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Abstract—Networks are embedded many system nowadays.
They route control messages, sensory data, etc. and thus their
functionality is integral to the enclosing system. In case of
safety-critical systems, additional non-functional demands need
to be fulfilled. A prime example are systems from the avionics
domain where worst-case message delay needs to be bounded.
The Deterministic Network Calculus (DNC) analysis is able to
provide worst-case bounds on message delay. Accuracy of these
bounds has been steadily improved to counteract costly over-
provisioning. In this paper, we first provide detailed insight on
the aspect preceding the DNC analysis: the network modeling
step. It already contributes pessimism resulting in inaccuracy
of later results. Second, we contribute multiple algorithms for
iterative design space exploration within the limits of modeling
that employ the most accurate DNC analysis. In numerical
experiments, we show their effectiveness to reduce an avionics
network’s tail latency by optimized resources usage and the
required effort.

I. INTRODUCTION

Networks are critical to fulfill communication tasks in
almost every modern distributed system. Among these are
routing of control messages to various actuators, reporting of
sensory data, transmission of audio and video streams etc.
For many of the tasks, the network’s functional reliability is
integral to the enclosing system. In case of safety-critical sys-
tems, additional non-functional demands need to be fulfilled
as well — even if the network consists mostly of commercial
off-the-shelf hardware and is shared by many tasks. In fact,
without formally verified provision of performance guarantees,
these systems often cannot obtain certification. As a result they
are not permitted to be operated in public spaces. A prime
example is the avionics domain where the above applies to
networks embedded into modern aircraft.

Verification of non-functional performance guarantees can
be provided by different mathematical tools. The Deterministic
Network Calculus (DNC) analysis is able to provide worst-
case bounds on the backlog that can build up in a server’s
queue and the delay a data flow experiences from its source
to its destination. Accuracy of DNC bounds has been steadily
improved to counteract costly over-provisioning [1], [2], [3],
[4], [5], [6] and it has already been applied to certify the
AFDX (Avionics Full Duplex Switched Ethernet) data network
embedded into the Airbus A380 [7], [8].

The main complications for a DNC analysis arise from the
network size to be analyzed and the fact that networks are a
shared resource. As the network acts as a shared resource that
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routes all flows, their amount as well as their entanglement
are decisive. Both impact the DNC bound accuracy as well
the computational effort of an analysis. Scalability of the
analysis w.r.t. this cost metric has been in the focus of recent
improvements [9], [6] as well.

An aspect often neglected by this work is that the DNC
analysis expects a complete network model to operate on. Le.,
DNC is currently targeted towards analyzing a finished design.
Only the derived bounds can be checked against requirements:
the server backlog bounds should not cause data to be dropped
and flow delay bounds should be within deadlines required to
guaranteed reliable operation of the enclosing system. Employ-
ment of DNC in the design phase is thus only possible in a
design space exploration. A potentially vast number of design
alternatives is created, each of which is then analyzed with
DNC. This procedure is obviously inefficient, yet, restrictions
to the design space can be made. In this paper, we consider
networks embedded into a larger system, i.e., wiring is subject
to physical constraints and cannot be changed easily and data
flows’ sources and destinations are fixed. Thus, we focus on
the exploration of the freely configurable design space. We
optimize flow routes to minimize the worst-case end-to-end
delay in the network, i.e., we tackle the tail latencies. We
show that the complex entanglement of flows within a network
results in complex interdependencies such that shortest path
routing is not the optimal solution.

This design phase employment of DNC relies on a previ-
ously untested assumption: The analysis of large amounts of
network is easily possible with DNC. We check this funda-
mental assumption by two investigations: First, we investigate
the interdependency between analysis assumptions as well
as restrictions and the modeling step of DNC. We provide
comprehensive insight on the general demands of modeling
for DNC, showcasing the involved effort and potential causes
for later result inaccuracies. This is is detailed on a running
example in Section II. Then, we present algorithms for (it-
erative) design space exploration that aim to reduce the tail
latencies in an AFDX data network by a more balanced use
of network resources. These algorithms are given in Section III
and related work is presented in Section IV. We extended
the most comprehensive open-source tool for DNC analyses,
the DiscoDNC [10]. This work is the basis for our numerical
experiments (Section V) that show the effectiveness and cost
of the proposed algorithms that allow for usage of DNC results
in the design phase of a network. Section VI concludes the

paper.



II. DETERMINISTIC NETWORK CALCULUS:
MODELING AND ANALYSIS OF AFDX NETWORKS

In this Section, we provide an overview over modeling and
analysis assumptions imposed by DNC and illustrate it by
a running example. Some of the of these assumptions result
from DNC theory, others are imposed by current restrictions
of DNC tool support. In later evaluations, we will use the
most comprehensive open-source DNC tool available, the
DiscoDNC [10]. Thus, the following exemplary modeling
of a small sample AFDX data network aligns to this tool’s
capabilities. We will not provide a detailed treatment of DNC
itself as this can be found in the literature, e.g., [11], [12],
[13], [14], [15], [3], [9], [16].

Networks are usually modeled by graphs G = (V, E)
consisting of a set of vertices V and a set of edged E
connecting pairs of vertices. Within different abstractions,
vertices and edges can have different semantics. For instance,
edges can be unidirectional or bidirectional. DNC analyses
require a particular model, the so-called Server Graph. In the
remainder of this Section, we illustrate how to derive an AFDX
data network’s server graph model for DNC analysis.

A. Network Topology

The highest level to describe a network is by its topology
that provides information about connections between devices.
Le., vertices are devices and edges are bidirectional connec-
tions. The actual network whose topology is modeled gives a
more refined interpretation of the this abstract model.

1) AFDX Data Networks: An AFDX data network is in-
stantiated with end-systems that connect to a network core
of switches in order to communicate to other end-systems.
An AFDX data network as found in the Airbus A380 is
composed of more than one hundred end-systems and a dense
core of dozens of switches. The creation of network topologies
representative for AFDX is depicted in detail in [17] and
Figure la provides our running example consisting of six
devices. End-systems in the periphery of the network are
depicted as circles and abbreviated with ES; whereas switches
in the core are depicted as rectangles and abbreviated S,,,
i,n € N. Each ES; is connected to only one switch, yet
each switch S,, may be connected more than one ES; or other
switch S,,,, n # m. Both types of devices queue and transmit
data. They are interconnected by 100Mbps full duplex Ethernet
links, i.e., bidirectional edges in the graph.

2) DNC Device Graph: In DNC, this abstract model di-
rectly derived from the network topology is known as the
Device Graph. However, to accommodate the later analysis,
bidirectional edges are stored as pairs of unidirectional ones.
A DNC Device Graph does not hold any information about the
devices. It is not sufficient for analysis as the DNC queueing
analysis require the forwarding resource offered by devices to
be precisely modeled.

B. Resource Contention and Queueing Effects

The complete DNC model required to apply an analysis
demands refinement of the device graph. This refinement is
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Figure 1: Running example of an AFDX data network.

based on the devices employed in the modeled network, e.g.,
sensor nodes in wireless sensor networks [18] or Ethernet-
based devices in an AFDX data network.

1) AFDX Devices: As AFDX is based on the Ethernet stan-
dard, its switches employ the following architecture relevant
to a queueing analysis. Data enters the device via an input
port, then a switching fabric forwards it to an egress port.
Input ports are served at line speed and switching fabrics
are highly optimized such that contention over the data for-
warding resource, i.e., queueing effects, manifest at the egress
ports [19]. An intermediate representation depicting this addi-
tional information is shown in Figure 1b. Unidirectional links
connect devices as well as these devices’ sub-components:
switching fabrics are depicted as circled Xs, egress servers
and their queues are depicted as circled betas 3, the DNC
service curves. AFDX switches can assign multiple priority
classes to traffic at its egress ports. In network calculus’ point
of view, this is captured by computing the left-over service
B for a class of traffic — the priority classes are virtually
separated from each other as it would be done by the scheduler.
In our work, we analyze networks with the so-called arbitrary
multiplexing assumption'. It does not explicitly assign priority
classes a priori. Instead of finding a priority setting as in [20],

IThe DiscoDNC only implements arbitrary multiplexing.
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Figure 2: Running example of an AFDX data network, continued.

the analysis dynamically computes the analyzed traffic flow’s
worst-case left-over service under the maximum influence of
all other flows at the egress port. From the analysis’ point of
view, this is equivalent to a single priority class for all traffic.
L.e., our results are valid for all priority assignments.

Last, note that end-systems do not provide forwarding
service to other devices. They are either the source or the sink
of data communicated via the AFDX network’s core. In the
role of a source, end-systems generate data at a higher level
inside the device and directly push it into their single egress
port’s queue. As a sink, data will be handed to a higher level
upon reception and thus no server is crossed in the end-system.
Resource contention at higher levels is usually not modeled or
analyzed with DNC. In other words, the focus of the model is
the behavior of the system when transporting data rather than
the usage of it.

2) DNC Server Graph: The DNC analysis derives the
worst-case queueing effects when contending for forwarding
resources. It considers these effects at consecutive servers
crossed by an analyzed flow as well as this flow’s cross-
traffic in a compositional manner (compositional feed-forward
analysis, compFFA [3], [16]). Thus, it abstracts from the sub-
component modeling of the refined device graph shown in
Figure 1b. Instead, egress servers and their queues identified
in the refined device graph are connected with unidirectional
links. This representation is called Server Graph. Our running
example’s server graph is depicted in Figure 2a — it shows that
even for small networks the model can become complex as it
consists of edges connecting servers. From the point of view
of Network Calculus there is no real difference between the
end-systems and the switches. Since only the output buffers
are modeled, they are all seen as servers in the server graph.
Every server’s minimum forwarding capabilities are given by it
respective service curve . Modeling an AFDX data network,
they correspond to 100Mbps Ethernet connections.

An assumption commonly applied to the analysis of queues
is that data in them is multiplexed in a FIFO manner. As
mentioned above, our analysis assumes arbitrary multiplexing.
This assumption leads to worse results than FIFO multiplexing
as it considers more potential interference patterns between

flows. These interference patterns can be caused by crossing
a switching fabric. When switching data from ingress to
egress ports, FIFO multiplexing between flows might not
be retained; a mismatch between modeling assumptions and
actual behavior can result in invalid worst-case performance
bounds. Results from an arbitrary multiplexing analysis are
valid independent of the switching fabric behavior.

C. DNC Analysis Restrictions Influencing the Model

1) Cycle-free, Feed-forwardized Server Graph: In general,
DNC analysis requires a network that does not create cyclic
dependencies between flows. In the AFDX sample network,
cyclic dependencies can, however, arise. In Figure 2b, four
data flows f; to f cross the network. Each flow enters the core
from a different end-system connected to a different switch.
Each flow then crosses three devices before terminating in
a different end-system. With this traffic pattern, each of the
egress servers connecting to a different switch queues data
of two flows. Analyzing any of these flows involves the
analysis of two such servers. It demands to backtrack cross-
traffic recursively [21], [3]. This recursion does, however, not
terminate.

Preventing cyclic dependencies can be achieved by a thor-
ough selection of paths to be taken by flows or by modification
of the server graph such that no combination of flow paths
can cause cycles. The latter is known as the feed-forward
property. As shown in Figure 2b, AFDX data networks do
not possess this property. Algorithms exist that can convert
arbitrary networks into feed-forward networks. The simplest
algorithm to break cycles in a network is the spanning tree
algorithm, yet, it results in large underutilization. We apply
turn-prohibition instead [22].

a) Turn Prohibition: Instead of removing entire links, the
algorithm instead removes furns [23], which are defined as a
specific pair of input-output links of a device. — a model that
is compatible with the conversion from device graph to server
graph. A difference worth mentioning from this approach to
the spanning tree is that the latter may prevent the transmission
of any data through an output link of a given node, whereas
the turn-prohibition may allow some of those transmissions



as long as the data sent arrives from certain pre-determined
set of input links. In other words, instead of fully prohibiting
all transmission from device a to device b, this approach
allows some of the packets to be transmitted through that link
as long as the route it took would not cause a cycle. Turn
Prohibition has thus a relatively low impact in the resulting
network, no more than 1/3 of the total number of turns are
prohibited. Figure 2c shows the turn-prohibited server graph.
Turn prohibition removed the turns S3 1 — S11, S22 — 512,
Ss3.9 — Si2, and S41 — Sy 1, i.e., connections in the cycle
shown in Figure 2b. Further note that all devices are still
connected to each other, yet, not by all alternative paths that
existed before.

D. Data Communication

1) AFDX Virtual Links: Virtual Links (VL) in an AFDX
network are unidirectional multicast logical links from a
source End-System to one or more destination End-Systems.
Their resource demand when entering the network is known.
It is based on two main parameters:

e Maximum frame length: The maximum frame length
limits the maximum packet size that can be sent by the
VL.

« Bandwidth Allocation Gap (BAG): The BAG limits the
rate in which data can be sent by the VL. It is defined as
the minimum time interval in which two Ethernet frames
can be generated.

2) Multicast Flows in DNC: In a DNC analysis, VLs are
treated like multicast flows. Recent work provides progress on
this topic (mcastFFA [16]) but has not been included in tool
support yet. We therefore convert multicast links to sets of
unicast flows.

The worst-case resource demand of (unicast) flows needs to
be bounded with a DNC arrival curve «. It can be derived from
the two resource descriptions above: the worst-case burstiness
equals one maximum frame length and the subsequent worst-
case rate equals W.

III. ROUTE OPTIMIZATION ALGORITHMS

Defining flow routes that lead to an efficient use of network
resources is a complex problem due to the exponential number
of possibilities, each defining a design choice that has to be
made. We provide a set of (iterative) algorithms that automate
these choices by deriving knowledge about each alternative’s
cost in terms of the flows’ delay bounds. From a network with
a given topology as well as sources and sinks for the flows,
we then define the best paths to take by flows. In the iterative
algorithms, we base our (re)routing decision on the bottleneck
flow, which is defined as the flow with the largest delay in the
network. We choose the path that optimizes this flow’s end-to-
end delay bound. Thus, we reduce the network’s tail latencies
as well.

A. Non-lIterative Algorithms

The first class of algorithms offered are the Non-Iterative
ones. They use some previous knowledge of the network

to decide on paths for the flows that are beneficial for all
flows’ delay bounds. These non-iterative algorithms are fast
as the DNC analysis is not applied as often as in iterative
algorithms - once a flow is assigned a path, it is never modified.
Le., costly derivation of flow entanglements and delay bound
computations are executed less often. However, this speed
comes with a price; since the flows interfere with each other,
older flows added to the network can have their delay bounds
increased by the addition of new ones. For simplicity of
presentation, sources and sinks are assumed to be servers
already chosen from the server graph such that the intended
devices in the device graph are connected.

1) Shortest Path: This is the simplest algorithm for choos-
ing flow paths. For each pair consisting of a source and
a sink this algorithm returns the shortest path from one to
another. As this is a very wide-spread algorithm, it servers
us as a fundamental benchmark for the remaining algorithms.
The numerical evaluation will show that minimizing each
flow’s hops between its source and sink results in largest tail
latencies. Algorithm 1 depicts our implementation in pseudo
code. As we consider this a non-iterative algorithm, when the
single loop iterates over the flows in the network each flow
is only considered once. Note that the order of flows to add
to the network does not matter as the turn-prohibited server
graph does not change. Neither is the influence of any other
flow considered by applying a DNC analysis.

Algorithm 1: Shortest Path
Data: list of flows to be added to an empty network,

each with source & sink server, but without a
path.

1 while list of flows not empty do

2 currentFlow = flowList.getFirst();

3 source = currentFlow.source;

4 sink = currentFlow.sink;

5

6

7

8

currentFlow.path = GetShortestPath(source,sink);
network.addFlow(currentFlow);
flowList.removeFirst();

end

2) Greedy: Secondly, we benchmark agains a greedy al-
gorithm as often used in practice. It uses the DNC delay
results to choose a flow’s path. Again, flows are added to
the network one-by-one. As before a flow once added is not
altered afterwards.

In contrast to the shortest path algorithm, this non-iterative
algorithm considers the influence of flows on each other. It
computes the delay bound that the flow to be added experi-
ences on all alternative paths between its designated source
and sink servers. The algorithm then takes the path with the
smallest delay bound. However, as new flows are added in
the network the previously added flows might be impacted
negatively and thus suffer from larger delays; the previous
ordering of delay bounds on alternative paths might even
change. As the greedy algorithm is non-iterative, it does not
react to this potential later invalidation of previous decisions’
basis.



We chose to add flows in decreasing order of their long-
term arrival rate with the assumption that such flows with
high long-term arrival rates would have a bigger impact on the
servers. For this reason, the shortest paths should be given to
them, so that they interfere with as little servers as possible.
For a empty network (no flows) with all servers having the
same service curve, the path with minimal delay is also the
shortest path. The greedy algorithm is depicted in pseudo code
in Algorithm 2.

Algorithm 2: Greedy
Data: list of flows to be added to an empty network,
each with source server, sink server and arrival
curve, but without a path.
1 Sort the list of flows by their arrival curves;
2 while list of flows not empty do

3 currentFlow = flowList.getFirst();
4 source = currentFlow.source;
5 sink = currentFlow.sink;
6 possiblePathsList = GetAllPaths(source,sink);
7 temporaryFlow = currentFlow.copy();
8 bestDelay = +o0;
9 while list of possible paths not empty do
10 temporaryFlow.path =
possiblePathsList.getFirst();
11 network.addFlow(temporaryFlow);
12 currentDelay = DNCanalysis(network,
temporaryFlow);
13 network.removeFlow(temporaryFlow);
14 possiblePathsList.removeFirst();
15 if currentDelay lesser than bestDelay then
16 bestDelay = currentDelay;
17 currentFlow.path = temporaryFlow.path;
18 end
19 end
20 network.addFlow(currentFlow);
21 flowList.removeFirst();
22 end

3) Load Balancer: This algorithm (see Algorithm 3) tries
to evenly distribute the load across all servers by adding
flows accordingly. Le., it is a greedy algorithm that takes
a different DNC result into account. Load is defined as the
sum of the long-term arrival rates of the flows that cross the
server. This sustained rate of a flow is not altered by a DNC
analysis as long as the network can guarantee for bounded
delays. Thus, the flows’ long-term arrival rates that are known
at the location they enter their respective first server can
safely be used for this routing decision. Again, all alternative
paths between the source and sink of a flow to be added are
checked. The algorithm chooses the one that minimizes the
maximum load on the path. This total load is a flow-local
indicator of the network’s overall load balance. It keeps the
algorithm’s complexity low but does not guarantee that the
paths are optimally chosen for a balanced load. Numerical
experiments show that the algorithm achieves small maximum
delay bounds nonetheless and that execution times are small.

Algorithm 3: Load Balancer

Data: list of flows to be added to an empty network,
each with source server, sink server and arrival
curve, but without a path.

1 Sort the list of flows by their arrival curves;
2 while list of flows not empty do

3 currentFlow = flowList.getFirst();
4 source = currentFlow.source;
5 sink = currentFlow.sink;
6 possiblePathsList = GetAllPaths(source,sink);
7 temporaryFlow = currentFlow.copy();
8 bestLoad = +o0;
9 loadPerServer = GetLoadPerServer();
10 while list of possible paths not empty do
11 temporaryFlow.path =
possiblePathsList.getFirst();
12 currentLoad = 0;
13 serverList = temporaryFlow.path;
14 while list of servers in path not empty do
15 server = serverList.getFirst();
16 currentLoad += loadPerServer.get(server);
17 serverList.removeFirst();
18 end
19 possiblePathsList.removeFirst();
20 if currentLoad lesser than bestLoad then
21 bestLoad = currentLoad;
22 currentFlow.path = temporaryFlow.path;
23 end
24 end
25 network.addFlow(currentFlow);
26 flowList.removeFirst();
27 end

B. Iterative Algorithms

In contrast to the above algorithms, the iterative algorithms
we propose next make use of a iterative search to compensate
the lack of analysis of older flows in the algorithms. As
mentioned in Section I1I-A2, adding a flow to the network can
actually invalidate the indicators used to decide on a previously
added flow’s path. Iterative algorithms try to mitigate this
potential problem and its negative impact on the delay bound
distribution in a network by reducing maximum latencies in
successive iterations of rerouting flows as new flows are added
to the network. The basic idea is that after a number n of
flows have been added, a iterative search is initiated looking
for the network’s bottlenecks. Each iteration rearranges flows
in a way that their delay bound becomes smaller. We chose
this flow-local DNC result for performance reasons (see also
Section III-A3). This partially solves the problem mentioned
before. In very few cases however, this can in fact lead to
an iteration’s result being worse than the one it attempted to
improve, generating a different bottleneck with higher delay.
The n chosen for this paper is 100 flows.

Such iterative algorithms need a well-defined termination
condition. The obvious condition is to stop as soon as no
improvement can be found. Yet, this does not guarantee



termination. We decided to additionally limit the amount of
iterations to a total of 10 to guarantee termination. This
constitutes another tradeoff between computational cost and
optimality of the final result that can be adjusted in future
work. In the remainder of this section, we present our iterative
algorithms. As mentioned above, they make use of the non-
iterative algorithms presented in Section III-A for the creation
of partial networks on which the iterative search is executed.
The considerations regarding accuracy and cost are evaluated
in Section V.

Algorithm 4: Iterations

Data: a network with flows
1 counter = 0;
2 optimized = false;
3 while not optimized and counter is lesser than
maximum iterations do

4 flowList = network.getFlows();

5 worstDelay = 0;

6 bottleneck = flowList.getFirst();

7 while list of flows not empty do

8 currentFlow = flowList.getFirst();

9 currentDelay = DNCanalysis(network,
currentFlow);

10 if currentDelay is higher than worstDelay then

11 worstDelay = currentDelay;

12 bottleneck = currentFlow;

13 end

14 flowList.removeFirst();

15 end

16 network.remove(bottleneck);

17 source = bottleneck.source;

18 sink = bottleneck.sink;

19 possiblePathsList = GetAllPaths(source,sink);
20 temporaryFlow = bottleneck.copy();

21 bestDelay = +o0;

22 while list of possible paths not empty do

23 temporaryFlow.path =
possiblePathsList.getFirst();

24 network.addFlow(temporaryFlow);

25 currentDelay = DNCanalysis(network,
temporaryFlow);

26 network.removeFlow(temporaryFlow);

27 possiblePathsList.removeFirst();

28 if currentDelay lesser than bestDelay then

29 bestDelay = currentDelay;

30 currentFlow = temporaryFlow.copy();

31 end

32 end

33 network.add(currentFlow);

34 if bestDelay is equal to worstDelay then

35 optmized = true;

36 end

37 counter = counter + 1;

38 end

1) Iterative Search: The algorithm, depicted in Algo-
rithm 4, finds the bottleneck of the network, defined as the
flow with the highest delay bound. Then, it optimize the
network design by generating all possible paths for this flow
and rerouting it via the one with the least delay bound. It
stops after a given number of iterations set by the user or if
it can not find a better path to the bottleneck. Algorithm 4
comprehensively depicts the proceedings in pseudo code. The
non-iterative algorithms that make use of this algorithm are
explained below with the nomenclature “+ Iterations” .

2) Shortest Path + Iterations: In order to evaluate the
Iterative Search algorithm complexity and performance alone,
a network created by the Shortest Path was used. The Iterative
Search is executed in this complete network, and the behavior
can be used to give an insight in the behavior of the next
algorithms. This shows the positive impact that one execution
of the Iterative Search algorithm can have in a network, and the
cost attached to it. This algorithm is depicted in Algorithm 5.

Algorithm 5: Shortest Path + Iterations
Data: list of flows to be added to an empty network,

each with source & sink server, but without a
path.

1 while list of flows not empty do

2 currentFlow = flowList.getFirst();

3 source = currentFlow.source;

4 sink = currentFlow.sink;

5

6

7

currentFlow.path = GetShortestPath(source,sink);
network.addFlow(currentFlow);
flowList.removeFirst();

9 Run Iterative Search algorithm;

3) Greedy + Iterations: The greedy algorithm revealed the
problem of flows added in the beginning of the execution never
being optimized again. Thus, we combine it with an iterative
search. However, it already uses DNC delay bound results for
the flow to be added. We extend this by the iterative search
that covers all the bottleneck flows’ delay bounds. Thus, paths
of already added flows are optimized for delay bounds but
at increased cost of the algorithm. Indeed, execution times
of this exhaustive combination of the greedy algorithm and
iterative improvements became computationally infeasible. As
before, we implemented a flexible tradeoff: the iterations that
optimize bottleneck flow paths are only started after another
n flows were added to the network, and we have set n = 100.
With this parameter setting we observe a vast reduction of
computational effort. Only few flows were actually rerouted
per start of iterative search as most already underwent a path
optimization before. Many times, the iterative search did not
change any flow, making the algorithm behave just as the
greedy algorithm up to this point, yet, with a larger execution
time. We present the pseudo code for this in Algorithm 6.
Is also important to note that this algorithm is very similar
to the Greedy algorithm, making use of the Iterative Search
algorithm to solve the short comes of the first.



Algorithm 6: Greedy + Iterations

Data: list of flows to be added to an empty network,
each with source server, sink server and arrival
curve, but without a path.

1 Sort the list of flows by their arrival curves;
2 counter = 1;

3 while /list of flows not empty do

4 currentFlow = flowList.getFirst();

5 source = currentFlow.source;

6 sink = currentFlow.sink;

7 possiblePathsList = GetAllPaths(source,sink);

8 temporaryFlow = currentFlow.copy();

9 bestDelay = +o0;

10 while list of possible paths not empty do

11 temporaryFlow.path =
possiblePathsList.getFirst();

12 network.addFlow(temporaryFlow);

13 currentDelay = DNCanalysis(network,
temporaryFlow);

14 network.removeFlow(temporaryFlow);

15 possiblePathsList.removeFirst();

16 if currentDelay lesser than bestDelay then

17 bestDelay = currentDelay;

18 currentFlow.path = temporaryFlow.path;

19 end

20 end

21 network.addFlow(currentFlow);

22 flowList.removeFirst();

23 if counter equals to 100 then
24 Run Iterative Search algorithm;

25 counter = 1;

26 else

27 \ counter = counter + 1;
28 end

29 end

4) Load Balancer + Iterations: The Load Balancer algo-
rithm uses an heuristic to select the best paths. For this reason,
the selected paths do not guarantee for optimality and an
succeeding iterative search is still worthwhile. Therefore, we
combined it with an iterative search in the same way as with
the greedy algorithm. Moreover, it combines two metrics of
bottlenecks: the load-based one and the delay bound-based
one. We skip a pseudo code depiction for brevity.

IV. RELATED WORK

In this section, we present some background on iterative al-
gorithms focused on network optimization. Also, we comment
about some other works which showed potential application
of network calculus results for optimization of designs, rather
than just network analysis. In the end, we comment about other
available Network Calculus tools.

Optimizing networks using iterative search is an established
research topic. The literature focuses on construction and
design of network topologies together with flow definition,
such as [24] stating that shortest paths are optimal in their

context. This work and others tries to minimize cost while
respecting flow delays constraints.

It is also known the potential that Network Calculus has
for optimization of networks delays, and more specifically
of AFDX networks, as shown by [8]. This paper makes use
of priority assignment to optimize allocation of the flows on
the network. It also shows that is possible to use DNC with
iterative searches like genetic algorithms. Priority optimization
was also applied in [20] to reduce tail latencies in data
center networks. Other works such as [25] also used iterative
algorithms with heuristics, but focused on routing protocols.

Further DNC tools are available as well, some of these have
also been extended for the analysis of AFDX data networks.
For instance, the commercial PEGASE tool [26] for DNC
and the open-source Net2Plan-AFDX tool [27], an extension
of Net2Plan to apply DNC to AFDX. Another DNC tool,
WOPANets, also offers optimization features using a simplex
algorithm and genetic algorithms. Yet, these tools do not
provide the advanced PMOO analysis of the DiscoDNC.

V. NUMERICAL EVALUATION

We implemented the above algorithms in the Dis-
coDNC [10] to evaluate their performance. Section V-A
presents our methodology for reproducible numerical results,
Section V-B provides results for delay bound distributions and
tail latencies, and Section V-D gives the computational cost of
the applied algorithms.

A. Methodology and Parameters for Network Instantiation

To compare the algorithms’ performance, all of them were
applied in the same AFDX network. The network generation
is described in [17]. It offers the various variables that we set
as follows:

o Topology creation setting:

— Number of Virtual links - varied across experiments

— Minimum and Maximum Number of End-Systems -
uniformly distributed in [90, 110]

— Minimum and Maximum Connections per Switch -
uniformly distributed in [2, 4]

— Minimum and Maximum End-Systems per Switch -
uniformly distributed in [8, 16]

— Number of Switches - fixed to 8

— Maximum Number of VLs per End-System - fixed
to 25

— Maximum Number of End-Systems Receiving the
Same VL - fixed to 15

— Minimum and Maximum Destinations per VL - fixed
to 3 (low number due to the required unicast flow
transformation)

o Virtual Link (Flow) creation setting:

— Max frame size - uniformly distributed into 3 groups,
which are given in bytes and uniformly distributed
in [100, 400], [100, 800], or [100, 1400]
— BAG - given in milliseconds randomly selected from
this possibilities: [2,4, 8,16, 32,64, 128]
We define the size of a network by the amount of VLs as
this is the variable we freely scale. We tested 20 randomly
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Figure 3: Delay bound distribution results for an AFDX data network with 1200 flows, derived with the DNC PMOO analysis.

created networks of every size. As some variables are set to
constant values, the generated networks are not too distinct
from each other; this similarity increases comparability be-
tween networks. Yet, their switches (devices) have different
connections and flows have different combinations of source
and sinks.

Another factor tested was the type of analysis. All exper-
iments were executed using TFA, SFA and PMOO analysis
implementations offered by the DiscoDNC to investigate they
impact of this choice.

All tests were executed on a Supermicro X7DVL server
equipped with two Intel Xeon E5420 CPUs and 12GB RAM.
In order to achieve expressive results on execution times, only
one algorithm was executed at a time.

B. Delay Bound Distributions

We show the distribution of delay bounds in a single sample
AFDX data network with 1200 flows in Figure 3. The Shortest
Path algorithms creates flow paths resulting in largest delay
bounds. Moreover, the distribution of flows is more spread
over the histogram’s bins, i.e., the tail is not defined by a
small number of outliers. The Shortest Path + Iterations is not
able to improve on this situation.

The other non-iterative algorithms on the other hand have
a much clearer tendency to the small delay bounds for most
of the flows. Both bottleneck metrics, end-to-end delay bound
as used in Greedy as well as the load used in Load Balancer,
achieve high density of small flow delays. The average and the
maximum observed delay bounds are reduced. However, the
algorithms also suffer from outliers defining large tail latencies
(see Figures 3b and 3c).

This problem is naturally addressed by the “+ Iterations”
approaches shown in Figures 3e and 3f. They work on the
bottlenecks found in the networks, considering the interference
of the flows on each other. Therefore, Greedy + Iterations and
Load Balancer + Iterations have their maximum delay bound
reduced by rerouting their respective outlier flows. Overall,
Greedy + Iterations is the one with the most flows in the lesser
delay bounds region. L.e., the mix of the bottleneck metrics
load and end-to-end delay bound was not beneficial.

C. Delay Bounds across Network Sizes

Another visualization is the maximum delay bound calcu-
lated by all three DNC analyses for a given AFDX network
with increasing amount of VLs (flows). This is shown in
Figures 4a to 4c. It depicts the average maximum delay of the
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network flows, giving an indicator of the average performance
of each algorithm. The figures show that the algorithm with
the least maximum delay is the Greedy + Iterations. In most
cases, Load Balancer + Iterations follows closely. Both seem to
behave very similarly, even regarding execution times shown
in Figures 4d to 4f. Again, the overall network is slightly more
optimized by using the Greedy + Iterations.

The best algorithms implemented were the Load Balancer
+ Iterations and the Greedy + Iterations. They both show
performances far superior to the Shortest Path. Again, they
are behaving quite similar. The relative order between them
depends on the actual network and the DNC analysis. None
performs constantly better than the other, as shown in Figure 4.
Greedy + Iterations also yields the most optimized networks
when considering only to the maximum delay bounds (tail
latencies) instead of the distribution of all flows’ delay bounds.

D. Execution times

All of the execution times are depicted in the point graphs
in Figures 4, lower row, to give insight on the cost of the
algorithms. The Load Balancer + Iterations and the Greedy
+ Iterations both have similar execution times. These are
the largest among the experiments and scale the worst due

to the many iterations they both run. Their complexity can
be computational explained by comparison to the Shortest
Path + Iteration execution time showing the Iterative Search
algorithm’s complexity for a complete network (all flows
added). Since the other “+ Iteration” algorithms execute the
iterative search many times, their execution times is negatively
effected to a large extent. Another observation is that execution
times for the algorithms changes vastly between the applied
DNC analysis, TFA, SFA, or PMOO analysis. Since many of
the algorithms heavily use these DNC analyses, slightly faster
ones show a considerably smaller overall cost. The usually
faster being the PMOO analysis is a positive observation, as
it also gives the least pessimistic delay bounds (see 4, upper
Irow).

Note that the Shortest Path algorithm was not included in
the execution time presentation. This is because it is executed
in the creation of the network, as is the default algorithm used
by the AFDX network generator, and not as a separated experi-
ment. However, it’s execution time is naturally lower than the
Load Balancer’s one since it consists of less computations.
Is also worth noting that the LoadBalancer algorithm has a
performance similar to the Greedy, but with the best scalability
from all the algorithms.



VI. CONCLUSION

In this paper we addressed the problem of exploring a
network design space in order to optimize flow delay bounds.
We started our presentation with the interdependency be-
tween deterministic network calculus (DNC) modeling and
analysis in order to applied DNC in different algorithms —
non-iterative ones and iterative ones — that explore potential
improvements by rerouting of flows in a fixed network. The
design alternatives created by these algorithms show vastly
different characteristics and the algorithms themselves show
different potential for scalability to larger networks. Overall,
the iterative design space explorations provide best results, yet
at a computational cost penalty. In numerical evaluations with
networks resembling AFDX data networks, we quantify these
aspects in more detail such that a profound decision about the
most suitable algorithm can be made in the design phase of a
network.
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