Improving Performance Bounds for
Weighted Round-Robin Schedulers under
Constrained Cross-Traffic

Vlad-Cristian Constantin, Paul Nikolaus, Jens Schmitt
Distributed Computer Systems (DISCO) Lab
TU Kaiserslautern, Germany
{ constantin,nikolaus,jschmitt } @cs.uni-kl.de

Abstract—Weighted round robin (WRR) is a simple, efficient
packet scheduler providing low latency and fairness by assigning
flow weights that define the number of possible packets to be
sent consecutively. A variant of WRR that mitigates its tendency
to increase burstiness, called interleaved weighted round robin
(IWRR), has seen analytical treatment recently [1]; a network
calculus approach was used to obtain the best-possible strict
service curve. From a different perspective, WRR can also be
interpreted as an emulation of an idealized fair scheduler known
as generalized processor sharing (GPS). Inspired by profound
literature results on the performance analysis of GPS, we show
that both, WRR and IWRR, belong to a larger class of fair
schedulers called bandwidth-sharing policies. We use this insight
to derive new strict service curves for both schedulers that, under
the additional assumption of constrained cross-traffic flows, can
significantly improve the state-of-the-art results and lead to
smaller delay bounds.

Index Terms—Network calculus, weighted round robin, in-
terleaved weighted round robin, generalized processor sharing,
bandwidth-sharing policies

I. INTRODUCTION

For a long time, round-robin schedulers have been found
appealing for their simplicity and corresponding efficient
implementation as well as their inherent fairness [2] (see
[3] for an early reference). Weighted round robin (WRR)
is a frequently used scheduling algorithm in packet-switched
networks as well as in real-time processing systems to provide
a different resource allocation among flows (or tasks). In its
basic version, sometimes called plain WRR, we (conceptually)
have a queue for each flow at a server and service is provided
in rounds; in each round, a flow f; receives the opportunity to
send w; packets consecutively. The term weighted round robin
was coined in [4] in the context of ATM (i.e., a network with
constant packet sizes), where also some modifications, such
as interleaving, were suggested. WRR has been considered
intensively in the literature on communication networks: e.g.,
investigating variants such as multi-class or multi-server WRR
[5], [6]; or, in applications such as in the IEEE Standard
802.1Q [7], load balancing of cloud infrastructures [8], [9], or
networks on chip (NoC) [10], [11]; and found usage in real-
world equipment, e.g., in Ethernet switches [12]. In contrast
to another popular round-robin scheduler, deficit round robin

ISBN 978-3-903176-48-5 © 2022 IFIP

41
traffic-aware residual rate
=37
=
X,
© 27
© - . .
[a} traffic-agnostic residual rate
N qi C
Qi+ 225295
04
0 5 10
Time [ms]
Fig. 1: State-of-the-art service curves for WRR and our

service curve under constrained cross-traffic.

(DRR) [13], WRR does not assume that the size of the head-
of-the-line packet is known at each queue. Therefore, it is also
used in distributed queueing scenarios, for instance, as the
uplink scheduler in an IEEE Standard 802.16 network [14].

WRR has a tendency to increase the burstiness of flows
due to several packets being sent back-to-back by the same
flow per round. To mitigate this, interleaved weighted round
robin (IWRR) introduces cycles within a round to disperse
the packet transmissions from the same flow. This change is
simple and the algorithm’s complexity remains favorable (at
O(1) work per packet [13]), though, it makes the mathemati-
cal performance analysis more challenging. The performance
analysis of IWRR has attracted some recent attention [1], using
network calculus.

Network calculus [15]-[19] is a versatile deterministic
framework to derive worst-case per-flow performance guar-
antees. To that end, deterministic constraints on arrivals and
service are assumed. These constraints are abstracted by so-
called arrival and service curves, respectively. While the for-
mer allows us to forego any distribution assumptions on inter-
arrival times, the latter comes with the power of scheduling
abstraction [20]. The so-called leftover service curve can then
directly be used to calculate per-flow performance bounds.
Network calculus’s level of modularization reduces the prob-
lem of improving performance bounds to finding a larger
leftover service curve.

Several different leftover service curves for WRR have
been provided in the network calculus literature. In [19, p.

200], three service curves are derived for WRR. The first one
exploits knowledge on possible packet sequences by introduc-
ing so-called packet curves [21]. Since we do not make this
assumption, we only focus on the latter two. Let us assume
for the moment that the server provides a constant rate C. The
least data per round for the flow of interest f; is g; = wilz‘»“i“
and the most data for a cross-flow fj.; is g; == w;[***; here
;™™ and 7" denote the minimum and maximum packet size
of the respective flow. One leftover service curve is a stair
function that closely models the packet scheduler’s behavior
of alternating between full link speed (rate C) and plateaus
(rate 0) within a single round [22]; the other leftover service
curve has a shifted linear shape (with some initial latency) with
traffic-agnostic residual rate ﬁ;&_%C that is just below
the stair (illustrated in Figure 1). For IWRR, a leftover service
curve for IWRR is derived that dominates all service curves
obtained by the WRR analysis [1].

The aforementioned leftover service curves do not take into
account constraints on the cross-traffic, even though it is a
common case to have such constraints in application scenarios
where worst-case performance guarantees are desired. A key
observation is that, given such constraints, all cross-flows will
not remain backlogged for longer time intervals. In fact, this
observation has already been used to improve performance
bounds for generalized process sharing (GPS), an idealized fair
scheduler that achieves nearly perfect isolation and fairness
[23]. It appeared in the seminal work on GPS by Parekh
and Gallagher [24] exploiting the feasible ordering of flows.
Later, this concept was generalized to feasible partitions [25],
larger classes of arrival curves and service curves [17, pp.
68], [26], [19, pp. 172], and in a recent publication to a
larger, practically more relevant class of fair schedulers, called
bandwidth-sharing policies [27]. Weighted round robin, from
a different perspective, can be interpreted as a GPS emulation.
As a consequence, we could benefit from the profound GPS
results also in the WRR analysis.

In this work, under the assumption of constrained cross-
flows, we provide new strict leftover service curves for WRR
and IWRR using the network calculus framework. Essentially,
these are based on mathematical proofs that WRR and IWRR
are bandwidth-sharing policies. The new service curves can
lead to significantly better delay bounds compared to the state
of the art. The reason for the improvement is that the new
service curves’ traffic-aware residual rate is larger than their
traffic-agnostic counterpart (see again Figure 1; of course,
details follow below).

The rest of the paper is structured as follows: We provide
the necessary background on network calculus in Section II.
In Section III, we present the state of the art on WRR and
IWRR as well as a class of fair schedulers called bandwidth-
sharing policies. In Section IV, we show that WRR and IWRR,
respectively, are bandwidth-sharing policies and derive new
leftover service curves. We provide numerical evaluations in
Section V. Section VI concludes the paper.

II. NETWORK CALCULUS BACKGROUND

In this section, we present the necessary network calculus
definitions and theorems as we use them throughout this paper.

An arrival process (or input function) A(t) of a flow f
cumulatively counts the number of work units that arrive at a
server in the interval [0,¢). We define it as an element of F,
the set of all wide-sense increasing functions:

F={f:Rt 5 R"U{+o00} [VO<s<t:0< f(s) < f(t)}-

Moreover, we use the shorthand notation A(s,t) = A(t) —
A(s). Similarly, we denote its according departure process by
D(t) € F. We assume a system to be causal, i.e., no data are
created at the system: A(¢t) > D(t) for all ¢ > 0 and write
D(s,t) for D(t) — D(s). Furthermore, we assume all systems
to be lossless.

Definition 1 (Virtual Delay). The virtual delay of data arriving
at a server at time t is the time until this data would be served,
assuming FIFO order of service,

d(it) =inf{r >0: A(t) < D(t+71)}. (D)

In order to provide worst-case performance guarantees, we
need upper bounds on arrivals and lower bounds on the service,
respectively. We start off by defining arrival curves.

Definition 2 (Arrival Curve). Given an increasing function
o € F. We say that « is an arrival curve for an arrival process
Aifforall0 <s <t

A(t) — A(s) < aft —s).

The most important example is the foken bucket arrival
curve v, ,(t) = b+ r -t for t > 0. The parameter r denotes
the rate and b the burst tolerance [18, p. 7].

For the service we need to introduce different notions.
First, we define service curves as they are needed to provide
performance bounds. Then, we introduce a stronger notion
of so-called strict service curves, that we use for a per-
flow analysis in a multi-flow system. Afterwards, we define
variable capacity nodes which are mainly used as a technical
assumption.

Definition 3 (Service Curve). Consider an arrival process A
traversing a server and its according departure process D). The
server offers a (minimum) service curve 3 to A if 8 € F and
forall £t >0

D(t) = A® (1)

Jint {A(t=5)+B(s)}

We define a backlogged period such that D(7) < A(T) for
all 7 € (s,t].

Definition 4 (Strict Service Curve). A server is said to offer a
strict service curve 3 € F to a flow if, during any backlogged
period (s,t],

D(s,t) > B(t — s).

The most important example of service curves we employ is
the rate-latency service curve fp r(t) == R-[t — T]" , where
[2]* := max{z,0} denotes the positive part.

Algorithm 1 Weighted Round Robin [19, p. 200]

Algorithm 2 Interleaved Weighted Round Robin [1]

Input Integer weights w1, ..., w,
1: while True do > A round starts.
2 for i =1 to n do
3 k <+ 1;
4: while not empty(7) and k < w; do
5: send(head(7));
6: removeHead(i);
7: k+—k+1;
8: end while
9: end for
10: end while > A round finishes.

We define the function C(s,t) = C(t) — C(s) as the
cumulative service process of a server for 0 < s <t.

Definition 5 (Variable Capacity Node). A server is a variable
capacity node (VCN) if it offers 5 € F such that for any
0<s<t

C(s,t) > Bt —s).

Typical examples such as constant-rate servers belong to
this class. The assumption of a VCN is very mild, as it has
been proven that it is equivalent to a strict service curve if the
asymptotic growth rate of (3 is finite [19, pp. 222].

Under these basic concepts, we are able to derive tight
performance bounds on the delay:

Theorem 6 (Delay Bound). Assume an arrival process A
traversing a server. Further, let the arrivals be constrained
by arrival curve o and let the system offer a service curve (3.
The virtual delay d(t) satisfies for all t

d(t) < igg{inf {d>0]a(t) <B(t+d)}} = h(a,B),

where h(a, B) is the horizontal deviation between o and [3.

Tight means that we can create a sample path such that the
delay is equal to its delay bound.

Using network calculus, we derive per-flow performance
bounds. Throughout the rest of this paper, if not stated other-
wise, our flow of interest has the index ¢ € {1,...,n} =N
and we call the remaining n — 1 flows cross-traffic.

ITI. STATE-OF-THE-ART ON (I)WRR AND
OPENING A DOOR FOR IMPROVEMENT

In this section, we first explain the basic mechanics behind
weighted round robin (WRR) and its interleaving variant,
IWRR. Next, we present the state-of-the-art for the network
calculus analysis of both, WRR and IWRR. At the end of this
section, we introduce a general class of fair schedulers called
bandwidth-sharing policies and explain how we can leverage
from this abstraction.

A. Basics on (I)WRR

We start off with plain WRR: Conceptually, the packets of a
flow f; are queued in its own dedicated queue. A flow receives

Input Integer weights w1, ..., w,
I: Wmax < max {wy,...,w,}
2: while True do > A round starts.
3 for C =1 to wyax do > A cycle starts.
4 for i =1 to n do
5: if not empty(:) and C < w; then
6 send(head(?));
7 removeHead(?);
8 end if
9: end for
10 end for > A cycle finishes.

11: end while > A round finishes.

one service opportunity in each round (see Algorithm 1).
Each flow is assigned a weight w; that sets the maximum
number of packets that can be served in a single round. Note
that, since flow f; sends all w; packets consecutively, this
may result in a considerable output burstiness for flows with
higher weights. The packet sizes are not fixed making the
performance analysis of networks with variable packet sizes
significantly more challenging.

Mathematically, we assume a service guarantee for the
aggregate of all flows in form of a strict service curve or a
work-conserving server which is typical in the literature [1],
[19], [24]. Obtaining a per-flow service guarantee enables us
to provide respective per-flow performance guarantees.

The second WRR variant we consider, interleaved weighted
round robin (IWRR) (see Algorithm 2), mitigates plain WRR’s
typical burstiness by supplementing the rounds with cycles,
while maintaining the same complexity. Instead of receiving
service for a burst of w; packets in a round, flow f; can only
send one packet per cycle like any other flow which has not yet
exhausted its weight allocation in the current round. After w;
rounds flow f; has to wait until other flows f; with w; > w;
finish off the round.

B. Network calculus analysis of (I)WRR

It was shown in the literature that if S is assumed to be
a constant-rate server using WRR, then rate-latency leftover
service curves [Spr can be derived. Several publications
determined the rate term R and latency term 7' under WRR,
such as [10], [28], [29] (for a detailed discussion, see [1]).
Yet, rate-latency service curves do not yield tight results
for WRR since each packet is only served with the traffic-
agnostic residual rate [1]. Taking into account that a packet is
transmitted at full link speed leads to a more precise model and
consequently better service guarantees. Such a leftover service
curve, which is obviously not a rate-latency function anymore,
is elegantly derived in [19] for WRR (the improvement is
depicted in Figure 1). We only state the two leftover service
curves that do not require specific knowledge about possible
packet sequences (so-called packet curves).

Theorem 7 (Strict Leftover Service Curves for WRR). Assume
n flows arriving at a server performing weighted round robin

(WRR) with weights w1, . .
service curve 3 to these n flows. We define q; == w;

Q; = Zl#i w7
1. Then,
B = (18) - Qi)
is a strict service curve for flow f;, where we define
Vi) = Bro ® Vg, .qi+q. (1),

the stair function

., Wy. Let this server offer a strict

™™ and

vpp(t) =h Li—‘ fort >0, 2)

and P19 is a constant-rate function with slope 1.
2. Moreover,

wilmin
3 max
— — | B(t) — E w;l
Wil 3o Wil rrril

qi +
= B(t) — Qi
is a strict service curve for flow f;. If B is a constant-rate

server, then the residual service curve 3" is a rate-latency
service curve.

Bi(t) =

Note that for packets of constant size the delay bound of
Theorem 7 has been shown to be tight [1], i.e., a sample
path attaining the delay bound was constructed. To be precise,
only the first part of the theorem, where each packet receives
full link speed during transmission, is actually tight since the
second part only provides the traffic-agnostic residual rate. For
a constant-rate server with rate C| this rate is equal to z-tl]-iQi C.

For IWRR, a leftover service curve has been derived in [1].
Not only do the authors show that exploiting the interleaving
in the analysis can significantly improve delay bounds, they
also prove that their bound is tight. We only state the leftover
service curve for IWRR.

Theorem 8 (Strict Leftover Service Curves for IWRR). As-
sume n flows arriving at a server performing interleaved
weighted round robin (IWRR) with weights w1, ..., wy,. Let
this server offer a superadditive strict service curve [3 to these
n flows. Then,

B(t) =i (B(1))
is a strict service curve for flow f;, where

Y (t) =B1,0 @ U; (1),

w,;fl

Ut) = 3 v [£ =05 (1))
Lot 1:(1]:?? Q;
o= Y20 (|])
i i
Wij(p) = Lﬂ w; + [w; —w;] " 3)

+min{(p mod w;) +1,w;}

and the stair function vy, p(t) is defined in Equation (2) as
well as q; = w;I™™ and Q; = Zj# wjl;-nax again.

C. The case of constrained cross-traffic

Both theorems, Theorem 7 and 8, do not make any as-
sumptions on the cross-traffic. While this can be seen as a
strength, in our work, we argue that by assuming cross-flows
to be constrained, we open the door for improvement. This can
lead to significantly reduced delay bounds (see our numerical
evaluation in Section V). This reduction comes despite the
fact that we do not closely model packet transmission at full
link speed. However, as we see in the next section, since we
consider the maximum of shifted linear functions, we can often
still obtain more than just the traffic-agnostic residual rate.
The central notion we employ to take knowledge on cross-
flows into account is the bandwidth-sharing policy. We start
off with its definition.

Definition 9 (Bandwidth-Sharing Policy [27]). A server has a
bandwidth-sharing policy if there exist positive weights ¢; >
0,%=1,...,n and nonnegative number H;; > 0,1 <4,5 <n
such that for a backlogged period (s, t] of flow f; it holds that
Di(s,t) _ [Dj(s:t) — H;]"
¢ ?; ’
Note that the bandwidth-sharing policy can be seen as a
generalization of the resource allocation under GPS, where the
H;; would be 0. We therefore interpret it as a penalty term that
is a consequence of emulating the ideal fluid fair sharing of
GPS by a real packet scheduler implementation. For example,
deficit round robin (DRR) has been show to be a bandwidth-
sharing policy [27]. For this class of schedulers, a profound
result is given in the literature. It was initially derived for GPS
and then extended to schedulers which realize a bandwidth-
sharing policy.

for all j # 1. 4

Theorem 10 (Strict Leftover Service Curves for Band-
width-Sharing Policies). Assume n flows arriving at a server
with a bandwidth-sharing policy with positive weights ¢; >

0,¢=1,...,n and a nonnegative penalty term H;; > 0, 1 <
1,7 < n. Let this server be a VCN that offers a convex 3 to
these n flows. Let N = {1,...,n} and assume that each flow
fi is constrained by a concave arrival curve a;,i =1,...,n.
Then,

s +
Bi(t) = max ————— |B(t) — ag(t) — Hj,

Ty [0 20 2
(%)

is a strict service curve for flow f;.
Proof. See Theorem 1 in [27]. O

The number of possible sets M to optimize over, of course,
potentially becomes very large for a high number of flows: we
have 2W1=1 subsets of A/ containing ¢. Yet, we point out that
any selection of M provides a strict leftover service curve.
That means, we can come up with heuristics that avoid a
combinatorial explosion by trading efficiency for the accuracy
of the calculated bounds.

IV. NEW STRICT SERVICE CURVES FOR (INTERLEAVED)
WEIGHTED ROUND ROBIN

In this section, we show that WRR as well as IWRR
are bandwidth-sharing policies. This insight has the direct
consequence of providing new leftover service curves which
take into account arrival constraints on the cross-flows.

Theorem 11 (WRR is a Bandwidth-Sharing Policy). Assume
n flows arriving at a server performing weighted round robin
(WRR) with weights w1, ...,w,. Then, WRR is a bandwidth-
sharing policy for flow f; with

/I min __,
¢ = wili™" =t g4,

max . . (6)
¢ =wlf™ =t q;, j#I
and
Hij = il Liizgy = 41z

where 125y = 1 for i # j and 0, else. In other words, we
have N
Di(s.t) _ [Dj(s,t) — w;lFP> 1 g2y
P 7

for any (s,t] such that flow f; is backlogged.

)

Proof. Following along the lines of [19, pp. 201], we consider
a backlogged period of (s,t] of flow f; and let p € N denote
the number of completed services of flow f; in the interval
(s,t]. Constructing the worst case, we have

Dj(s,t) > pwl™m, 8)
Moreover, this yields directly an upper bound for p € N:
Di S,t
p< { (min)J .)
'U}Z‘li

On the other hand, in this interval,
Dj(s,t) < (p+ Vw3, Vj #i.
Summing the inequalities in (8) and (10) yields
D;(s,t) (8>§10)Dj(s,t)

w; w

(10)

+ plI‘nin _
i

(p + 1)1;‘11&)(

D(S7t) max min max
:]wij—p(ljd =) =

ngij t) _ \‘ZZZ(I;I?J (léxxax _ l;rnin) _ l;nax
D) Disit) ol
T w;j w; [fnin J
This is equivalent to
Difs.t) _ 1<%@04mﬁ:Dﬁﬁ—%W“
wilr TR w; J w0

Inserting ¢, ¢; as in Equation (6) and using that D;(s,t) > 0
for all 0 < s <t finishes the proof. O

We interpret the assignment for ¢, = 1,...,n in Equa-

tion (6) as the weight corrected to the amount of data per

round in the worst case from the perspective of the flow of
interest.

Corollary 12 (Strict Leftover Service Curve for WRR).
Assume n flows arriving at a server performing weighted
round robin (WRR) with weights w1, ..., wy. Let this server
be a VCN that offers a convex [to these n flows. Let
N ={1,...,n} and assume that each flow f; is constrained
by a concave arrival curve o, it =1,...,n. We define

Q;W = Z wklkmax.
keM\{i}

Then,
+

Bt) = > onlt) — Qi

k¢M

iy — 4di
EACAE > raro
11
is a strict service curve for flow f;. In the following, we call
the leftover service curve 3* WRR M.

Proof. The corollary is a consequence of WRR being a
bandwidth sharing policy (Theorem 11) (¢},i =1,...,n and
H;;: constructed above) together with Theorem 10 which gives
a strict service curve for these policies. O

One can easily show that if 3 is a constant-rate server, then
B is a rate-latency service curve for any i € M C N.

Furthermore, note that Corollary 12 can be relaxed in the
sense that we actually do not need all cross-flows to be
constrained by arrival curves. For these flows fj, we can simply
define «(t) = oo and they are going to be an element of
M, ie. they do not increase the sum >, ., ax(t) when
maximizing over M in Equation (11). The same applies when
the long-term arrival rate of fj, lim; oo a"'t(t), is actually
larger than the long-term server rate of 5. In other words,
similar to the state of the art, we are not limited to stable
systems.

Let us explain the actual gain compared to the state of the
art under token-bucket constrained arrivals and a constant-
rate server with rate C. Compared to Theorem 7.2, we
have now the possibility to change the latency for M C N
(O kg n Yre by (t) is decreasing in M, while @, is increasing)
and at the same time change the traffic-agnostic residual rate
to 5% (C' = Yggas) - As an obvious consequence, the
improvement impact is increased the more the cross-traffic can
be constrained. Additionally, Corollary 12 directly recovers
Theorem 7.2. However, the relation to the stair function in
Theorem 7.1. is not as clear. In our numerical evaluation
(Section V), we show that our leftover service curve can
outperform the one in Theorem 7.1 and lead to better delay
bounds.

Next, we continue with the analysis of interleaved weighted
round robin. It mitigates burstiness by employing a simple
trick, namely by introducing cycles that prevents flows from
sending data consecutively. Yet, these cycles make the math-
ematical analysis more difficult. In this section, we show,
based on some insights presented in [1], that IWRR is also

a bandwidth-sharing policy. To be precise, we show it for two
different penalty terms. While one is obtained by exploiting
peculiarities of IWRR, the other is the same as for WRR.
Therefore, our new strict service curve for IIWRR can only be
equal or better than the one we obtained for WRR.

Theorem 13 IWRR is a Bandwidth-Sharing Policy). Assume
n flows arriving at a server performing interleaved weighted
round robin (IWRR) with weights w1, ..., wy. Then,

1. IWRR is a bandwidth-sharing policy for flow f;, where

o) = w;lM" = g, (12)

¢F = (wj +wi) I = qj + wil 7™

and

HYy = (g —wi] "+ 1) B0y

In other words, we have

Di(s,1) [Dj(s,t) - ([wj —wi] "+ 1) l?axl{#a‘}r

(ZS;I — (;S/I
’ (13)
for any (s, t] such that flow f; is backlogged.
2. IWRR is bandwidth-sharing policy with the ¢, ¢, H;;
from WRR.
For the sake of conciseness, we provide a full proof of the
first part and only a sketch of the second.

Proof of 1. Let (s,t] be a backlogged period of flow f;.
Again, let p € N denote the number of completed services
of flow f; in the interval (s,t]. By construction, it holds that

Dy(s,t) > pl™in, (14)

Note that, in comparison to WRR, we need to adjust the
inequality since we have cycles in between rounds. As a direct
consequence of Equation (14), we can upper bound p € N by

p< {Di(s’t)J .

min
li

< (15)
Moreover, by combining Lemma 4 and Lemma 6 in [1], we
receive

Dj (s,t) < Wi (p)l7™, Vi #1,
where is W;;(p) is defined in Equation (3). Summing the
inequalities in (14) and (16) yields

Wy

(16)

oWy w;
([wj —w;]" +min{(p mod w;) + l,wj}> e

wj

D; (S,t)

min
0

(g)Dj(s, t) {
- w; W;

[

a7

([wj —w;]" + min { {D;;,i’,t)J mod w; + 1, wj}> [max

wj

D (s.1) {Di(s,t)J
(S lt_nin .
> I\ _ i lr_na,x _ lI_nln 18
> S) 1s)
([wj —w] "+ [D;,iﬁfg”J + 1) [max
W
D;(s,t D;(s,t 1 ;
> J(S?) _ (S) P (l;nax _ l;nln)
w w; lz
b o (-l)
w; L wj '
Note that in Equation (18), we upper bounded
min{ Dlzﬁff) mod w,;) + 1,wj} by D;rﬁff)J. Above

inequality is equivalent to
D i (57 t)

w; [

([wj —w) "+ 1) e

.Jmax
w; lj

w) Dj(S,t) _ w;)
_’LU]' + w; ,wjl;nax U}j + wW;

Replacing w; and w; with ¢} and ¢, respectively, from
Equation (12) yields

Dis,t) _ Dils:t) = (fwy = wil* +1) il

o = &
) J
In the final step, we use again that D;(s,t) > 0. O

Sketch of 2. Starting in Equation (17), we could also con-
Dl"’,_](]f,;t)J mod wi> + l,wj} by
min {w;, w;} . Applying again Equation (15) and using that

tinue to upper bound min { ({

i

+ .
[wj = wi] " + min {w;, w;} = w;
gives the result. O
We can now formulate the leftover service curve.

Corollary 14 (Strict Leftover Service Curve for TWRR).
Assume n flows arriving at a server performing interleaved
weighted round robin (IWRR) with weights w1, ..., w,. Let
this server be a VCN that offers a convex 3 to these n
flows. Let N == {1,...,n} and assume that each flow f;

is constrained by a concave arrival curve o;,1 = 1,...,n.
We define
" Wi max
= w 1 — . l .
QM Z) g << * wk) ¥ >
keM\{i}
and

k= ([wk —w] "+ 1) L L gizny -

Then, 4 4 4
Bi(t) = JJmax {max B s B§7M} (19)
is a strict service curve for flow f;, where
5§,M(t)
" (20)
q;
“aran Blt)— > art)— > Hj,

k¢ M keM\{i}

100 -

Data [Kbit]

a
o
L

Thm. 7.2. (WRR

0 20 40 60 80
Time [ms]

(a) Service curves (utilization = 0.6)

0.15 4

Thm. 7.2. (WRR) .-~
) - thm. 7.1. (WRR)
7 0107 _Thm. 8 (WRR)_ -¢~ .-*
> e e
_8 1-- _ e oL
> 4 _ e
B 005 ¢ e L
) - -
o . P
o---"* "WRRM=IWRR M
0.00 1

038 04 05 06 07 08 09
Utilization

(b) Delay bounds

Fig. 2: Parameter set: weights = {4,6,7,10}, [™® = {4096,3072,4608,3072} bits, [™8* = {8704, 5632, 6656, 8192}

bits, burst sizes =

and ﬂé’ A IS the strict leftover service curve for WRR (Equa-
tion (11)). In the following, we call the leftover service curve
37 IWRR M.

Proof. Similar to the WRR case, Theorem 13 proves that
IWRR is a bandwidth sharing policy for two different penalty
terms. Theorem 10 then gives us two different strict leftover
service curve. At last, we use that the maximum of strict
service curves is again a strict service curve [19, p. 109]. Note
that this property is actually already used in the derivation of
Theorem 10. O

Again, if 3 is a constant-rate server, then 31 5 and Ba ar
are rate-latency service curves for any choice of i € M C N.

V. NUMERICAL EVALUATION

In this section, we numerically compare our newly obtained
leftover service curves under constrained cross-traffic, WRR
M (Corollary 12) and IWRR M (Corollary 14), to the state of
the art in Theorem 7 (WRR) and Theorem 8 (IWRR).

We assume all flows f; to be constrained by a token bucket
arrival curve 7., 5,, ¢ = 1,...,n. For the service, we always
assume a constant server rate C' > 0 for the aggregate of flows.

In our numerical experiments, we first compare our results
against the state of the art in a literature example and then
evaluate the impact of factors such as the burst sizes of cross-
flows, the (maximum and minimum) packet sizes, and the
number of cross-flows. Last, we also take a look at scenarios
with larger numbers of flows in which we need to search for
the optimal set M in our leftover services curves heuristically.

A. Comparison to state of the art

First, let us consider the example presented in [1]. We start
off with a direct comparison of the service curves. The results
are given in Figure 2a.

As expected, the stair function from Theorem 7.1 always
provides a larger service curve than the rate-latency variant in
Theorem 7.2. Moreover, we can also see the positive effect
of the cycles within rounds for the IWRR service curve
(Theorem 8). The first new leftover service curve, WRR M, is
significantly larger due to the larger traffic-aware residual rate,

{30208, 19968, 24576, 27648} bits, arrival rates =

{0.65,0.85,0.95,0.55} Mbit/s.

except for the very start due to a larger latency period (recall-
ing the illustrative Figure 1 and the corresponding discussion
in the introduction). IWRR M, on the other hand, has a smaller
latency period, yet the curve is then dominated by the larger
rate qifiiQ’M (C— ke r;) of WRR M. This observation
is consistent with our expectation, since we invoked more
inequalities in the proof of IWRR being a bandwidth-sharing
policy. Therefore, it is more difficult for the IWNRR M service
curve to benefit from the interleaving.

Next, we continue by comparing the impact of the service
curves on the delay bounds (calculated using Theorem 6).
Note that, for Theorem 7.2. and our leftover service curves
in Corollary 12 and 14, we receive rate-latency functions and
we can therefore apply closed-form solutions for the delay
bound [18, p. 24]. For the stair functions, on the other hand,
calculation is more complex [30]. The results are depicted in
Figure 2b.

As expected, the stair function for WRR leads to better
delay bounds than the result with the traffic-agnostic residual
rate, while the interleaving reduces delay bounds even further.
However, most importantly, our new service curves, taking
cross-traffic into account, lead to significantly smaller delay
bounds compared to all other curves. The decreasing gain over
the state of the art for higher utilizations is expected, since for
high utilizations all flows tend to be backlogged most of the
time which forces the traffic-aware residual rate to get ever
closer to the traffic-agnostic one.

B. Impact of burst sizes

It is clear that our new leftover service curves depend on
the burst sizes of the cross-flows, while the state of the art is
oblivious to it and is only affected by the maximum packet
sizes as well as the weights of the cross-traffic. Therefore, in
this numerical experiment we investigate this impact.

We consider three different classes of cross-traffic: low-
, mid-, and high-burstiness flows in addition to the flow of
interest (foi). We distribute 9 cross-flows over these 3 classes
such that we start off with a scenario of cross-traffic with low
burstiness and then gradually turn it into a scenario with high
burstiness. Specifically, we denote by (Niow, mid, Thigh) the

0.8 Thm. 7.2. (WRR)_ _e~~-~—7=%
Thm.7.1. (WRR) e~ g-="

— T P
» < o
; 0.6 4 Thm. 8 (IWRR) ('." WRR M = IWRR M
(g) .
0 0.44 .,
z 4- -
8 0.2

0.0

(7,1,1) (5,3,1) (3,3,3) (1,3,5) (1,1,7)
Scenario

Fig. 3: For the parameter description of traffic classes, we use
the notation {low,mid, high, foi}: weights = {4,5,6,5},
burst sizes = {70,700, 7000, 3000} Kbit. We use the packet
lengths I = 576 bytes, ["®* = 1500 bytes and arrival
rates = 7 Mb/s for each flow and a server utilization = 0.7.

number of flows of each “burst class”. The results are given
in Figure 3.

As expected, we observe that for (7,1,1), the case with
the smallest cross-flow burstiness, the gain of using this
information is the largest because the latency increase in our
leftover service curves is small. In this case, the delay bounds
are reduced by more than half compared to the state of the art.
Increasing the burstiness, of course, reduces this advantage.
However, it stays below even in the scenario with the highest
burstiness.

C. Impact of packet sizes

The accuracy of all performance bounds depends on the
variability of the packet sizes. In this numerical experiment,
we examine how the ratio between maximum and minimum
packet size of the flows impacts the delay bounds. To that end,
we define the packet size range (PSR) as

max
b
ming—y,.. n ;™"

In the experiment, we start off with packets of equal size,
that is, a PSR of 1, and then, by decreasing minimum packet
sizes, increase the PSR. The results are displayed in Figure 4.
Clearly, the delay bounds increase when the PSR increases.
However, we observe that our analysis is affected less and the
gain of our results over the state of the art increases. The
likely reason is that our leftover service curves can better
compensate for the higher packet size variability using the
additional degree of freedom from the selection of flows that
are assigned to the set M.

D. Impact of number of cross-flows

In the next experiment, we investigate the impact of the
number of cross-flows. Specifically, we consider again the
three “burst classes” with the same number of flows in each
class, yet now increasing the number of flows per class. If k is
the number of flows per class, clearly, we have 3k cross-flows
in total. The results are depicted in Figure 5. We observe that

Thm.7.2. (WRR) _ . -*
0.6 -7
= Thm.7.1. (WRR) .4 e
T Thm. 8 (IWRR)_ =" __.®"
3 041 T e
Ke] T
> $- WRR M = IWRR M
© 0.2
o
0.0
1.0 15 2.0 25

Packet size range (PSR)

Fig. 4: Impact of the packet size range on the delay bounds. We
choose the same parameters setting as in the previous experi-

ment, except for the minimum packet size l;nin,i =1,...,n.
084 Thm.71.(WRR) Thm.7.2. (WRR)
B afi g
— ¢~ Thm. 8 (IWRR)
£, 0.6 e Pepp—— e
S e
S 1= WRR M = IWRR M
8 041
>
<
& 0.2
0.0
3 6 9 12

Number of cross-flows

Fig. 5: The parameter setting is the same as in Figure 3, except
the number of cross-flows per class.

our analysis improves on the state of the art by more than 20%
across the different numbers of cross-flows.

E. Dealing with larger number of flows

In the previous experiment, we investigated the impact of
the number of cross-flows on the delay bounds. The total num-
ber of flows was kept relatively moderate. In fact, as briefly
discussed in Section III-C, if we want to deal with larger
number of flows, we need to take into account that our leftover
service curves rely on maximizing all possibly subsets M such
that i € M C N, i.e., 2W1=1 combinations. Therefore, for a
large number of flows, finding the optimal M to minimize the
delay bound becomes computationally prohibitive. However,
we do not have to evaluate all possible subsets but can actually
apply a search heuristic to this combinatorial problem. Here,
we briefly propose a very efficient and simple one:

e Let djs denote the delay bound of WRR M for i€ M C

N.

o Set dopt := 00 and Moy = {i}.

o Sort all cross-flows in a descending order by burst size,

with j being the sorted flow index.

o For j from 1 to [N]—1

calculate d,.w = min {dopt, d Moth{j}}
if dnew < dopt
then set dopt, = dnew and Mopy := Mopy U {j}.

Total number of flows | Delay bound heuristic | Delay bound Theorem 8
13 0.59 0.75
49 0.62 0.78
100 0.63 0.78
499 0.63 0.79
1000 0.64 0.79

TABLE I: Delay bound comparison between the heuristic
and the state of the art under the parameters of Figure 3.

We compare this heuristic WRR M with the state of the art
with the smallest delay bounds, Theorem 8 (IWRR), for large
numbers of flows, again from the three classes as in previous
experiments.

The results are given in Table I. We see that our heuristic
yields significantly smaller delay bounds across the different
numbers of flows. We measured a runtime of 39.3s to find
the optimal M for 13 flows, while the heuristic took only
4 -10~*s. Even for the largest scenario with 1000 flows, the
heuristic completed the search in less than 29.9s.

VI. CONCLUSION

In this paper, we have improved performance bounds of
(interleaved) weighted round robin under the assumption of
constrained cross-traffic. To that end, we showed that both
discussed WRR variants are bandwidth-sharing policies. For
WRR, we gained more insights by refining the flow weights
with the respective worst-case packet lengths. Consequently,
we exploited this property to derive new strict leftover service
curves for (DWRR. In a numerical evaluation, we observed
that the improvement is not only substantial, but persistent
across different experiments investigating the impact of several
factors.

For future work, the extension to other round-robin sched-
ulers and proving the bandwidth-sharing property for stair
functions are interesting research challenges. Furthermore,
motivated by the promising results, it will be very interesting
to investigate systematically the heuristic optimization of the
new leftover service curves for round-robin schedulers.

REFERENCES

[1] S. M. Tabatabaee, J.-Y. Le Boudec, and M. Boyer, “Interleaved weighted
round-robin: A network calculus analysis,” IEICE Transactions on
Communications, vol. 104, no. 12, pp. 1479-1493, 2021.

[2] E. L. Hahne, “Round-robin scheduling for max-min fairness in data
networks,” IEEE Journal on Selected Areas in communications, vol. 9,
no. 7, pp. 1024-1039, 1991.

[3] L. Kleinrock, “Analysis of a time-shared processor,” Naval research
logistics quarterly, vol. 11, no. 1, pp. 59-73, 1964.

[4] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted round-
robin cell multiplexing in a general-purpose atm switch chip,” IEEE
Journal on selected Areas in Communications, vol. 9, no. 8, pp. 1265—
1279, 1991.

[5] H. M. Chaskar and U. Madhow, “Fair scheduling with tunable latency:
A round robin approach,” in Seamless Interconnection for Universal Ser-
vices. Global Telecommunications Conference. GLOBECOM’99, vol. 2,
1999, pp. 1328-1333.

[6] H. Xiao and Y. Jiang, “Analysis of multi-server round robin scheduling
disciplines,” IEICE transactions on communications, vol. 87, no. 12, pp.
3593-3602, 2004.

[7]1 “IEEE standard for local and metropolitan area network—bridges and
bridged networks,” IEEE Std 802.1Q-2018 (Revision of IEEE Std
802.1Q-2014), pp. 1-1993, 2018.

[8]

[9]

[10]

(11]

[12]

[13

[t

[14]

[15]

(16]
(17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

D. B. LD and P. V. Krishna, “Honey bee behavior inspired load balancing
of tasks in cloud computing environments,” Applied soft computing,
vol. 13, no. 5, pp. 2292-2303, 2013.

W. Wang and G. Casale, “Evaluating weighted round robin load balanc-
ing for cloud web services,” in 2014 16th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, 2014, pp.
393-400.

Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds for
best-effort communication in wormhole networks on chip,” in 2009 3rd
ACM/IEEE International Symposium on Networks-on-Chip, 2009, pp.
44-53.

J. HeiBwolf, R. Konig, and J. Becker, “A scalable NoC router design
providing QoS support using weighted round robin scheduling,” in
2012 IEEE 10th International Symposium on Parallel and Distributed
Processing with Applications, 2012, pp. 625-632.

HPE FlexNetwork 5130 EI Switch Series, Hewlett Packard Enterprise,
2017.

M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round robin,” in Proc. of the conference on Applications, technologies,
architectures, and protocols for computer communication, 1995, pp.
231-242.

C. Cicconetti, L. Lenzini, E. Mingozzi, and C. Eklund, “Quality of
service support in IEEE 802.16 networks,” IEEE network, vol. 20, no. 2,
pp. 50-55, 2006.

R. L. Cruz, “A calculus for network delay, part I: Network elements in
isolation,” IEEE Transactions on information theory, vol. 37, no. 1, pp.
114-131, 1991.

——, “A calculus for network delay, part II: Network analysis,” IEEE
Transactions on information theory, vol. 37, no. 1, pp. 132-141, 1991.
C.-S. Chang, Performance guarantees in communication networks.
London: Springer-Verlag, 2000.

J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of deter-
ministic queuing systems for the internet. New York: Springer-Verlag,
2001.

A. Bouillard, M. Boyer, and E. L. Corronc, Deterministic Network
Calculus: From Theory to Practical Implementation. John Wiley &
Sons, 2018.

F. Ciucu and J. Schmitt, “Perspectives on network calculus — no free
lunch, but still good value,” in Proc. ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tions (SIGCOMM’12), New York, NY, USA, Aug. 2012, pp. 311-322.
A. Bouillard, N. Farhi, and B. Gaujal, “Packetization and packet
curves in network calculus,” in 6th International ICST Conference on
Performance Evaluation Methodologies and Tools, 2012, pp. 136-137.
M. Boyer and H. Daigmorte, “Improved service curve for element with
known transmission rate,” IEEE Networking Letters, 2022.

A. G. Greenberg and N. Madras, “How fair is fair queuing,” Performance
90’, vol. 39, no. 3, pp. 568-598, 1990.

A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case,” IEEE /ACM Transactions on Networking, vol. 1, no. 3, pp.
344-357, 1993.

Z.-L. Zhang, D. Towsley, and J. Kurose, “Statistical analysis of the
generalized processor sharing scheduling discipline,” IEEE Journal on
Selected Areas in Communications, vol. 13, no. 6, pp. 1071-1080, 1995.
A. Burchard and J. Liebeherr, “A general per-flow service curve for gps,”
in 2018 30th International Teletraffic Congress (ITC 30), vol. 2, 2018,
pp. 31-36.

A. Bouillard, “Individual service curves for bandwidth-sharing policies
using network calculus,” IEEE Networking Letters, vol. 3, no. 2, pp.
80-83, 2021.

J.-P. Georges, T. Divoux, and E. Rondeau, “Network calculus: appli-
cation to switched real-time networking,” in 5th International ICST
Conference on Performance Evaluation Methodologies and Tools, VAL-
UETOOLS’11, 2011.

A. Soni, X. Li, J.-L. Scharbarg, and C. Fraboul, “Wectt analysis of
avionics switched ethernet network with wrr scheduling,” in Proc. of
the 26th International Conference on Real-Time Networks and Systems
(RTNS), 2018, pp. 213-222.

A. Bouillard and E. Thierry, “An algorithmic toolbox for network
calculus,” Discrete Event Dynamic Systems, vol. 18, no. 1, pp. 3-49,
2008.

