s

1− ( (λV +θ)(1−pW )
λV

)t−s

1− (λV +θ)(1−pW )
λV

)
=: gV (−θ, s, t)

for all s ≤ t.
As before the univariate and bivariate functions gV are used

within Theorems 3 and 4, respectively.
Figures 3 and 4 show the gain of a bivariate analysis for

this scenario. Here Figure 3 evaluates the scenario with a
fixed setup-time W = 20 and Figure 4 with a geometrically
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Fig. 3. Numerical Evaluation of Scenario 2 with a setup-time of W = 20
and burst B = 25. The graph shows a bound on the backlog of the system,
which is broken with a probability of at most ε = 10−3. In the first transient
phase (denoted by I) the additional service is still setting up. In the second
transient phase (denoted by II) the burst is processed by the total service Utot.
Eventually the system enters the steady-state in III.
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Fig. 4. Numerical Evaluation of Scenario 2 with random setup-time W and
burst B = 25. The graph shows a bound on the backlog of the system, which
is broken with a probability of at most ε = 10−3. The transient phases I and
II are smoothed out, due to W being a random variable. The system enters
the steady-state III after processing the burst B.

distributed setup-time. Again we can observe how the bivariate
formulation captures the system’s transient phase and its
steady-state. As in the previous scenario the time-dependent
bounds lie between the time-invariant bound (red line) and the
time-invariant bound for the steady-state system (blue line).

V. CONCLUSION

In this paper we extended the notion of bivariate envelopes
of [1] for service elements to arrival curves. Further we have
proven time-variant delay-bounds for this new type of en-
velopes. Two numerical examples showcase the wide variety of
transient systems, which can be analyzed by this approach. In
both the backlog-bound is captured by the bivariate envelopes
and the transient phases are visibly resolved. Furthermore the
analysis captures the transient phases, the steady-state of the
system, and the transition from one into the other.

Future work includes the extension of Theorem 4 to a fully
fleshed out network calculus as in [3], [12], [10]. In expression
fundamental operations like the concatenation property must
be verified.
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