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ABSTRACT

The practicality of the stochastic network calculus (SNC)
is often questioned on grounds of potential looseness of its
performance bounds. In this paper it is uncovered that for
bursty arrival processes (specifically Markov-Modulated On-
Off (MMOO)), whose amenability to per-flow analysis is
typically proclaimed as a highlight of SNC, the bounds can
unfortunately indeed be very loose (e.g., by several orders of
magnitude off). In response to this uncovered weakness of
SNC, the (Standard) per-flow bounds are herein improved
by deriving a general sample-path bound, using martingale
based techniques, which accommodates FIFO, SP, and EDF
scheduling disciplines. The obtained (Martingale) bounds
capture an additional exponential decay factor of O (ef‘m)
in the number of flows n, and are remarkably accurate even
in multiplexing scenarios with few flows.

Categories and Subject Descriptors

H.1.1 [Systems and Information Theory]: Information
Theory; C.4 [Performance of Systems|: Modeling tech-
niques
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1. INTRODUCTION

The stochastic network calculus (SNC) is a relatively re-
cent methodology to solve queueing problems (see Chang [2]
and Jiang and Liu [7]). From a technical point of view, SNC
is a combination between the deterministic network calcu-
lus conceived by Cruz [5] and the effective bandwidth theory.
Because SNC solves queueing problems in terms of bounds, it
is often regarded as an unconventional approach, especially
by the queueing theory community.

Based on its ability to partially solve hard queueing prob-
lems (i.e., in terms of bounds), SNC is justifiably proclaimed
as a valuable alternative to the classical queueing theory (see
Ciucu and Schmitt [4]). At the same time, SNC is also jus-
tifiably questioned on the tightness of its bounds. While the
asymptotic tightness generally holds (see Chang [2], p. 291,
and Ciucu et al. [1]), doubts on the bounds’ numerical tight-
ness shed skepticism on the practical relevance of SNC. This
skepticism is supported by the fact that SNC largely employs
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the same probability methods as the effective bandwidth
theory, which was argued to produce largely inaccurate re-
sults for non-Poisson arrival processes (see Choudhury et
al. [3]). Moreover, although the importance of accompany-
ing bounds by simulations has already been recognized in
some early works (see Zhang et al. [11] for the analysis of
GPS), the SNC literature is scarce in that respect.

In this paper we reveal what is perhaps ‘feared’ by SNC
proponents and expected by others: the bounds are very
loose for the class of MMOO processes. In addition to pro-
viding numerical evidence for this fact (the bounds can be
off by arbitrary orders of magnitude), we also prove that
the bounds are asymptotically loose in most multiplexing
regimes. Concretely, we (analytically) prove that the Stan-
dard bounds are ‘missing’ an exponential decay factor of
O (67“") in the number of flows n, where a > 0; this miss-
ing factor has been indicated through numerical experiments
in Choudhury et al. [3] in the context of effective bandwidth
bounds (which scale identically as the SNC bounds).

While this paper convincingly uncovers a major weakness
in the SNC literature, it also shows that the looseness of the
bounds is generally not inherent in SNC but it is due to the
‘temptatious’ but ‘poisonous’ elementary tools from proba-
bility theory leveraged in its application. In this sense, we
prove that by leveraging more advanced tools (i.e., martin-
gale based techniques), the SNC bounds improve dramati-
cally to the point that they almost match simulation results.
Concretely, we show these improvements to hold for per-flow
delay bounds in FIFO, SP, and EDF scheduling scenarios
with MMOO flows. Based on these improvements we argue
that the core analysis in SNC, being reminiscent from the
deterministic network calculus, is not only asymptotically
but also numerically tight.

The sharp bounds obtained in this paper are the first
in the conventional stochastic network calculus literature
(i.e., involving service processes) concerning bursty arrivals.
Their significance, relative to existing sharp bounds in the ef-
fective bandwidth literature (e.g., Duffield [6] and Chang [2],
pp. 339-343, using martingale inequalities, or Liu et al. [9]
by extending an approach of Kingman involving integral in-
equalities [8]), is that they apply at the per-flow level for
various scheduling disciplines; in turn, existing sharp bounds
only apply at the aggregate level. Our sharp bounds thus
generalize existing ones by accounting for scheduling.

A weakness of our results, from a purely network calculus
perspective, is that they are restricted to a specific class of
processes, i.e., MMOO); we point out that one of the concep-
tual promises of the SNC is to provide general bounds for



much broader classes. While we thus deliberately sacrifice
this conceptual generality, we also advocate a conceptual
shift in running the SNC. Concretely, based on the results
obtained in this paper, we believe that 1) SNC must be cou-
pled with the mainstream queueing literature, in particular
by “getting a firm grip on arrivals”, and 2) the main two fea-
tures of SNC (i.e., dealing with scheduling and multi-node)
must be carefully leveraged in order to obtain sharp bounds.

2. MARTINGALE BOUNDS FOR MMOO

We consider a single queue whereby two cumulative ar-
rival processes Ai(t) and As(t), each containing n; and ns
MMOO processes, are served by a server with constant-rate
C' = nc, where n = ni1 + n2. The time model is continuous.
The following general result enables the per-flow analysis,
in particular of the aggregate A;(t), for several scheduling
algorithms (FIFO, SP, and EDF).

THEOREM 1. (MARTINGALE SAMPLE-PATH BOUND) Con-
stder the previous queueing system in which all ny +na sub-
flows are independent MMOO processes with transition rates
w and A, and peak rate P, and starting in the steady-state.
The aggregate arrival processes are Ai(t) and Az(t), each
being modulated by the (stationary) Markov processes Z1(t)
and Z>(t) with n1 and no states, respectively. Assume that
the utilization factor p := % satisfies p < 1 for stability,
where p := MT“A s the steady-state ‘On’ probability; assume
also that P > c to avoid a trivial scenario with zero delay.
Then the following sample-path bound holds for all0 < u <t
and o

P <o<§g§7u {A1(s,t —u) + Az(s,t) = C(t — s)} > 0)

S K”Le*"/(clu“ﬁg) ,

()

A+p)(1—p)
P—c :

p
where C1 = nic, K =p (%) ’ 1, and vy =

The theorem generalizes a result by Palmowski and Rol-
ski [10], which is restricted to an aggregate analysis under
FIFO. The key to our proof is the construction of a single
martingale M;, from two existing martingales, such that the
per-flow analysis for the different scheduling algorithms be-
comes possible. The sample-path bound from Eq. (1) then
follows from a standard technique based on the Optional
Sampling theorem, applied to the martingale M;.

Using existing service processes for A;(t) for each of the
three scheduling algorithms, the sample path bound from
Eq. (1) lends itself to bounds on the virtual delay process
Wi(t) :==inf{d>0: A:1(t —d) < Di(t)} of A1(t):

FIFO : P(Wi(t) >d) < K"e 7°¢
SP : P(Wi(t) >d) < K"e 714
EDF ]P(W1 (t) > d) < K"eC2 min{d’l‘f(i;,d}ef’ycd ‘

The EDF bound holds for di > d5, where di and d5 are
the relative deadlines associated to A1 (¢) and Az (t), respec-
tively. The bound for d < d5 is similar and is omitted here.
The parameters K and v are as in Theorem 1, and C> = nac.

Figure 1 illustrates the Martingale delay bounds obtained
using Theorem 1, in contrast to the Standard bounds ob-
tained using existing SNC methods, and simulations. The
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Figure 1: Delay bounds (A = 0.5, p = 0.1, P = 1,
n1 = ng = 10, p = 7%, (di = 10, d5 = 1) in (c) and
di =1, ds =10 in (d))

figure convincingly shows that the Standard bounds are very
loose whereas the new Martingale bounds are quite sharp®.
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LQOutliers are depicted in the box-plots with the ‘4’ symbol;
on each box, the central mark is the median, and the edges
of the box are the 25th and 75th percentiles.





