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Abstract—Promising perspectives of a hypothetical ‘Tactile
Internet’, or ‘Internet at the speed of light’, whereby network
latencies become imperceptible to users, have (again) triggered
a broad interest to understand and mitigate Internet latencies.
In this paper we revisit the queueing analysis of the versatile
Markov Fluid traffic model, which was mainly investigated in
the 1980-90s, yet with low accuracy. We derive upper bounds on
the tail distribution of the queue size, which improve state-of-
the-art results by an exponential factor O (κn) in a special case,
where 0 < κ < 1 and n is the number of multiplexed sources;
additionally, we provide the first lower bounds. The underlying
results are quite general in that they can be easily adapted to
derive the delay distribution for SP, FIFO, and EDF scheduling.
Our overall results rely on a powerful martingale methodology
which was recently shown to be highly accurate.

I. INTRODUCTION

Latency/delay is a fundamental metric of communication
and human perception. Not surprisingly, several recent studies
reported a strong correlation between Internet latencies and the
revenue of major online service providers, e.g., Google, Bing,
or Amazon [39], [26], [42]; a typical cited argument is that an
additional 100ms in latency would cost Amazon 1% of sales.
Moreover, innovations in electronics, systems, and protocols,
together with the apparent abundance of computing resources
and network bandwidth, have recently sparked the hope for a
major paradigm shift called ‘Tactile Internet’ [22], or ‘Internet
at the speed of light’ [41]. A potential major benefit of
consistently achieving negligible network latencies (e.g., sub-
100ms or sub-10ms) would be the immediate opportunity for
major innovations in exciting areas such as health-care (e.g.,
remote surgery), transportation (e.g., fully automatic driving),
or entertaining.

The increasing and broadly recognized importance of net-
work latency has recently materialized, at a large scale, into a
dedicated workshop [2] and the funding of a major European
Union FP-7 project [1]; a relevant outcome of such concerted
efforts was a comprehensive survey on a taxonomy of latency
sources and mitigating techniques [8]. While there has been
much work on system solutions such as traffic engineering and
replication strategies to reduce latencies [19], there has also
been shown that achieved improvements reached a point of
diminishing returns [31], particularly due to the dominating
queueing delays (i.e., the time spent by packets in buffers,
waiting to be forwarded).

As the development of system solutions to mitigate Internet
latencies can strongly benefit from the fundamental/theoretical

understanding of network delays, there is a need for the paral-
lel development of related analytical tools. A similar moment
occurred in the 1980-90s, when novel analytical/queueing
tools emerged to especially cope with the case of non-renewal
arrivals. To some extent, this goal was driven by the increasing
prevalence of audio and video content, which, when viewed
as stochastic processes, are subject to some form of statistical
correlations. In fact, such a new characteristic of Internet traffic
determined the questioning of the common and analytically
convenient assumption of Poisson arrivals (at the packet level),
which was convincingly shown to be largely misleading when
improperly used [36]. Besides accounting for non-renewal
arrivals, an additional goal of emerging analytical theories was
to permit the queueing/delay analysis over a network path;
such a problem is in itself extremely challenging in the case
of non-Poisson arrivals, as attested by the state-of-the-art in
the classical queueing theory.

A general queueing tool which can deal with non-renewal
arrivals over a network path is the network calculus [7],
[10]. Initially conceived by Cruz as a deterministic queueing
theory [17], its main and radically new conceptual charac-
teristic of deterministically bounding arrivals was extended
in a probabilistic framework to account for not necessarily
bounded arrivals. Given its wide modelling scope and also
the ability to render (deterministic) worst-case measures for
network queueing metrics such as end-to-end delays, the
deterministic branch of network calculus has some notable
practical applications, e.g., towards the certification of the
Airbus A380 AFDX backbone [5]. The broad applicability of
(deterministic) network calculus comes however at the price
of providing bounds (i.e., not exact results), whose practical
tightness in terms of efficient numerical algorithms remains an
open issue in the network case [6] despite significant recent
progress [3]. In turn, the stochastic branch of network calculus
suffers from similar low accuracy issues, including the single-
node case whereby the stochastic bounds can be loose by
orders of magnitude in the case of non-renewal arrivals [14];
this drawback is exacerbated in the network case, especially
under heavy-tailed arrivals [32].

In a stochastic setting, an alternative queueing tool is the
theory of effective bandwidth [27] which can address a broad
class of (non-renewal) arrival processes in a unified and
conceivably quite elegant manner. Unlike stochastic network
calculus, which yields results in terms of non-asymptotic
bounds, effective bandwidth provides exact results but only
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in the so-called large-buffer or many-sources asymptotic
regimes [34]. Unfortunately, when fitted to practical (finite)
regimes, such results are however largely inaccurate and
thus practically questionable [12]; a convincing explanation is
provided in [40], i.e., for more variable sources than Poisson
such as most Markov-modulated processes, the underlying
additivity property reveals both the elegant nature of effective
bandwidth but also the conceivably conservative nature of the
exact results in finite regimes.

Motivated by the need for a unified queueing tool to
address non-renewal arrivals, and more importantly in terms
of practically accurate results, this paper revisits the queueing
analysis of the versatile class of Markov Fluid traffic models.
Informally, a source is a Markov Fluid if the associated arrival
process is a function of a (continuous-time) Markov process
on a finite state space [28]. The seminal model is the so-
called Anick/Mitra/Sondhi On-Off model, in which a source
produces data (as continuous ‘fluid’) either at some positive
constant or zero rates, depending on the state of a modulating
Markov process [4]; for related generalizations, which are
able to model larger classes of traffic patterns (e.g., video),
see [43], [28]. It is worth pointing out that fluid models are the
continuous approximation of their discrete counterpart, and are
essentially motivated by computational reasons such as dealing
with (discrete) state space explosion or various underlying
granularity and sizes (e.g., modelling a large number of small
packets in a short time interval) [24].

In this paper we generalize existing stochastic upper bounds,
available for the specific On-Off process [14], to the case of
general Markov fluids. The obtained stochastic (upper) bound
on the steady-state queue size distribution is shown to be
tighter than the existing state-of-the-art result from [35] by
an exponential factor O (κn), in the case of a superposition
of n On-Off sources, where κ is an explicit constant with
0 < κ < 1. Additionally, we provide for the first time
the matching lower bounds, which have the same analytical
structure as the upper bounds. Furthermore, by leveraging the
framework of the stochastic network calculus, we provide (per-
flow) delay bounds in a scheduling scenario with either FIFO
(first-in-first-out), SP (static priority), or EDF (earliest deadline
first) scheduling, when the flows are Markov fluids as well.

Unlike most of alternative results from the effective band-
width (1980-90s), e.g., [28], [16] and stochastic network
calculus literature (1990s-), e.g., [10], [13], [23], our overall
results employ a powerful martingale approach which was
proposed by Kingman to derive bounds in GI/G/1 (renewal)
queues [29]. This methodology was adopted in [20], [35], [10]
to the case of non-renewal processes. The numerical tightness
of the obtained upper bounds on the queue-size distribution,
and their noticeable superiority to alternative effective band-
width/stochastic network results, was recently exposed in [14],
[37], who further provided per-flow queueing results under
several scheduling policies with similar high accuracy. An
additional practical benefit of the martingale approach is that
it provides the most critical component of latency, i.e., its
tail (e.g., the 95th-percentile) and not its average; in fact,
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Fig. 1. A queueing system with two arrival processes

the importance of the tail to the development of the much
desired and anticipated “latency tail-tolerant” systems has been
convincingly exposed in a recent Google study [19].

The remainder of the paper is organized as follows: In § II
we present a general tool to analyze Markov fluids in an infi-
nite buffer queueing model. This tool is subsequently applied
to derive upper and lower bounds on the queue size distribution
(§ III), and to the (per-flow) delay bounds in a scheduled
system (§ IV). In §V we provide a collateral but important
result, i.e., the first analytical construction for the space-
parameter in the classical effective bandwidth approximation.
Finally in §VI we summarize the paper.

II. A GENERAL QUEUEING RESULT

In this section we first derive a general queueing result
which can be instantiated to several scenarios, e.g., the queue
size distribution for a single process or the delay distribution
in the case of scheduling.

The general queueing model is depicted in Figure 1. Given a
continuous time model, A1(t) and A2(t) are two (cumulative)
Markov fluid processes served at some constant rate C > 0
with corresponding departure processes D1(t) and D2(t),
respectively. Each process Ak(t), k = 1,2, is modulated
by a reversible Markov process Zk(t) with nk + 1 states,
generator Qk = (qk,i,j)i,j=0,...,nk

, equilibrium distribution

πk = (πk,0, . . . ,πk,nk
), arrival rates rk = (rk,0, . . . , rk,nk

),
and increment process ak(s) = rk,Zk(s) ∀s ≥ 0. We remark
that if Zk(t) was not reversible, then one could consider as
input the corresponding reversed process. The reversibility
property enables expressing Reich’s equation for the steady-
state queue size as

Q = sup
t≥0

{A1(t) +A2(t) − Ct} .

For each arrival process Ak(t) we consider the generalized
eigenvalue problem

Qkhk = − γkukhk, k = 1,2, (1)

where Qk are the underlying generators, γk are the eigenval-
ues, hk are the right eigenvectors, uk are diagonal matrices
with (uk,0, uk,1, . . . , uk,nk

) on the diagonal, and where

uk,j = rk,j − Ck

are the instantaneous queueing drifts for j = 0, 1, . . . , nk.
Here, C1 and C2 are positive values such that C1+ C2= C,
and can be regarded as the per-class/flow allocated capacity.

Assuming the per-class stability conditions

nk∑

j=0

πk,juk,j < 0, k = 1,2, (2)
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Lemma 5.1 from [35] guarantees the existence of real gener-
alized eigenvalues − γk (as the ones with the biggest negative
real parts) and also of the generalized eigenvectors

hk = (hk,0, hk,1, . . . , hk,nk
)T

with positive coordinates. Thus, γk > 0 for k = 1,2.

We now present a general result which will be used through-
out the paper.

Lemma 1. Consider the single-node queueing scenario from

Figure 1 and the solutions for the generalized eigenvalue

problems from Eq. (1). Then for all 0 ≤ u ≤ t and σ ≥ 0

P

(
sup

0≤s<t−u
{A1(s, t − u) +A2(s, t) − C(t − s)} > σ

)

≤ inf
0≤γ≤min γk

inf
C1+C2=C

κe−γ(C1u+σ) ,

(3)

where

κ =

∑
i,j π1,iπ2,jh

γ
γ1
1,ih

γ
γ2
2,j

minu1,i+u2,j≥0h
γ
γ1
1,ih

γ
γ2
2,j

,

whereas the condition C1+C2= C is subject to the stability

conditions from Eq. (2).

Let us make several observations about the two infimum
operators. The parameter γ in the outer infimum reconciles
the different burstiness of the two not necessarily homoge-
neous flows A1(t) and A2(t), loosely expressed through the
exponential decay factor. The extreme optimal value γ =
min {γ1, γ2} is attained when σ → ∞; in turn, a numerical
optimization after γ is necessary in finite regimes of σ. In turn,
due to the implicit expression of κ in terms of the (generalized)
eigenvectors from Eq. (1), which depend on C1 and C2, the
values for the inner infimum are subject to further numerical
optimizations.

Lemma 1 generalizes a result from [14] (see Theorem 1
therein) to the case of general and not necessarily homoge-
neous Markov fluid processes. The theorem also generalizes
a result from [35] (see Proposition 5.1 therein), restricted to
A2(t) = 0, and also the seminal result from Kingman [29] to
the non-renewal case. We point out that the key benefit of our
generalization result is that it can lend itself to per-flow delay
bounds in a scheduling scenario (see § IV).

Proof. Fix u ≥ 0 and σ ≥ 0. Since the two arrival processes
are reversible, we can rewrite the probability from Eq. (3), by
shifting the time origin, as

P

(
sup
t>u

{A1(u, t) +A2(t) − Ct} ≥ σ

)

= P

(

sup
t>u

{A1(u, t) +A2(u, t) − C(t − u)}

+A2(u) − C2u > C1u+ σ

)

. (4)

Let the following stopping time

T := inf

{

t > u : A1(u, t) +A2(u, t) − C(t − u)

+A2(u) − C2u > C1u+ σ

}

. (5)

In the rest of the proof we shall bound P (T < ∞), which is
exactly the target probability from Eq. (4).

Let Pi,j denote the underlying probability measure condi-
tioned on Z1(u) = i and Z2(0) = j, for 0 ≤ i ≤ n1 and
0 ≤ j ≤ n2. Next we define the following two processes

M̃1,t :=
h1,Z1(t)

h1,i
e
−

∫
t
u

(Q1h1)Z1(s)
h1,Z1(s)

ds
∀t ≥ u and

M̃2,t :=
h2,Z2(t)

h2,j
e
−

∫
t
0

(Q2h2)Z2(s)
h2,Z2(s)

ds
∀t ≥ 0 .

M1(t) and M2(t) are martingales with respect to (wrt) Pi,j

and the natural filtration (see [21], p. 175). Considering the
solution of the generalized eigenvalue problem from Eq. (1),
we can rewrite

M̃1,t =
h1,Z1(t)

h1,i
eγ1

∫
t
u
u1,Z1(s)ds ∀t ≥ u and

M̃2,t =
h2,Z2(t)

h2,j
eγ2

∫
t
0u2,Z2(s)ds ∀t ≥ 0 .

For 0 ≤ γ ≤ min {γ1, γ2} we consider the transformations

Mk,t = M̃
γ
γk

k,t k = 1,2.

Denoting by Fk,s the natural filtrations of Mk,t we can write
for 0 ≤ s ≤ t

E [Mk,t | Fk,s] = E

[
M̃

γ
γk

k,t

∣∣∣∣ Fk,s

]
≤ E

[
M̃k,t

∣∣∣ Fk,s

] γ
γk

≤ M̃
γ
γk

k,s = Mk,s ,

where the first line is due to Jensen’s inequality (applied to

the concave function x '→ x
γ
γk for x ≥ 0) and the second

inequality is due to the martingale property of M̃k,t. Therefore,
the new processes Mk,t are also martingales; we point out that
their construction is motivated by the need of having the same
decay rate, i.e., γ, in the corresponding exponentials.

Next we invoke a result from [11] (stating that the product
of two independent martingales is also a martingale) and the
Optional Switching Theorem ([25], p. 488), and obtain that
the process

Mt :=

{
M2,t , t ≤ u
M1,tM2,t , t > u

is also a martingale (note that M1,u = 1 by definition). It can
be explicitly written as

Mt =

⎧
⎪⎨

⎪⎩

(
h2,Z2(t)

h2,j

) γ
γ2 eγ(A2(t)−C2t), t ≤ u

(
h1,Z1(t)

h1,i

) γ
γ1
(

h2,Z2(t)

h2,j

) γ
γ2 eγ(A1(u,t)+A2(t)−Ct), t > u
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Referring now to the stopping time T from Eq. (5), which
may be unbounded, we construct the bounded stopping times
T ∧ v for all v ∈ N. For these times, the Optional Sampling
Theorem (see, e.g., [25], p. 489) yields

Ei,j [M0] = Ei,j [MT∧v] ,

for all v ∈ N , where the expectations are taken wrt the
underlying probability measures Pi,j . Moreover, from the
definition of T as an infimum over a set, it holds for v ≥ 0
that (

u1,Z1(T ) + u2,Z2(T )

)
I{T≤v} ≥ 0 , (6)

where I{·} denotes the indicator function. Using now that
Ei,j [M0] = 1 we obtain for v > u

1 ≥ Ei,j

[
MT∧vI{T≤v}

]

≥ min

(
h1,l1

h1,i

) γ
γ1
(
h2,l2

h2,j

) γ
γ2

eγ(C1u+σ)
Pi,j (T ≤ v) ,

where the ‘min’ operator is taken over the set
{(l1, l2) : u1,l1+ u2,l2 ≥ 0} according to Eq. (6).

Finally, by deconditioning on i and j (recall that Z1(u) and
Z2(0) are in steady-state by construction) we obtain

P (T ≤ v) ≤ κe−γ(C1u+σ) .

Letting v → ∞ completes the proof.

III. QUEUE SIZE DISTRIBUTION: UPPER AND LOWER

BOUNDS

Here we apply Lemma 1 to derive upper bounds on the
steady-state queue size distribution, and then provide the
corresponding lower bounds.

A. Upper Bounds

Consider a server with constant rate C > 0 serving a
Markov fluid process A(t) which is modulated by a reversible
Markov process Z(t) with n + 1 states, generator Q =
(qi,j)i,j=0,...,n, equilibrium distribution π = (π0, . . . ,πn),
arrival rates r = (r0, . . . , rn), and increment process a(s) =
rZ(s) ∀s ≥ 0. The steady-state queue size is

Q = sup
t≥0

{A1(t) +A2(t) − Ct} ,

and the steady-state virtual delay is defined via

{W (t) ≥ d} = {A1(t − d) +A2(t − d) ≥ D1(t)}

⊆

{
sup
t≥0

(A1(t) +A2(t) − Ct) ≥ Cd

}
.

Let the generalized eigenvalue problem

Qh= − γuh , (7)

where u is a diagonal matrix with (u0, u1, . . . , un) on the
diagonal, and where

uj = rj − C

0 1 2 . . . n

nµ

λ

(n − 1)µ

2λ

µ

nλ
P 2P nP

Fig. 2. A superposition of n On-Off processes

are the instantaneous queueing drifts for j = 0, 1, . . . , n.
Assume further the stability condition

n∑

j=0

πjuj < 0 .

As mentioned earlier, there exists a real generalized eigenvalue
− γ < 0, and the corresponding eigenvector

h= (h0, h1, . . . , hn)
T

with positive coordinates.

An immediate consequence of Lemma 1, instantiated with
A2(t) := 0 and u := 0, is the following:

Corollary 2. (QUEUE SIZE DISTRIBUTION: UPPER BOUND)

Consider the previous queueing system with a single Markov

fluid A(t) served at rate C. Then the stationary queue size

distribution Q and waiting time distribution W (t) satisfy for

all σ, t ≥ 0

P (Q ≥ σ) ≤

∑
i πihi

minui≥0hi
e−γσ , (8)

P (W (t) ≥ d) ≤

∑
i πihi

minui≥0hi
e−γCd , (9)

where γ and h= (h0, h1, . . . , hn)
T

are the solutions of the

generalized eigenvalue problem from Eq. (7).

Let us next compare this bound with the state-of-the-art
bound from [35], i.e.,

P (Q ≥ σ) ≤

∑
i πihi

mini hi
e−γσ . (10)

P (W (t) ≥ d) ≤

∑
i πihi

mini hi
e−γCd . (11)

Clearly, our bound is tighter due to the additional constraint
on the ‘min’ operator from Eq. (8).

To give an explicit order of the improvement, consider the
classical scenario when the process A(t) is a superposition of
n Markov-modulated On-Off processes (see Figure 2). Each
sub-process is modulated by a Markov process with two states,
denoted by ‘On’ and ‘Off’, and which communicate at rates
λ and µ. While in the ‘On’ state, each sub-process generates
‘fluid’ at some constant rate P . To avoid trivial situations we
assume that nP > C and that the utilization factor ρ =

n µ
λ+µP

C
satisfies the stability condition ρ < 1.
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A key advantage of the chosen multiplexed On-Off model
is that it lends itself to an explicit solution for the generalized
eigenvalue problem from Eq. (7), i.e.,

{
γ = n(λ+µ)(1−ρ)

nP−C

hi = e−θi , i = 0, 1, . . . , n
, (12)

where θ = log µ
λ

nP−C
C (see also [35]). Thus, an explicit bound

in Corollary 2 is

P (Q ≥ σ) ≤ κne−γσ , (13)

where κ = ρ
(

ρ−p
1−p

) p
ρ−1

and p = µ
λ+µ is the steady-state

probability for an On-Off process to be in the ‘On’ state. As
it was shown in [14] that 0 < κ < 1, whereas the prefactor
from Eqs. (10) and (11) is clearly greater than 1, it follows
that the improvement of our bound from Corollary 2 relative
to the one from Eq. (10) and (11) is of the order O (κn) (in
the specific case of a superposition of On-Off processes).

The technical explanation for this drastic improvement can
be found in the proof of Lemma 1. More specifically, the
key observation resides in Eq. (6): in the current case of a
single fluid A(t), the equation ‘says’ that there must be a
non-negative drift a(Z(T )) − C when the stopping time T is
attained; although seemingly elementary, this observation does
have the reported drastic impact on the bounds. We point out
that this observation is reminiscent of the works in [9], [35].

B. Lower Bounds

We now provide the matching lower bounds for the upper
bounds from Corollary 2. We consider the same scenario from
§ III-A with a single Markov fluid A(t) served at rate C > 0.

Corollary 3. (QUEUE SIZE DISTRIBUTION: LOWER BOUND)

The stationary queue size distribution Q and waiting time

distribution W (t) satisfy for all σ, t ≥ 0

P (Q ≥ σ) ≥

∑
i πihi

maxui≥0hi
e−γσ , (14)

P (W (t) ≥ d) ≥

∑
i πihi

maxui≥0hi
e−γCd , (15)

where γ and h= (h0, h1, . . . , hn)
T

are the solutions of the

generalized eigenvalue problem from Eq. (7).

Remarkably, the only difference to the corresponding upper
bound is that the factor minui≥0hi from Eq. (8) is now
replaced by maxui≥0hi. In particular, in a scenario where
the set {ui | ui ≥ 0} only consists of a single element, upper
and lower bounds coincide and hence, Eqs. (8) and (14) (as
well as Eqs. (9) and (15)) provide exact results. The proof
of Corollary 3 is similar to that of Lemma 1, but it uses an
additional stopping time following an idea from [38] to derive
bounds in the GI/G/1 (renewal) queue:

Proof. Fix σ ≥ 0. The queue size distribution can be written
as

P (Q ≥ σ) = P

(
sup
t≥0

(A(t) − Ct) ≥ σ

)
. (16)

As in the proof of Lemma 1, let Pi denote the underlying
probability measure conditioned on Z(0) = i for 0 ≤ i ≤ n
(recall that Z(t) is the underlying modulating Markov process
of A(t)). Again, the process

Mt :=
hZ(t)

hi
e
−

∫
t
0

(Qh)Z(s)
hZ(s)

ds
∀t ≥ 0

is a martingale wrt Pi and the natural filtration. Consider-
ing the solution of the generalized eigenvalue problem from
Eq. (7), we have ∀t ≥ 0

Mt =
hZ(t)

hi
eγ

∫
t
0uZ(s)ds

=
hZ(t)

hi
eγ(A(t)−Ct) .

Let us now define the stopping time

T = inf {t ≥ 0 | A(t) − Ct ≥ σ}

which is the equivalent of the one from Eq. (5), in the current
context with a single fluid. Define further a second stopping
time for some y > 0:

Ty = min {T, inf {t ≥ 0 | A(t) − Ct ≤ − y}} , (17)

as the first hitting time of the boundary of the interval [− y,σ].
Since Ty is a finite stopping time, relative to the natural
filtration Ft, it follows from the Optional Stopping Theorem
that the process (MTy∧v)v is a martingale, which is bounded
and hence uniformly integrable. Since MTy∧v → MTy

a.s. and
in L1, we can further write

Ei [M0] = Ei

[
MTy∧0

]
= Ei

[
MTy

]

= Ei

[
MTy

| A (Ty) ≥ CTy + σ
]
Pi (A (Ty) ≥ CTy + σ)

+Ei

[
MTy

| A (Ty) ≤ CTy − y
]
Pi (A (Ty) ≤ CTy − y) ,

(18)

where the expectations are taken wrt Pi.

To deal with the first term we first observe that

{A (Ty) ≥ CTy + σ} ⇒ {Ty = T} .

Because the process A(t) is continuous it follows that the
‘hitting’ condition from Eq. (17) is attained with equality, i.e.,

A (Ty) = CTy + σ .

Moreover, since γ > 0, we can bound the conditional
expectations from Eq. (18) as follows

1 = Ei [M0]

≤
supl,ul≥0hl

hi
eγσPi (A (Ty) ≥ CTy + σ)

+
supl,ul≥0hl

hi
e−γy .

Letting y → ∞ the second term vanishes and thus

1 ≤
supl,ul≥0hl

hi
eγσPi (T < ∞) .

188188188188188188188



1 2

0

λ1,2
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λ0,2

P 2P

Fig. 3. 3-state Markov process.

By recalling that {T < ∞} is the same (a.s.) with the
event from Eq. (16), and finally deconditioning on i (i.e.,
P (T < ∞) =

∑
i πiPi (T < ∞)), the proof for the queue size

Q is complete.
The proof for the waiting time W (t) is entirely analogous.

For an explicit lower bound, consider again the case when
A(t) is the superposed process from Figure 2. Denoting
p = µ

λ+µ , the equilibrium distribution π of Z(t) has the

components πi =
(
n
i

)
pi(1 − p)n−1 for i = 0, 1, . . . , n.

Recalling the explicit solution of the underlying generaliza-
tion eigenvalue problem from Eq. (12), the prefactor of the
exponential bound from Eq. (14) becomes after elementary
calculations

n∑

i=0

(
n

i

)
pi(1 − p)n−ieθ(n−i) = eθn

(
pe−θ + 1 − p

)n

= ρn ,

where ρ =
n µ

λ+µP

C is the utilization factor. The explicit lower
bound is thus

P (Q ≥ σ) ≥ ρne−γσ , (19)

which has the same analytical structure as the corresponding
upper bound from Eq. (13), except for the constant in the
prefactor (i.e., ρ vs. κ, both belonging to (0, 1)).

C. Evaluation

In order to numerically validate the bounds given in Corol-
laries 2 and 3, we consider the simulation scenario as in
Figure 3: A 3-state Markov process alternates with rates λi,j

between one inactive and two active states. In the active states,
fluid is generated with rates P and 2P , respectively; in the
inactive state no fluid is generated.

Figure 4 shows the CCDF of the aggregate delay distribution
for a scenario with n = 2,5, 10 such Markov processes being
multiplexed. The parameters are λi,j = 1 (for all i, j), P = 1,
and C > 0 is scaled such that for the link utilization holds
ρ = 0.75(Figure 4a) and ρ = 0.9 (Figure 4b), respectively.

By the symmetry of the transition rates, the Markov process is
reversible. The analytical results are shown as coloured areas
between the upper and lower bounds from Eqs. (9) and (15),
the simulations are displayed as single points.

To gain insight into the impact of multiplexing, we re-
fer to Figure 5: For different violation probabilites ε =
10−2, 10−4, 10−6, the delay is given in dependency of the
number of multiplexed sources n. Again, the link utilization
is ρ = 0.75 (Figure 5a) and ρ = 0.9 (Figure 5b) and
the bounds from Eqs. (9) and (15) are shown as coloured
areas; in addition, the state-of-the-art (upper) bounds from
Eqs. 10 and (11) are displayed as lines. One immediately sees
that the beneficial effect of multiplexing (multiplexing gain)
manifests itself in an exponential decay of the corresponding
delay. Although this effect is also captured by the state-of-
the-art bounds, they are too large by a factor of at least three
times the width of the newly obtained interval, revealing their
large inaccuracy.

IV. PER-FLOW DELAY DISTRIBUTION UNDER

SCHEDULING

Clearly, the formulation from Lemma 1 is cumbersome,
especially due to the apparently obscure parameter u. It has
however the key advantage that it can be broadly applied to
obtain per-flow/class bounds in the general queueing scenario
from Figure 1, besides the previous results on the queue
size distribution. We will derive in particular bounds on the
virtual delay W1(t) of the tagged flow A1(t), under three
scheduling policies: FIFO, SP, and EDF. While the derivations
resemble those from [14], we present the generalized results
(i.e., holding for general Markov fluids) for the sake of
completeness.

First, we describe a common step to the derivations of all
the three cases. In a scheduled scenario, the departure process
D1(t) of the tagged flow has the representation

D1(t) ≥ A1∗ S1(t) := inf
0≤s≤t

{A1(s) + S1(s, t)} , (20)

where S1(t) is the service process, encoding information about
the cross flow A2(t) and the specific scheduling policy, and
where ‘∗’ is a (min,+) convolution operator [10].

Using the equivalence of events

{W1(t) ≥ d} = {A1(t − d) ≥ D1(t)} ,

we can bound the distribution of W1(t) as

P (W1(t) ≥ d) ≤ P (A1(t − d) ≥ A1∗ S1(t)) . (21)

The three delay bounds (i.e., for FIFO, SP, and EDF) can
be then obtained by plugging in the service process for the
corresponding scheduling policy, and by choosing a suitable
value for the parameter u in Lemma 1.

A. FIFO

Under this policy, the fluid from the sources A1(t) and
A2(t) is processed in the order of the respective arrival times.
The service process of the tagged flow is [18]

S1(s, t) = [C(t − s) − A2(s, t − x)]+ I{t−s>x} , (22)
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Fig. 4. CCDF and upper/lower bounds for the delay of a 3-state Markov fluid with unit rates, n = 2, 5, 10

for some fixed x ≥ 0, independent of s and t. Eq. (21)
continues as follows

P (W1(t) ≥ d) ≤ P

(
sup

0≤s<t−d
{A1(s, t − d)

− [C(t − s) − A2(s, t − x)]+ I{t−s>x}

}
≥ 0
)
.

Note that we could restrict the range of s from [0, t] to
[0, t − d), using the positivity of the ‘[·]+’ operator and the
monotonicity of A1(s, t). By making the choice x := d, it
follows that

P (W1(t) ≥ d) ≤ P

(
sup0≤s<t−d

{
A1(s, t − d)

+A2(s, t − d) − C(t − s)
}
≥ 0
)
.

Further applying Lemma 1 with u := 0 and σ := Cd yields:

Corollary 4. (PER-FLOW DELAY DISTRIBUTION: FIFO)

Under FIFO scheduling, the delay of flow A1(t) satisfies for

all d ≥ 0
P

(
W1(t) ≥ d

)
≤ κe−γCd , (23)

where κ and γ are given in Lemma 1.

B. SP

Under this policy, fluid from A1(t) is only served when
there is no unprocessed fluid from A2(t). A service process
for the low-priority tagged flow is given by [10]

S1(s, t) = C(t − s) − A2(s, t) ,

such that Eq. (21) continues as follows:

P (W1(t) ≥ d)

≤ P

(
sup

0≤s<t−d
{A1(s, t − d) +A2(s, t) − C(t − s)} ≥ 0

)
.

Recalling the arbitrary split C1+ C2 = C, Lemma 1 yields
(with u := d and σ := 0):

Corollary 5. (PER-FLOW DELAY DISTRIBUTION: SP) Under

SP scheduling, the delay of flow A1(t) satisfies for all d ≥ 0

P

(
W1(t) ≥ d

)
≤ κe−γC1d , (24)

where κ and γ are given in Lemma 1.

C. EDF

An EDF server associates the relative deadlines d∗1 and d∗2
to the fluids of A1(t) and A2(t), respectively. All fluids are
served in the order of their remaining deadlines, even when
they are negative. A service process for the tagged flow A1(t)
is given by [33]

S1(s, t) = [C(t − s) − A2(s, t − x+min{x, y})]+ I{t−s>x} ,
(25)

for some x > 0 and where y := d∗1− d∗2.

For the sake of brevity, we only consider the case y ≥ 0.
Setting x := d as for the FIFO case, Eq. (21) continues to

P (W1(t) ≥ d) ≤ P

(
sup

0≤s<t−d

{
A1(s, t − d) +A2(s, t − d

+min{d, y}) − C(t − s)
}
≥ 0

)
.

By changing the variable t ← t+ d − min{d, y} we get

P (W1(t) ≥ d)

≤ P

(

sup
0≤s<t−min{d,y}

{
A1(s, t − min{d, y}) +A2(s, t)

− C(t − s+ d − min{d, y})
}
≥ 0

)

.

We can now apply Lemma 1 with u := min{d, y} (note
that both d and y are positive) and σ := C(d − min{d, y}),
and finally obtain:

Corollary 6. (PER-FLOW DELAY DISTRIBUTION: EDF) Un-

der EDF scheduling with y := d∗1− d∗2≥ 0, the delay of flow

A1(t) satisfies for all d ≥ 0

P

(
W1(t) ≥ d

)
≤ κeγC2min{d∗

1−d∗

2,d}e−γCd ,

where κ and γ are given in Lemma 1.
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Fig. 5. Comparison of upper/lower bounds from Eqs. (9), (15) (depicted as shaded areas) on the ε-quantiles of the delay with state-of-the-art upper bound
from Eq. (11) (depicted as lines), for ε = 10−2, 10−4, 10−6.

V. AN ANALYTICAL CONSTRUCTION FOR THE

SPACE-PARAMETER IN THE EFFECTIVE BANDWIDTH

APPROXIMATION

As a collateral result, we now give the first analytical con-
struction for the space-parameter in the effective bandwidth

approximation, which was proposed in the 1980 − 90s as a
fundamental technique for traffic engineering. For an arrival
process A(t), the effective bandwidth of A(t) is defined for
some θ > 0 as [27]

α (θ, t) :=
1

tθ
log E

[
eθA(t)

]
.

Let

αθ := lim
t→∞

α (θ, t)

and θ∗ be the solution of

αθ = C ,

where C is the rate at which A(t) is served at a stable queue.
The effective bandwidth approximation states that the steady-
state queue size distribution satisfies

P (Q > σ) ∼κe−θ∗σ , (26)

where κ is the asymptotic constant, θ∗ is the asymptotic decay

rate, and f(x) ∼g(x) means that f(x)/g(x) → 1 as x → ∞
(see [12], [15]).

The space-parameter of the effective bandwidth approx-
imation is generally the parameter θ in the expression of
α(θ, t), and more particularly θ∗, which was shown to play
a fundamental role in traffic engineering; unfortunately, the
construction of θ∗ is based on either numerical search or
simulations [15]. To the best of our knowledge, the next result
provides the first analytical construction of θ∗ (in the case of
Markov fluids).

Lemma 7. (SPACE-PARAMETER CONSTRUCTION) For the

previous queueing scenario it holds

θ∗ = γ , (27)

where γ was defined in Corollary 2 (as the solution of the

generalized eigenvalue problem from Eq. (7)).

Proof. From the construction of γ we have that

(Q+ γu)h= 0 . (28)

Let the diagonal matrix V with (r0γ, r1γ, . . . , rnγ) on the
diagonal, and construct the matrix

Qγ := Q+V .

Then it holds that
Qγx = αγγIx (29)

where αγγ is the spectral radius of Qγ and x is the corre-
sponding (positive) eigenvector (see [28]).

Let us now observe that

Q+ γu = Qδ − CγI .

Combining with Eqs. (28) and (29) we obtain that

0 = (Qγ − αγγI)x = (Qγ − CγI)h .

Therefore, Cγ is an eigenvalue for the eigenvalue problem
from Eq. (29) and thus

αγ ≥ C ,

since by construction αγγ is the corresponding spectral radius.
To show the converse, i.e., αγ ≤ C, consider the exact

asymptotic decay of the distribution of the queue occupancy
(of A(t) when fed at a queue with capacity C), i.e.,

lim
σ→∞

1

σ
log P (Q ≥ σ) = − θ∗ , (30)

where αθ∗ = C (see [27]). In other words, θ∗ is the exact
asymptotic decay rate. As Corollary 2 predicts γ as a decay
rate, in terms of an upper bound, it follows that γ ≤ θ∗.
Finally, since αθ is increasing in θ (see [10], p. 241), it follows
that

αγ ≤ αθ∗ = C ,

completing the proof. Alternatively, one can invoke the lower
bound from Corollary 3. Note that a more direct proof can be
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given by invoking the exact result from Eq. (30) along with the
upper/lower bounds from Eqs. (10) and (14), respectively.

VI. CONCLUSIONS

In this paper we have advanced the queueing analysis of
the versatile class of general Markov fluids. In particular, we
have improved the state-of-the-art upper bounds on the queue
size distribution by an exponential factor in the special case of
Markov modulated On-Off sources. We have further provided
the first matching lower bounds, and also the first bounds
on the per-flow delay distribution under FIFO, SP, and EDF
scheduling.

An attractive feature of our stochastic bounds is that they
are obtained using a powerful martingale methodology, which
essentially invokes Kolmogorov-Doob inequality arguments,
and which was shown to render accurate stochastic bounds.
An alternative and arguably more powerful technique based
on integral equations was provided by Kingman [30] in the
case of renewals and a discrete-time setting; its extension to
the non-renewal case can in principle provide clues for further
improving the current upper/lower bounds.
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