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Abstract—Many wireless sensor networks (WSNs) are used to
collect and aggregate data from potentially hostile environments.
Catering to this, early application scenarios did not put tight
constraints on performance properties like delay, but rather
focused on ruggedness and energy conservation. Yet, there is
a growing number of sceanarios like e.g. production monitoring,
intrusion detection, or health care systems which depend on the
sensor network to provide performance guarantees in order to be
able to act upon the phenomena being sensed in a timely fashion.
Nevertheless, these applications still face the traditional issue of
energy-efficiency. In this paper, we present means to find energy-
efficient medium assignments in time-slotted multi-hop networks
that satisfy given real-time constraints. Specifically, we present
a way to find the optimal length of time slots and periods in
TDMA schemes. We also present a software to compute those
values for typical sink-tree WSNs.

Index Terms—Wireless Sensor Networks, Energy-Efficiency,
Real-time guarantees, Optimal TDMA, Network calculus.

I. INTRODUCTION

Wireless sensor networks have requirements and character-

istics that are considerably different from those of common

computer networks. Issues include low energy reserves, lim-

ited processing power, uncontrolled environments and other

adverse factors. The main attention has been put on meeting

these restrictions, so there has been much research on mini-

mizing energy usage by introducing sleep times, reducing the

amount of transmitted data, etc. While those topics remain

important, other aspects have been neglected. With long sleep

times come long delays, which can grow rapidly with the size

of the network, depending on its topology.

Traffic flows as well as scheduling regimes have so far often

been considered fluid, neglecting aspects like packetizing or

TDMA and describing them only by their sustained maximum

or average rate and modifiers like a burst for incoming traffic

or latencies for services, which is a good approximation for

fast and relatively fine-grained data streams. When looking at

very slow data streams however, that model loses precision.

With slow medium data rates and processing, data sent over

such a network loses its fluid characteristics. This becomes

a concern in TDMA systems, where participants only get

intermittent service during their assigned time slots, and need
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to be quiet outside those slots. Modeling such a system with

fluid models fails to take this into consideration.

In this paper, we first give an overview of the necessary

methodological background for worst-case analysis of WSNs

in section II. In section III, we present the optimization

problem of finding the most energy-preserving frame length

in a TDMA system while still meeting worst-case delay

constraints. In Section IV, this problem is solved analytically

to find solutions for a general sink tree network under the fluid

model. Finally, in section V, we present an implementation

using the existing DISCO Network Calculator framework [2],

allowing us to analyze the impact of discrete models on worst-

case delay bounds. This provides us with a means to compute

bounds for TDMA parameters in sink-tree sensor networks. A

few numerical examples analyzing different parameters of the

WSN are also discussed in this section.

The problem we address in this paper is different from

other approaches that try to find optimally fast solutions,

like e.g. [3], in that we find the minimum medium allocation

that still allows the WSN to work within the given limits.

Other related work covers aspects of TDMA networks, like

time synchronization [4] or resource allocation and reuse in

spatially spread out networks [5], [6]. The general tenor is

to maximize performance of a network, whereas we aim

for the minimum performance at which quality of service

requirements, in this case delay, are stil fulfilled.

II. SENSOR NETWORK CALCULUS

In this section, we assume basic familiarity with the con-

cepts of network calculus as described in [7]. Appendix A

presents an overview of the most important aspects for this

paper. For sensor networks, the calculus has been extended by

some aspects which are described in the following paragraphs.

A. Sensor Network System Model

In this paper the common class of single base station

oriented operation models is assumed, with networks being

structured as shown in Fig. 1. Within the traffic that is modeled

only the sensor reports are taken into account. Traffic gener-

ated from the base station towards the nodes (e.g. topology

control and node configuration) can be taken into account by

factoring its effect into the service curves of the nodes by e.g.



Fig. 1. Sensor network model

assuming strict priority for that kind of traffic. Furthermore, it

is assumed that the routing protocol being used forms a tree

in the sensor network. Hence n sensor nodes arranged in a

directed acyclic graph are given, as shown in Fig. 1.

Each sensor node i senses its environment and thus is

exposed to an input function Ri corresponding to its sensed

input traffic. If sensor node i is not a leaf node of the tree

then it also receives sensed data from all of its child nodes

child(i, 1), . . . , child(i, ni), where ni is the number of child

nodes of sensor node i. Sensor node i forwards/processes its

input which results in an output function R∗
i from node i

towards its parent node.

Now the basic network calculus components, arrival and

service curve, have to be incorporated. First the arrival curve

ᾱi of each sensor node in the field has to be derived. The

input of each sensor node in the field, taking into account its

sensed input and its children’s input, is given by:

R̄i = Ri +

ni
∑

j=1

R∗
child(i,j) (1)

Thus, the arrival curve for the total input function for sensor

node i is given by:

ᾱi = αi +

ni
∑

j=1

α∗
child(i,j) (2)

For this paper, we use simple token-bucket functions to

model inputs. Those are defined over R
+
0 as

γr,b(t) =

{

0 if t = 0
b + rt otherwise

Second, the service curve has to be specified. The service

curve depends on the way packets are scheduled in a sensor

node which mainly depends on link layer characteristics. More

specifically, the service curve depends on how the duty cycle

and therefore the energy-efficiency goals are set. For this

paper, we will use a service curve modeling the periodic

availability of the full medium capacity C after an initial delay

T – this closely captures the TDMA characteristics we assume.

The form of this curve for a node receiving s time units of

service in a frame of duration f is shown in Fig. 2. Until point

T (which will usually be T = f − s to express the maximum

access latency in a TDMA network), the curve is at zero.

Fig. 2. TDMA service curve.

Algorithm 1 Calculating the output bound α∗
i of a network

node.
1) Let us assume that arrival curves for the sensed input αi

and service curves βi for sensor node i, i = 1, . . . , n,

are given.

2) For all leaf nodes the output bound α∗
i can be calculated

according to (10). Each leaf node is now marked as

“calculated”.

3) For all nodes only having children which are marked

“calculated” the output bound α∗
i can be calculated

according to (3) and they can again be marked “cal-

culated”.

4) If node 1 is marked “calculated” the algorithm termi-

nates, otherwise go to step 3.

From T to t + s, it rises to sC and then remains there until

T +f , where it starts to rise again. This repeats forever with a

period length of f . The structure is similar to the one proposed

in [8] for ZigBee networks. This curve can be approximated

by a rate-latency curve βR,T (t) = max {R(t − T ), 0} with

R = s
f
C and T = f − s. That curve is shown labeled as β

in the figure and can be considered the fluid version of the

TDMA service curve.

Finally, the output of sensor node i, i.e. the traffic which

it forwards to its parent in the tree, is constrained by the

following arrival curve:

α∗
i = ᾱi ⊘ βi =



αi +

ni
∑

j=1

α∗
child(i,j)



 ⊘ βi (3)

In order to calculate a network-wide characteristic like the

maximum information transfer delay or local buffer require-

ments especially at the most challenged sensor node just below

the sink (which is called node 1 from now on) the iterative

procedure shown in Alg. 1 is used.

After the network internal flows are computed according to

this procedure, the local worst case buffer requirements Bi

and per node delay bounds Di for each sensor node i can be

calculated according to Theorem 1 and 2:

Bi = v(ᾱi, βi) = sup
s≥0

{ᾱi(s) − βi(s)} (4)

Di = h(ᾱi, βi) = sup
s≥0

{inf{τ ≥ 0 : ᾱi(s) ≤ βi(s + τ)}} (5)



Algorithm 2 Simplified PMOO Analysis.

1) Let M = {E1, . . . , En} be the set of edges the flow of

interest is traversing on the way from its source to the

sink. Each edge Ei has an incoming node Ni−1 and an

outgoing node Ni.

2) Let βeff,0 = δ0 with

δd(t) =

{

0 if t ≤ d

∞ otherwise

δ0 is the neutral element of the min-plus convolution.

3) For all E1≤i≤n ∈ M , add up all upper output bounds

from incoming nodes N 6= Ni−1 (for i = 0 this means

the sum of all incoming flows except the flow of interest)

and update the effective service curve:

βeff,i =



(βeff,i−1 ⊗ βEi
) −

∑

N 6=Ni−1

α∗
N





+

with the α∗
N according to 3.

4) βeff,i is the effective service curve for the flow of interest.

To compute an end-to-end delay in a network where data is

forwarded unchanged, we can use the result for the so-called

Pay Multiplexing Only Once analysis (PMOO) described in

[9]. Due to the simple structure of the network, all flows that

join a flow of interest will remain multiplexed until the sink,

making it possible to simplify the analysis to Alg. 2. When

compared to the addition of the nodal delay bounds from (5)

or the direct application of the blind multiplexing result from

Theorem 5 at each of the nodes this results in considerably

less pessimistic bounds, because each interfering flow’s burst

has to be taken into consideration only once (for an in-depth

comparison see [9]).

III. OPTIMAL TDMA DESIGN

When designing a TDMA system, a choice has to be made

for how long the repetitive TDMA frame as well as the

individual slot sizes of each participating node are. Since

the advantage of TDMA systems against concurrent medium

access lies in the fact that each participant obtains exclusive

use of the medium, it has to be ensured that each participant

gets assigned enough time to perform its tasks. For some

network nodes, that just requires a short slot in which they can

send collected data, and perhaps receive an acknowledgment

from an upstream node. However, in multi-hop systems, some

nodes act as routers, and have higher bandwidth requirements

for forwarding other nodes’ data, while perhaps collecting

and sending data themselves. Aside from avoiding contention,

using TDMA also reduces energy consumption by making it

possible for nodes to power down in periods without relevant

traffic.

Since in wireless sensor networks, two main concerns are

minimizing power consumption and meeting delay bounds,

while transmission bandwidth requirements tend to be low, we

want to maximize the frame length, giving the sensor nodes

the opportunity to disable their radio transceivers or even go

into deep sleep modes.

A. General TDMA Design Problem

From those requirements, we formulate the TDMA design

problem as an optimization problem for a tree network with

n nodes where from each node a flow is originating:

max. Z = min1≤i≤n {f − si}
s.t.

∑n
i=1 si ≤ f (TDMA integrity)

∀i : di(f,~s|r, b, C) ≤ D (Delay)

∀i : si

f
· C ≥ Fir (Rate)

∀i : si ≥ 0, f ≥ 0 (Non-negativity)

In all further instantiations of this problem, the constraints

will be given in the same order. The designations have been

omitted due to typesetting issues. Here, f is the length of

the repetitive TDMA frame, si is the amount of time devoted

to node i for sending (slot size of node i). These constitute

the decision variables. For the parameters of the problem we

further have D as the maximum permissible delay that may

be incurred by any flow in the sensor field, di(f,~s|r, b, C) =
h(γr,b, β

i
eff ) as the actual maximum delay incurred by flow i

(which is computed based on the effective service algorithm

described in Alg. 2), Fi as the number flows carried by node

i (including the flow originating at node i), C as the medium

rate (“capacity”), and r as the maximum sustained rate for any

flow as well as b as the maximum burst of a flow. Note that we

assume the sensors to have identical arrival curves γr,b as well

as an identical delay requirement D, which for most practical

situations will be no restriction and makes the further analysis

more tractable.

The objective function reflects the fact that the minimum

sleeping period over all nodes in the field should be maxi-

mized, thus achieving a maximum lifetime of the network. The

TDMA integrity constraint captures the fact that all slot sizes

together must fit into the TDMA frame. Obviously the delay

constraints should be met for all flows, which is captured by

the delay constraints; also all the rate constraints must be met

in order not to obtain infinite delay bounds for the flows. Of

course, we also have non-negativity constraints for the decision

variables. As a remark, in the objective function there is a

hidden assumption on the relative energy costs for switching

between different states like transmission, reception, and idle.

It is assumed that those state transitions have roughly the same

cost, as it is the case for many transceiver architectures (see

e.g. [10]), such that by minimizing the sleep period of a node

with respect to sending will in fact coincide with minimizing

the amount of energy consumed for transmission and reception

by maximally batching data before forwarding them (within

the delay constraints).

Unfortunately, this general modeling of the TDMA design

problem results in a very hard to solve non-linear program-

ming problem with n + 1 decision variables and 3n + 2
constraints. The non-linearity is exhibited in the objective

function as well as in the delay constraints. Hence, the only

viable approach is to simplify the problem structure if a



solution shall be found for larger instances of the TDMA

design problem. There are two intuitive approaches towards

relaxing the problem:

1) Equal Slot Sizing (ESS): the assignment may be made

such that inside a fixed time slot length, each node can

transmit enough data to fulfill all requirements.

2) Traffic-Proportional Slot Sizing (TPSS): slots may be

assigned such that each node only claims the resources

necessary to fulfill its own duties, depending on the input

bandwidth and forwarded data streams.

While the second relaxation approach may appear more effi-

cient, it is also harder to set up. The first approach requires

rather little information – the number of nodes and the band-

width requirements of the node serving the highest number of

flows –, the second method requires good knowledge of the

topology, which may not always be at hand.

In both cases two variables need to be controlled: The

overall frame length f and the individual slot length s, where

however for ESS this slot length is for each node, while

for TPSS each node obtains a multiple of that slot length

depending on the number of flows it has to carry. Obviously in

both cases, with an increasing frame length, a node may sleep

longer between transmission or reception phases, but delay is

increased at the same time. For a given f in a network with

n nodes, s is limited to values between an upper bound f
n

and a lower bound that is given by the minimum bandwidth

requirements.

Next we state the TDMA design problem under ESS as

well as TPSS, which as we will see in Section IV are

amenable to an analytical solution under TDMA service curves

approximated by rate-latency service curves.

B. TDMA Design under Equal Slot Sizing

Under ESS, we now consider a common slot size s for all

nodes. The TDMA design problem can then be formulated as:

max. Z = f − s

s.t. s ≤ f
n

d(f, s|r, b, C) = max1≤i≤n di(f, s|r, b, C) ≤ D
s
f
· C ≥ Fmaxr

f ≥ 0

We obtain an optimization problem with a linear objective

function, and only four constraints – a great simplification.

Most of the reduction in complexity is due to lower number

of decision variables as e.g. for the rate constraints which

collapse into a single one. For the delay constraints this is

not as easily seen but the reader may ascertain herself that

there is always one flow which is the worst-case flow and

whose delay constraint is dominating all of the other flows’

delay constraints as they are all facing the same situation when

considering the parameters. For example in a fully occupied

n-ary tree one can choose any leaf node and its corresponding

flow as the flow whose delay constraint is the dominating one.

Fig. 3. Two node example network

C. TDMA Design under Traffic-Proportional Slot Sizing

Under traffic-proportional slot sizing, each flow is allocated

a slot of size s on each node that it passes on its way to

the sink, i.e. we obtain the following relaxation of the TDMA

design problem:

max. Z = f − s · max1≤i≤n {Fi}
s.t.

∑n

i=1 Fis ≤ f

d(f, s|r, b, C) = max1≤i≤n di(f, s|r, b, C) ≤ D
s
f
· C ≥ r

f ≥ 0

Again, we obtain a problem with a linear objective function,

and only four constraints, which very much exhibits the same

shape as the TDMA design problem under ESS following sim-

ilar arguments. In particular, the dominating delay constraint

must again be found, which often becomes an obvious task in

regular topologies.

IV. ANALYTICAL SOLUTION IN FLUID SETTING

In the following we first discuss the relative merits of

the equal and traffic-proportional slot sizing relaxations in a

simple, yet illustrative example of a two-hop sensor network

as shown in Fig. 3. We assume the rate-latency curves as fluid

approximations for the TDMA service in order to keep the

problem analytically tractable. Since we will find that the equal

slot sizing results in more energy-efficient schedules, we then

show how in the general sink tree case of fluid service curves

we can derive an optimal solution. Based on the insight from

this analytical solution for rate-latency service curves we will

then develop a numerical solution for the more involved case

of accurately modeling service curves resulting from the time-

slotted nature of the MAC.

A. Equal vs. Traffic-Proportional Slot Sizing

Since both equal and traffic-proportional slot sizing have

their intuitive rationale we compare them to each other in

a simple two-hop network as shown in Fig. 3. For both

relaxations we derive their analytical optimal solution for this

example scenario. Apart from the comparison of the two

we will also gain insights on how to solve the respective

optimization problems analytically in the general case.

1) Equal Slot Sizing: Under equal slot sizing and in the

two-hop network we obtain the following incarnation of the

optimal TDMA problem:

max. Z = f − s

s.t. s ≤ f
2

d2(f, s|r, b, C) =
s
f

C(f−s)+2b
s
f

C−r
+ f − s ≤ D

s
f
· C ≥ 2r

f ≥ 0



s = g(f |r, b, C, D) =

√

C2D2 + (6frC − 4fC2)D + 4f2C2 + (16bf − 4f2r)C + f2r2 + 2fC − CD + fr

4C
(6)
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Fig. 4. Graphical illustration of the optimization problem for ESS. The
feasible region is above the delay constraint and below the TDMA integrity
constraint. The rate constraint does not affect the feasible region in this
example.

Since the objective function is linear the solution to this

optimization problem must lie on the border of the feasible

region (it is guaranteed to exist since the feasible region is

closed). In Fig. 4 the feasible region as well as a contour line

of the objective function are drawn (for r = 1, b = 1, C = 10,

D = 1). It can be seen that the optimum must be taken on

at the lower border of the feasible region. In fact, we can

write the border constituted by the delay constraint as shown

in (6) because the delay constraint is a quadratic form in s

and f which can be solved for s with two real solutions of

which we take the larger one as it results in a more binding

constraint. A moment’s consideration exhibits that ∀f : ∂g
∂f

<

1 since otherwise an increase in frame size would result in a

larger increase of the slot size, which obviously cannot be the

case. On the other hand the partial derivative of the objective

function after f is 1, which means that the optimum must be

taken on at the corner point of the feasible region where delay

constraint and TDMA integrity constraint intersect. In other

words, the TDMA design problem under ESS can be reduced

to matching the delay with the TDMA integrity constraint.

2) Traffic-Proportional Slot Sizing: Under traffic-

proportional slot sizing and in the two-hop network, we

obtain the following incarnation of the optimal TDMA

problem:

max. Z = f − 2s

s.t. s ≤ f
3

d2(f, s) = b
s
f

C
+

2 s
f

C(f−2s)+b

2 s
f

C−r
+ f − s ≤ D

s
f
· C ≥ r

f ≥ 0

Again, as the objective function is linear the solution to this

problems must be taken on at the border of the feasible region.

In Fig. 5, the feasible region as well as some contour lines of

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.5  1  1.5  2  2.5  3  3.5

fr
a
m

e
 l
e
n
g
th

(f
)

slot length (s)

Delay constr.
TDMA integrity

Rate constr.
Objective

Fig. 5. Graphical illustration of the optimization problem for TPSS. The
feasible region is contained in the area above the TDMA constraint and below
delay and rate constraint.

TABLE I
ANALYTICAL RESULTS

TPSS ESS

C r b D f s Z f s Z

10 1 1 1 0.48 0.16 0.16 0.44 0.22 0.22

10 1 1 5 2.99 0.7 1.59 4 2 2

10 1 1 10 6 1.28 3.44 8.44 4.22 4.22

10 1 1 20 12.05 2.43 7.19 17.33 8.67 8.66

the objective function are displayed. Note that we exchanged

the axes, as for this case it was hard to find a closed form of

the delay constraint solved after s as it resulted in imaginary

solutions, whereas a resolution after f was possible again. That

means here we need to search for the optimum at the upper

border of the feasible region. Furthermore, here we cannot

argue that the optimum solution has to be on a cornerpoint of

the feasible region but may be taken on at f = g (s|r, b, C, D),
the border constituted by the delay constraint. Hence, first we

have to compute the maximum for g (s|r, b, C, D)−2s, which

is a straightforward one-dimensional optimization problem.

Then it must be checked if the solution is feasible, otherwise

rate or TDMA constraint have to be matched with the delay

constraint (see again Fig. 5 and imagine e.g. a tighter rate

constraint).

3) Numerical Comparison of ESS and TPSS: In order to

compare the ESS and TPSS relaxations Table I provides some

numerical examples since a general investigation is hard to

conduct.

Interestingly, despite the more intuitively more appealing

nature of the TPSS relaxation, the ESS relaxation achieves

better results with respect to maximizing the minimum sleep

period in the field. As it is also the easier one to solve we

further on focus on the ESS relaxation for solving the TDMA

design problem.



Fig. 6. Flow in a general sink tree

B. Analytical Solution for ESS in General Sink Trees

What remains to do in general sink trees compared to the

two-hop network in the previous setting is to show that the

delay constraint again takes on a quadratic form. This then

allows to easily express the slot size as a function of the frame

size and the same arguments as in the two hop case will lead

to the conclusion that the optimum solution is given at the

point where delay and TDMA integrity constraint are matched.

Hence let us discuss the delay constraint in a general sink tree

network:

We assume a general sink tree network with each node

offering a service curve β s
f

C,f−s and flows starting from

each node constrained by an arrival curve γr,b. Looking at

a particular flow we have a situation as depicted in Fig. 6.

Applying the PMOO analysis results in the following effective

service curve for the flow of interest:

βn
eff =

[

[βR,T − γr1,b1 ]
+
⊗ βR,T − γr2,b2

]+

⊗ . . .

= β
R−

Pn−1

i=1
ri,

T(nR−

Pn−1
i=1

Pi
j=1

rj)+
Pn−1

i=1
bi

R−

Pn−1
i=1

ri

with R = s
f
C and T = f − s and ri = air and bi = cib +

dirT . For the latter expressions the parameters ai, ci, di ∈ N

are depending on the topology. The delay constraint for flow

n (i.e the one originating at node n) can thus be expressed as

shown in (7).

While seemingly a complex expression this constitutes again

a quadratic form in f and s which can be recast to s where

we can ignore the smaller right hand side version as only

the larger one is physically meaningful [11]. Hence, we can

make the same observations as in the 2-hop network case and

again reason that the optimal solution must be taken on at the

cornerpoint of the feasible region where TDMA integrity and

delay constraint are matched.

V. NUMERICAL APPROACH IN THE DISCRETE SETTING

For the numerical approach, we extended the DISCO Net-

work Calculator [2] to handle affine curves as described in

[12], which allows us to model discrete service and arrival

curves and perform network analysis with such. We specifi-

cally model the service curves as shown in Fig. 2. The arrival

curve is modeled as a simple token bucket, mostly to reduce

computing time. It also resembles the behavior of a sensor that

is constantly doing measurements, like a low-bandwidth audio

stream or some other task that requires frequent sampling.

The TDMA design problem, based on the insight from the

previous section that TDMA integrity and delay constraint

have to be matched, ultimately boils down to a root-finding

problem: a black-box function d(f, s|r, b, C, D) returns the

TABLE II
COMPARISON OF NUMERICAL RESULTS IN FLUID AND DISCRETE SETTINGS

Parameters Fluid Discrete

Network C r b D f f

2 nodes 10 1 1 1 0.4444 0.7368
f

s
= 2 10 1 1 5 4.0 4.5263

Binary tree, 3 deep 5000 1 1 10 3.5356 3.5859
f

s
= 14 5000 1 1 50 17.7062 17.9315

Binary tree, 5 deep 5000 1 1 10 1.2811 1.4435
f

s
= 62 5000 1 1 50 6.7394 7.2209

Fig. 7. Illustration of the improvement

delay incurred for the parameters. Since we have seen that

the optimum is found at s = f
n

, this is a function with one

variable d(f |r, b, C, D). Since we want to maximize the frame

length f , we seek a solution f ′ for which d(f ′|.) = D,

which is a root for d(f |.) − D = 0. We further know that

∀0 < f < f ′ : d(f |.)−D < 0 and ∀f > f ′ : d(f |.)−D > 0.

Thus, we can use interval bisection to find the root. We are

specifically using an algorithm that approaches the root from

below, making sure that the calculated value is smaller than

f ′, ensuring it is inside the feasible region.

A. Numerical Examples

Using that procedure, we set up a number of sample net-

works, among them the one from the previous section and fully

populated binary trees1 of depth 3 and 5 and analyzed those in

the enhanced DISCO Network Calculator. The results for those

test runs can be found in Table II. The number f
s

given for

each scenario denotes the number of slots a frame is split into;

values for s are not explicitly given. Obviously, larger values

for f mean larger values for the objective function too. From

those numbers, it becomes apparent that a discrete analysis

has an advantage over an analysis in the fluid domain. The

magnitude of that advantage depends on the scenario.

Fig. 7 explains that improvement. As seen in section II,

the latency bound is computed as the maximum horizontal

distance between the arrival curve α and the service curve. In

the fluid setting, the service curve models the average medium

rate s
f
C available to a node, as shown by the curve β′; in the

discrete setting, a node periodically gets the full rate C, which

1The binary trees are slightly irregular as the root node doesn’t have an

input and acts as the sink. This explains the number of slots
f

s
shown in the

table, which for a tree depth of d is 2d+1
− 2.



h (γr,b, β
n) =

b
s
f
C − r

∑n−1
i=1 ai

+
(f − s)

(

n s
f
C − r

∑n−1
i=0

∑i

j=1 aj

)

+ b
∑n−1

i=1 ci + r(f − s)
∑n−1

i=1 di

s
f
C − r

∑n−1
i=1 ai

(7)
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Fig. 8. Frame lengths for varying medium speed

makes the discrete service curve β “jump” above β′. Because

of this, it holds that ∀α ∈ F : h(α, β) ≤ h(α, β′).
It is apparent from the numerical results that for larger

networks, the relative advantage of a discrete analysis becomes

smaller. The same holds for service curves with a lower step

height. This is because, due to the nature of the effective

end-to-end service curve, the step size remains the same, but

the latency grows with each hop and interfering flow. When

referring to Fig. 7, h grows faster than h′ − h.

It is also notable that in our test-cases, the optimal value for

f scales linearly with D, so for a given network with all other

parameters fixed, the frame length can be easily extrapolated

from a few computed values. The behavior with changing

C is potentially more interesting, since this also results in

a changed service curve. However, when looking at a sample

data set in Fig. 8, which was created by varying C from 1000
to 10000 in steps of 100 with r = 1, b = 1 and D = 10,

one notices that the gains in the possible frame lengths are

minimal and even diminishing for larger rates. Such small

gains in frame length are likely outweighed by the rising

energy requirements imposed by the hardware necessary to

achieve a faster transmission speed.

VI. CONCLUSIONS

Providing real-time guarantees in WSNs while still optimiz-

ing energy-efficiency has turned out to be a non-trivial problem

in TDMA-based WSNs. Nevertheless, based on the general

problem statement in the form of a non-linear mathematical

program, we were able to derive an optimal solution for a

relaxed version of the problem that achieves very good energy-

efficiency, i.e. long sleeping periods for the sensor nodes,

while still meeting the real-time constraints. We provided

an analytical solution for the TDMA design optimization

problem that handles the calculation for generic sink-tree

WSNs with fluid models. Based on this, we have created

a means to find numerical solutions for the TDMA design

problem with discrete TDMA service curves by extending an

existing framework, allowing to perform the computation for

arbitrary sink-tree WSNs.

Our results show that using a discrete traffic model leads to

less restrictive parameters, thus making longer inactivity peri-

ods possible and allowing sensor nodes to sleep, prolonging

their lifetime.

Future Work

During the implementation of affine curve algorithms in

the DISCO Network Calculator, a few potential shortcomings

have emerged. Most of all, the algorithms tend to have a high

time complexity due to a quick growth of period descriptions.

In this area, further work is necessary to find better repre-

sentations and algorithms for special classes of curves, like

the one presented in this paper. On the analytical side, it has

become apparent that even simple networks may give rise to

very hard optimization problems. Further simplifying those

problems within tolerable bounds may yield computationally

less expensive problems for some types of sensor networks.

It is also worthwile to look into scheduling algorithms, as an

integrated part of the problem or as an addition, to minimize

state transitions on the network nodes. As mentioned, we

make the assumption that changing between transmission,

reception and sleep states has the same cost in terms of energy,

so ordering the nodes optimally is less of a concern. This

order inside a TDMA frame can also be optimized to speed

up packet transfer through a network [13]. Integrating such

techniques into our framework could lead to improved bounds.
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APPENDIX A

NETWORK CALCULUS

Network calculus has been successfully applied as a frame-

work to derive deterministic guarantees on throughput, delay,

and to ensure zero loss in packet-switched networks. It can also

be interpreted as a system theory for deterministic queuing

systems, based on min-plus algebra. Other than traditional

queuing theory, it is concerned with worst-case rather than

average-case or equilibrium behavior. It thus deals with bound-

ing processes called arrival and service curves rather than

arrival and departure processes themselves.

Next some basic definitions and notations are provided and

some basic results from network calculus are summarized.

Definition 1: Class of functions F . The following opera-

tions are defined over the class of functions in:

F =
{

f : R
+ → R

+, ∀t ≥ s : f(t) ≥ f(s), f(0) = 0
}

The input function R(t) of an arrival process is the number

of bits that arrive in the interval [0, t]. In particular R(0) = 0,

and R is wide-sense increasing, i.e., R(t1) ≤ R(t2) for all

t1 ≤ t2.

Definition 2: The output function R∗(t) of a system S is

the number of bits that have left S in the interval [0, t]. In

particular R∗(0) = 0, and R is wide-sense increasing, i.e.,

R∗(t1) ≤ R∗(t2) for all t1 ≤ t2.

Definition 3: Min-Plus Convolution. Let f and g be wide-

sense increasing and f(0) = g(0) = 0. Then their convolution

under min-plus algebra is defined as

(f ⊗ g)(t) = inf0≤s≤t{f(t − s) + g(s)}

Definition 4: Min-Plus Deconvolution. Let f and g be

wide-sense increasing and f(0) = g(0) = 0. Then their

deconvolution under min-plus algebra is defined as

(f ⊘ g)(t) = sups≥0{f(t + s) − g(s)}

Definition 5: Arrival Curve. Let α be a wide-sense increas-

ing function such that α(t) = 0 for t < 0. α is an arrival curve

for an input function R iff R ≤ R ⊗ α. It is also said that R

is α-smooth or R is constrained by α.

Definition 6: Service Curve. Consider a system S and a

flow through S with R and R∗. S offers a service curve β to

the flow iff β is wide-sense increasing and R∗ ≥ R ⊗ β.

Theorem 1: Backlog Bound. Let a flow R(t), constrained

by an arrival curve α, traverse a system S that offers a service

curve β. The backlog x(t) for all t satisfies

x(t) ≤ sups≥0{α(s) − β(s)} = v(α, β) (8)

v(α, β) is also often called the vertical deviation between

α and β.

Theorem 2: Delay Bound. Assume a flow R(t), constrained

by arrival curve α, traverses a system S that offers a service

curve β. At any time t, the virtual delay d(t) satisfies
d(t) ≤ sups≥0{inf{τ ≥ 0 : α(s) ≤ β(s + τ)}}

= h(α, β)
(9)

v(α, β) is also often called the vertical deviation between

α and β.

As a system theory network calculus offers further results on

the concatenation of network nodes as well as the output when

traversing a single node. Especially the latter for which now

the min-plus deconvolution is used will be of high importance

in the sensor network setting as it potentially involves a so-

called burstiness increase when a node is traversed by a data

flow.

Theorem 3: Output Bound. Assume a flow R(t) con-

strained by arrival curve α traverses a system S that offers

a service curve β. Then the output function is constrained by

the following arrival curve

α∗ = α ⊘ β ≥ α (10)

Theorem 4: Concatenation of Nodes. Assume a flow R(t)
traverses systems S1 and S2 in sequence where S1 offers

service curve β1 and S2 offers β2. Then the resulting system

S, defined by the concatenation of the two systems offers the

following service curve to the flow:

β = β1 ⊗ β2 (11)

Theorem 5: Blind Multiplexing Nodal Service Curves.

Consider a node blindly multiplexing two flows 1 and 2.

Assume that the node guarantees a strict minimum service

curve β and a maximum service β̄ to the aggregate of the two

flows. Assume that flow 2 has α2 as an arrival curve. Then

β1 = [β − α2]
+

is a service curve for flow 1 if β1 ∈ F . β̄

remains the maximum service curve also for flow 1 alone.

Here, the [.]
+

operator is defined as [x]
+

= max {x, 0}.


