
Extending Network Calculus to Deal with Min-Plus
Service Curves in Multiple Flow Scenarios

Anja Hamscher
RPTU Kaiserslautern-Landau,Germany

hamscher@cs.uni-kl.de

Vlad-Cristian Constantin
RPTU Kaiserslautern-Landau,Germany

constantin@cs.uni-kl.de

Jens B. Schmitt
RPTU Kaiserslautern-Landau,Germany

jschmitt@cs.uni-kl.de

Abstract—Network Calculus (NC) is a versatile analytical
methodology to efficiently compute performance bounds in
networked real-time systems. The arrival and service curve
abstractions allow to model diverse and heterogeneous distributed
real-time systems. The operations to compute residual service
curves and to concatenate sequences of systems enable an efficient
and accurate calculation of per-flow timing guarantees. Yet, in
some scenarios involving multiple concurrent flows at a system,
the central notion of so-called min-plus service curves is too
weak to still be able to compute a meaningful residual service
curve. In these cases, one usually resorts to so-called strict service
curves that enable the computation of per-flow bounds. However,
strict service curves are restrictive: (1) there are service elements
for which only min-plus service curves can be provided but
not strict ones and (2) strict service curves generally have no
concatenation property, i.e., a sequence of two strict systems does
not yield a strict service curve. In this paper, we extend NC to
deal with systems only offering aggregate min-plus service curves
to multiple flows. The key to this extension is the exploitation
of minimal arrival curves, i.e., lower bounds on the arrival
process. Technically speaking, we provide basic performance
bounds (backlog and delay) for the case of negative service curves.
We also discuss their accuracy and show them to be tight in
many cases and approximately tight up to a constant in the
others. In order to illustrate their usefulness we also present
patterns of application of these new results for: (1) heterogeneous
systems involving computation and communication resources and
(2) finite buffers that are shared between multiple flows.

I. INTRODUCTION

Network Calculus (NC) has proven to be a useful analytical
methodology in the worst-case performance analysis of net-
worked systems. As a stateless method it is computationally
efficient and allows for extensive design space explorations.
As such, it has seen numerous usage in real-world systems
(e.g., TSN [1]–[3], AFDX [4]–[6], Network-on-Chip [7], [8]).

A very closely related framework, Real-Time Calculus
(RTC) [9], focuses on the modeling of distributed real-time
systems (e.g., [10], [11]). Indeed, it has been shown that RTC
and NC are largely equivalent [12]. Hence, while our results
are cast in the NC framework, they are readily applicable in
RTC as well. The RTC makes frequent usage of so-called
minimal arrival curves [13], i.e., a lower bound on the input to
a system, while in NC this has so far been somewhat neglected.
This is due to the fact that, in general, it may be necessary that
additional packets need to be generated in order to enforce a
minimal arrival curve [12]. However, especially in real-time
systems, this problem may not arise, as each task usually has

a minimal amount of traffic that is entering the system over a
certain period of time.

NC provides a rich set of results: it can deal with all kinds
of arrival processes and service elements. Its strength lies in
providing a (min-plus) system theory that enables a tight or at
least accurate end-to-end delay analysis. It was pioneered by
Cruz [14], [15] and Chang [16], a comprehensive and up-to-
date account of NC results is given in [12]. A central notion
in NC is the service curve, abstracting scheduling disciplines
at communication and computational resources. Several def-
initions exist, the two main ones being min-plus and strict
service curves. Strict service captures the system behavior
in a relatively tight manner, whereas the min-plus service is
a weaker approximation, but comes with nice mathematical
properties. Many different NC analysis methods, from Total
Flow Analysis [15] over PMOO [17], [18] to Deep Tandem
Matching Analysis [19], [20], have been developed over the
years to accommodate for different system topologies and
provide different trade-offs between accuracy of the bounds
and computational cost.

Yet, there is a blind spot of NC and thus also in RTC: when a
residual per-flow service curve is calculated from an aggregate
min-plus service curve offered to multiple flows, [12, p. 161]
states the following

”WARNING.– This only has a theoretical interest,
and we want to warn the reader against using it in
practice, as the result cannot be applied to compute
performance bounds.”

However, being able to calculate performance bounds using
min-plus service curves, rather than strict ones, would be very
interesting. This would allow to model systems that inherently
cannot provide a strict service curve, such as variable delay
computational components for which we just know a worst-
case execution time (e.g. from WCET analysis [21]) instead
of a service rate (as also discussed in [12, Section 6.3.1.2]).
Further, the concatenation of individual components also only
provides min-plus service curves, even if the individual com-
ponents provide strict service curves. The same holds for
hierarchical scheduling scenarios, e.g. [22]. Unfortunately,
in these cases, existing NC results are unable to calculate
performance bounds for the flow due to the residual service
curve offered to it becoming (partially) negative. The problem
of calculating delay bounds for negative service curves is

caused by certain arrival patterns for which the min-plus
service curve property allows the system to not provide any
service at all. We provide a more in-depth discussion on this
issue in Sect. II-C.

Reiterating on the notion of a minimal arrive curve, we find
that it can avoid the inherent issues with these arrival patterns
by having enough arrivals to ”drive the system forward”. Thus,
the key idea of this paper is to use minimal arrival curves
to enable a performance analysis using NC in multiple flow
scenarios when strict service curves cannot be assumed, or
more generally, when service curves can have negative values.

Let us briefly discuss an application scenario (further elabo-
rated in Sect. IV-A), specifically a networked real-time system
that includes both computational and communication compo-
nents, such as systems employing in-network processing [23].
Here, computational components only provide a deadline for
the completion of a task, i.e., they need to be modelled by min-
plus service curves, thus resulting in negative residual service
curves when shared by multiple tasks. Hence, for an analysis
based on the current state of the art, we cannot make use of the
concatenation theorem, but, instead, need to calculate an upper
delay bound for each separate node, subsequently adding up
all individual bounds. With our new results for negative service
curves, we can exploit the concatenation theorem to calculate
a potentially much more accurate end-to-end delay bound.

Overall, we make the following contributions in this paper:

• We extend NC such that the calculation of performance
bounds is also possible for partially negative min-plus
service curves in Sect. III. While this is completely novel
for the delay bound, the conventional backlog bound
remains largely the same with a slight adaptation.

• We discuss the accuracy of both delay and backlog
bounds. For the backlog bound, we show that it is always
tight by providing a non-trivial sample path argument in
Sect. III-B. For the delay bound, tightness depends on the
given parameters for arrival and service curves. However,
in all cases the delay bound is at least approximately tight
up to a constant (the maximum amount of time between
consecutive arrivals), i.e., we can provide lower and upper
bounds on the worst-case delay that are spaced apart by
that constant. This is shown in Sect. III-A.

• We present patterns of application demonstrating the
practical usefulness of the new results in Sect. IV. In
fact, in several cases the novel bounds outperform state-
of-the-art techniques, or even enable an analysis at all.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we introduce the necessary background on
network calculus and recapitulate existing results regarding
multiple flow scenarios. In addition, we discuss the problem of
aggregate min-plus service curves when it comes to calculating
the residual service curves in a multiple flow scenario. Based
on this, we present the key idea on how minimal arrival curves
can circumvent the issue at hand.

A. Some Mathematical Background

Let a, b ∈ R. We call ∧ the minimum operator with a ∧
b := min{a, b}, and ∨ the maximum operator with a ∨ b :=
max{a, b}. The function [a]

+ := max{0, a} yields the positive
part of the argument a.

We make use of certain properties of sets. Let P,Q ⊆ R be
two non-empty sets of real numbers. It holds that

− supP = inf P−,− inf P = supP−, (1)

where P− := {−x | x ∈ P} . Infimum and supremum exhibit
the following properties:

sup(P ∪Q) = (supP) ∨ (supQ),

inf(P ∪Q) = (inf P) ∧ (inf Q).
(2)

Moreover, if P ⊆ Q, it holds that

supP ≤ supQ, inf P ≥ inf Q. (3)

B. Network Calculus Background

We begin by defining several function classes [12, p. 22]
that are used throughout the paper. Let R+ be the set of non-
negative real numbers. F := {f : R+ → R ∪ {+∞}} is the
set of (min, plus) functions. Based on F , we let F↑ be the
set of non-decreasing functions f ∈ F , and F↑0 be the set of
functions in F↑ with f(0) = 0. Similarly, we introduce the
following sets: F+

<0 is the set of functions in F↑ with f(0) < 0

and F↑≤0 is the set of functions in F↑ with f(0) ≤ 0.

Definition 1. A function f ∈ F is right-continuous if ∀t ∈ R,

f(t+) := lim
s↘t

f(s) := lim
s→t,s>t

f(s)

always exists and is equal to f(t).

Definition 2 (Pseudo-inverse). Let f ∈ F↑ be a non-negative
and non-decreasing function. Then, the pseudo-inverse f−1 is
defined ∀x ≥ 0 as

f−1(x) = inf {t | f(t) ≥ x} . (4)

Definition 3 (Shift Function). The shift function is defined by

δT (t) :=

{
+∞, if t > T,

0, otherwise.
(5)

Definition 4 (Operators [12]). Let f, g ∈ F be two functions.
The (min, plus) convolution of f and g is defined as f⊗g(t) :=
inf0≤s≤t{f(t − s) + g(s)}, the (min, plus) deconvolution is
defined as f � g(t) := sups≥0{f(t + s) − g(s)}. The (max,
plus) convolution is defined as f⊗g(t) := sup0≤s≤t{f(t −
s) + g(s)}, and the (max, plus) deconvolution is defined as
f�g(t) := infs≥0{f(t+ s)− g(s)}.

We introduce several properties of these operators.
Remark 5 (Isotonicity of ⊗ [24]). Let f, g, f ′, g′ ∈ F . If f ≤ g
and f ′ ≤ g′, then f ⊗ f ′ ≤ g ⊗ g′.

Proposition 6 (Composition of � and ⊗). Let f, g, h ∈ F :

(f ⊗ g)� h ≤ f ⊗ (g � h). (6)

Next, we define various notions that are used to model a
network and derive its performance bounds. Let A,D ∈ F↑0
be the cumulative arrival and departure process of a flow
in the network, assuming causality A ≥ D. Furthermore,
we assume all systems to be lossless. We define the most
important performance measures for such a system:

Definition 7 (Backlog at Time t). The backlog of system S at
time t is the vertical distance between arrival process A and
departure process D at time t,

q(t) := A(t)−D(t). (7)

Definition 8 (Virtual Delay at Time t). The virtual delay of
data arriving at system S at time t is the time until this data
would be served, assuming FIFO order of service,

d(t) := inf {τ ≥ 0 : A(t) ≤ D(t+ τ)} . (8)

Arrival and service curves are essential elements of the
performance analysis using NC. We define arrival curves first.

Definition 9 (Maximal and Minimal Arrival Curve). Let
α, α ∈ F↑0 . We say that α is a maximal arrival curve for
arrival process A, and α is a minimal arrival curve for A, if
it holds for all 0 ≤ s ≤ t that

α(t− s) ≤ A(t)−A(s) ≤ α(t− s). (9)

A frequent example is the token-bucket arrival curve
γr,b(t) = b + rt for t > 0, γr,b(0) = 0. Note that
γr1,b1 +γr2,b2 = γr1+r2,b1+b2 . Next, we define service curves.

Definition 10 (Service Curve (SC)). Let a flow with arrival
process A and departure process D traverse a system S. The
system offers a min-plus service curve β to the flow if β ∈ F
and it holds for all t ≥ 0 that

D(t) ≥ A⊗ β (t) = inf
0≤s≤t

{A(t− s) + β(s)} . (10)

Often, β ∈ F↑0 is assumed, yet we let β ∈ F as in [12].

Definition 11 (Strict Service Curve (SSC)). A system offers a
strict service curve β ∈ F to a flow if, during any backlogged
period (s, t] (i.e. ∀t′ ∈ (s, t], q(t′) > 0), it holds that

D(t)−D(s) ≥ β(t− s). (11)

A frequently employed function for minimal arrival and ser-
vice curves is the rate-latency curve βR,T (t) := R · [t− T]+.

We define two characteristic distances between functions.

Definition 12. Let f, g ∈ F . The vertical deviation between
f and g is defined as

v(f, g) := sup
t≥0
{f(t)− g(t)} , (12)

and the horizontal deviation between f and g is defined as

h(f, g) := sup
t≥0
{inf {τ ≥ 0 | f(t) ≤ g(t+ τ)}} (13)

= inf

{
τ ≥ 0 | sup

t≥0
{f(t)− g(t+ τ)} ≤ 0

}
. (14)

There is a useful property of deviations [12, p. 115]:

Lemma 13 (Monotony of Deviations). For all f, f ′, g, g′ ∈
F↑, if f ≥ f ′ and g ≤ g′, then

v(f, g) ≥ v(f ′, g′) and h(f, g) ≥ h(f ′, g′) . (15)

Using these concepts, one can derive performance bounds
for the measures defined previously [12, p. 115], [24, p. 118].

Theorem 14 (Performance Bounds). Assume an arrival pro-
cess A, constrained by maximal arrival curve α ∈ F↑0 ,
traverses a system S. Let the system S offer a service curve
β ∈ F↑0 . The virtual delay d(t) satisfies for all t

d(t) ≤ h(α, β) . (16)

The backlog q(t) satisfies for all t

q(t) ≤ v(α, β) . (17)

Note that Thm. 14 requires β ∈ F↑0 .
We can also calculate a bound on the departure process D

of a system offering a min-plus service curve β ∈ F :

D ≤ α� β. (18)

A central result of NC is the concatenation theorem.

Theorem 15 (Concatenation Theorem). Let a flow with arrival
process A traverse systems S1 and S2, offering service curves
β1, β2 ∈ F , in sequence. Then, the concatenation of the two
systems, S1,2 = 〈S1, S2〉, offers an end-to-end service curve
β1,2 = β1 ⊗ β2 to the arrival process.

Definition 16 (Sub-additive and Super-additive Functions).
Let f ∈ F . Then f is sub-additive if for all s, t ≥ 0

f(t+ s) ≤ f(t) + f(s). (19)

On the other hand, f is super-additive if for all s, t ≥ 0

f(t+ s) ≥ f(t) + f(s). (20)

Definition 17 (Sub-additive Closure [24]). Let f ∈ F . The
sub-additive closure of f is defined by

f∗ := inf
n≥0

{
f (n)

}
, (21)

where f (n) is the n-fold self-convolution of f , i.e., f (0) = δ0,
f (1) = f and f (n) =

⊗n
i=0 f

(i) for n ≥ 2.

With respect to tightness, we remark that maximal arrival
curves that are not sub-additive and minimal arrival curves
that are not super-additive can be improved by replacing them
by their sub-additive and super-additive closures, respectively
(see [12], Propositions 5.2 and 5.3).

Moreover. we also note that both arrival curves may be
further improved by combining their respective information
[25] (see also [12, Theorem 5.1]).

Fig. 1: Two flows crossing a single system.

C. The Issue with Min-Plus SCs in Multiple Flow Scenarios

In the following, we give a motivational example on the
limits of current state-of-the-art modeling using network cal-
culus. Consider the basic system in Fig. 1. Two tasks f1 and
f2 with packet arrival processes A1 and A2 (an example shape
of A2 is illustrated in Fig. 2a), constrained by maximal token-
bucket arrival curves α1 and α2, respectively, are using the
component S offering a rate-latency service curve βR,T .

For now, we assume that S employs a static priority
scheduling between the tasks and offers a strict service curve,
where task f1 has a lower priority than task f2. We want to
calculate a delay bound for f1, our flow of interest (foi). To
that end, we calculate the residual service curve βSSC

res , which
represents the residual capacity S can offer f1 after it has
served f2, as [12, Theorem 7.1]

βSSC
res := [βR,T − α2]

+. (22)

Its shape is illustrated in Fig. 2a. We compute the horizontal
deviation h

(
α1, β

SSC
res

)
as delay bound for f1.

As mentioned above, assuming that βR,T is strict is re-
strictive, though, since not all resources can be modeled by
an SSC; for instance, if a component only offers a deadline
to a task instead of a service rate, or if the service curve
is a residual service curve itself (potentially resulting from
hierarchical scheduling). Furthermore, we cannot make use
of the concatenation property (Thm. 15) anymore, as the
convolution of SSCs is not an SSC [12, Section 9.3]. That
is unfortunate, since the worst-case end-to-end delay bound
using this property is generally smaller than the sum of delay
bounds at each component along the path a task takes. We
further note that even if a component can provide a strict
service curve, it may offer a min-plus service curve that is
larger than the strict one, e.g., for residual service curves under
arbitrary multiplexing [12, Table 7.1].

Coming back to the example, we encounter problems if we
are only given a min-plus service curve for S. We can still
calculate the residual service curve βSC

res [12, Theorem 7.3] as

βSC
res := βR,T − α2. (23)

While the service curve property (Def. 10) for βSC
res holds,

there is an interval over which it is negative and even decreas-
ing (see Fig. 2a), because we cannot apply the positive part as
in Eq. (22). Consequently, as mentioned in the WARNING in
[12, Section 7.2.3], the assumptions of Thm. 14 (i.e., β ∈ F↑0)
to compute performance bounds are not met anymore. As such,
with Thm. 14, a delay bound using βSC

res cannot be computed.
In fact, without further assumptions, there is no finite delay
bound in this system.

The underlying issue is illustrated in Fig. 2b and represents a
possible actual behavior of the system. Consider that f1 sends

Fig. 2: Illustration of residual service curves.

a single packet at some reference instant 0, while f2 sends a
packet at the same instant, and then continuously sends packets
in a fixed interval (shown as A2). We again assume that f2 has
a higher priority than f1. If S offers a min-plus service curve,
it is allowed to only have an output D := (A1 +A2)⊗ βR,T .
Simply speaking, the component is ”lazy” and does not even
have to offer the service to fully serve f2, and as a result, can
delay the packet of f1 indefinitely. This is further illustrated
by calculating the residual service curve βSC

res using Eq. (23),
and subsequently calculating the departure guarantee for f1 as
A1⊗ βSC

res . We see that this never becomes positive, i.e., there
is not enough residual service to output the packet of f1. In
contrast, if S conformed to a strict service curve βR,T , the
server must have an output with rate R as long as there are
packets in the buffer, and will service the packet of f1 in a
finite amount of time.

Understanding the root cause of the problem contains the
key to its mitigation: making sure that there are enough arrivals
to drive the departure guarantee of the system A1 ⊗ βSC

res into
the positive. We need to ensure that it is not an acceptable
behavior of task f1 to input only a finite amount of packets
into the system over an infinite time horizon. We achieve this
by assuming that f1 is also subject to a minimal arrival curve,
in addition to being subject to a maximal arrival curve. In the
context of real-time systems, the minimum amount of packets
sent over an interval can be used as a minimal arrival curve.
Using this insight, we generalize the performance bounds for
negative service curves in Sect. III.

The problem of ”lazy” service curves has been observed and
tackled before by so-called Adaptive Service Curves (ASC)
[24], [26]. The ASC addresses this behavior by providing an
intermediate service guarantee between a min-plus and strict
service curve. Yet, this cannot solve the issue at hand, since we
are confronted with the same situation of obtaining a negative
service curve from the calculation of the residual service curve.

III. EXTENSION OF NC PERFORMANCE BOUNDS FOR
NEGATIVE SERVICE CURVES

In this section, we extend the performance bounds presented
in Thm. 14 to the case where the service curve β /∈ F↑0 . As

discussed above, we need to assume the existence of a minimal
arrival curve in order to provide the generalization of the delay
bound in Thm. 14. However, as we will see, for the backlog
bound, there is no need to assume that the arrival process
conforms to a minimal arrival curve.

For the service curve under consideration we make the very
general starting assumption that β ∈ F≤0. Note that β(0) ≤ 0
means no reduction in generality [12, p. 107]. Next, as a
preprocessing step, we ”safely” replace the original service
curve β ∈ F by ξ = β↓ := β�0 [12, p. 107]. β↓ is the
largest non-decreasing function with β↓ ≤ β, which is why we
call it the lower non-decreasing closure. Then, by isotonicity
of the (min,plus) convolution (see Remark 5), ξ is also a
service curve. Note that this is different from the (upper) non-
decreasing closure as defined in [12, p. 45].

It is clear that ξ ∈ F↑≤0. In particular, ξ ∈ F↑0 if and only if
β ≥ 0, and ξ ∈ F↑<0 if and only if ∃s ≥ 0 with β(s) < 0.

While the lower non-decreasing closure is safe to use as
ξ ≤ β, it possibly runs the risk to be conservative. However,
in many practical cases we do not measure any quantity
of interest (horizontal or vertical deviation) on a decreasing
part of the original service curve β. Hence, the calculated
performance bounds would be identical for ξ and β (for an
illustration in case of the backlog, see also Fig. 6 below).

A. Generalizing the Delay Bound

We start with generalizing the delay bound and discuss its
tightness thereafter. Let us first state a useful technical lemma.

Lemma 18. Let f, g ∈ F be non-increasing. Then,

inf {τ ≥ 0 | f(τ) ≤ 0} ∨ inf {τ ≥ 0 | g(τ) ≤ 0}
= inf {τ ≥ 0 | (f ∨ g)(τ) ≤ 0} . (24)

Proof. Let τf := arg inf {τ ≥ 0 | f(τ) ≤ 0}. We define τg
similarly. Note that for f > 0, τf = ∞. For the moment, let
f be right-continuous at τf , then we have f(τ) ≤ 0,∀τ ≥ τf ,
since f is non-increasing. This clearly also holds for g. Then,

inf {τ ≥ 0 | f(τ) ≤ 0} ∨ inf {τ ≥ 0 | g(τ) ≤ 0}
= inf[τf ,+∞) ∨ inf[τg,+∞)

= inf[τf ∨ τg,+∞)

= inf[τf ,+∞) ∩ [τg,+∞)

= inf {τ ≥ 0 | f(τ) ≤ 0} ∩ {τ ≥ 0 | g(τ) ≤ 0}
= inf {τ ≥ 0 | f(τ) ≤ 0 AND g(τ) ≤ 0}
= inf {τ ≥ 0 | (f ∨ g)(τ) ≤ 0} .

Now, in case f is not right-continuous at τf , we have
that {τ ≥ 0 | f(τ) ≤ 0} = (τf ,+∞), and the proof proceeds
along the same lines.

Theorem 19 (Generalized Delay Bound). Let an arrival
process A traverse a system S. Further, let the arrivals be
constrained by maximal arrival curve α ∈ F↑0 and minimal
arrival curve α ∈ F↑0 , and let the system offer a service curve
ξ ∈ F↑≤0. The virtual delay d(t) satisfies for all t ≥ 0

d(t) ≤ z(α, ξ) ∨ h(α, ξ), (25)

with z(α, ξ) := inf {τ ≥ 0 | α⊗ ξ(τ) ≥ 0}.

Proof. First, consider the case when ξ ∈ F↑0 . This is the classi-
cal case from Thm. 14, for which we know that d(t) ≤ h(α, ξ).
It suffices to show that d(t) ≤ z(α, ξ)∨h(α, ξ). We have that

z(α, ξ) = inf {τ ≥ 0 | α⊗ ξ(τ) ≥ 0} = 0, (26)

since α(0) = ξ(0) = 0. Therefore,

d(t) ≤ z(α, ξ) ∨ h(α, ξ) = h(α, ξ).

Next, consider the case when ξ ∈ F↑<0. We derive

d(t)
(8)
= inf {τ ≥ 0 | D(t+ τ) ≥ A(t)}

(10),(3)
≤ inf {τ ≥ 0 | A⊗ ξ(t+ τ) ≥ A(t)}

= inf

{
τ ≥ 0 | inf

0≤s≤t+τ
{A(t+ τ − s) + ξ(s)} ≥ A(t)

}
= inf

{
τ ≥ 0 | A(t)− inf

0≤s≤t+τ
{A(t− (s− τ)) + ξ(s)}

≤ 0

}
(1)
= inf

{
τ ≥ 0 | sup

0≤s≤t+τ
{A(t)−A(t− (s− τ))− ξ(s)}

≤ 0

}
(2)
= inf

{
τ ≥ 0 | sup

0≤s≤τ
{A(t)−A(t− (s− τ))− ξ(s)}

∨ sup
τ<s≤t+τ

{A(t)−A(t− (s− τ))− ξ(s)} ≤ 0

}
(9),(3)
≤ inf

{
τ ≥ 0 | sup

0≤s≤τ
{−α(τ − s)− ξ(s)}

∨ sup
τ<s≤t+τ

{α(s− τ)− ξ(s)} ≤ 0

}
(1)
= inf

{
τ ≥ 0 | −α⊗ ξ(τ) ∨ sup

0<s′≤t
{α(s′)− ξ(s′ + τ)}

≤ 0

}
(27)

(24)
= inf {τ ≥ 0 | −α⊗ ξ(τ) ≤ 0}

∨ inf

{
τ ≥ 0 | sup

0<s′≤t
{α(s′)− ξ(s′ + τ)} ≤ 0

}
(3)
≤ inf {τ ≥ 0 | α⊗ ξ(τ) ≥ 0}
∨ sup
s′≥0
{inf {τ ≥ 0 | α(s′)− ξ(s′ + τ) ≤ 0}} (28)

=z(α, ξ) ∨ h(α, ξ).

In line 8 (Eq. (27)) we make the substitution s′ := s − τ .
In line 10 (Eq. (28)) we rewrite the supremum as in Eq. (14)
and take the supremum over a larger set. It is left to check
that the conditions of Lem. 18 in line 8 (Eq. (27)) apply:
• due to the closedness of the min-plus convolution for the

set of non-decreasing functions [12, p. 22], and both α

Fig. 3: Different cases of the generalized delay bound theorem.

and ξ being non-decreasing, we see that −α ⊗ ξ(τ) is
non-increasing in τ ;

• since ξ is non-decreasing, sup0<s≤t {α(s)− ξ(s+ τ)} is
clearly non-increasing in τ .

For an illustrative example, showing the different cases
governing the generalized delay bound, see Fig. 3. Here, we
assume a maximal token-bucket arrival curve α = γr,b, a
minimal rate-latency arrival curve α = βR,Tα and a simple
negative service ξ. We show two cases of maximal arrival
curves with different burst sizes such that both cases (h(α, ξ)
and z(α, ξ)) of the generalized delay bound are provoked. One
can observe that in case of α having a smaller burst, the delay
bound is given by z(α, ξ), whereas when we have a burstier
maximal arrival curve α′ then h(α′, ξ) dominates.

So, we have extended the delay bound analysis to functions
which are not in F↑0 . But is the delay bound proved above
tight? We show below that at least in an approximate sense it
is tight. Before that we provide a helpful lemma.

Lemma 20. Let f ∈ F↑0 , f(t) > 0,∀t > 0 and g ∈ F↑≤0.
Assume that f and g are right-continuous. Then

h(f, [g]+) = h(f, g). (29)

Proof. We have ∀ε > 0

h(f, [g]+)
(13)
= sup

t≥0

{
inf
{
τ ≥ 0 | f(t) ≤ [g(t+ τ)]+

}}
(2)
= sup

t>0

{
inf
{
τ ≥ 0 | f(t) ≤ [g(t+ τ)]+

}}
∨ inf{τ ≥ 0 | f(0) ≤ [g(τ)]+}

=sup
t>0

{
inf
{
τ ≥ 0 | f(t) ≤ [g(t+ τ)]+

}}
(30)

=sup
t>0
{inf {τ ≥ 0 | f(t) ≤ 0 ∨ g(t+ τ)}}

=sup
t>0
{inf {τ ≥ 0 | f(t) ≤ g(t+ τ)}} (31)

(2)
= sup

t>0
{inf {τ ≥ 0 | f(t) ≤ g(t+ τ)}}

∨ inf{τ ≥ 0 | f(ε) ≤ g(ε+ τ)}. (32)

In line 3 (Eq. (30)) we use that f(0) = 0, and hence the
infimum is 0. In the fifth step (Eq. (31)), we use the fact that
f(t) ≤ 0,∀t > 0 is false, via assumption. By idempotency,

we go from Eq. (31) to Eq. (32), which holds for all ε > 0.
Thus, we can conclude:

h(f, [g]+) = sup
t>0
{inf {τ ≥ 0 | f(t) ≤ g(t+ τ)}}

∨ inf{τ ≥ 0 | lim
t→0,t>0

f(t) ≤ lim
t→0,t>0

g(t+ τ)}

(2)
= sup

t≥0
{inf {τ ≥ 0 | f(t) ≤ g(t+ τ)}} (33)

(13)
= h(f, g).

In step (33), we use the right-continuity of f and g.

We move on to prove the (approximate) tightness of the
generalized delay bound. By approximate we mean that we
can at least provide lower and upper bounds on the worst-case
delay of the system that are only spaced apart by a constant.
Here, that constant is the latency of the minimal arrival curve,
i.e., the maximum amount of time between two packet arrivals.

Theorem 21 (Approximate Tightness of the Generalized
Delay Bound). Let an arrival process A traverse a system
S. Further, let the arrivals be constrained by a sub-additive
maximal arrival curve α ∈ F↑0 and a super-additive minimal
arrival curve α ∈ F↑0 , and assume these cannot be further
improved by combining their respective information (see [12,
Theorem 5.1]). Let the system offer a service curve ξ ∈ F↑≤0.
We also assume that α,α and ξ are right-continuous.
If h(α, ξ) ≥ z(α, ξ), we let AWC := α. and DWC :=
[α⊗ ξ]+, then the worst-case delay (WCD) is

WCD = h(AWC, DWC) = h(α, ξ), (34)

and thus the generalized delay bound is perfectly tight.
If h(α, ξ) < z(α, ξ), with Tα := sup {t ≥ 0 | α(t) = 0}, we
have upper and lower bounds on the worst-case delay (WCD):

z(α, ξ)− Tα ≤WCD ≤ z(α, ξ), (35)

and thus the generalized delay bound is approximately tight.

Proof. We start with the first case, where h(α, ξ) ≥ z(α, ξ),
with AWC(t) := α(t) and DWC := [α⊗ ξ]+, then

h(AWC, DWC) =h(α, [α⊗ ξ]+)
(29)
= h(α, α⊗ ξ) (36)

(15)
≥ h(α, ξ).

In the second step (Eq. (36)), we use the fact that α ∈ F↑0 and
then apply Lem. 20, based on the fact that, in our case, the
convolution remains right-continuous [27]. In the last step, we
use the monotony of deviations (Lem. 13). By using Thm. 19,
we have that h(AWC, DWC) = h(α, ξ) = h(α, ξ) ∨ z(α, ξ).

Let us now consider the second case, h(α, ξ) < z(α, ξ).
We set A := α�δTα and D :=

[(
α� δTα

)
⊗ ξ
]+

. We note
that the deconvolution by δTα is a left-shift by Tα (Prop. 3.2
in [12, p. 40]), i.e. α� δTα(t) = α(t+ Tα). Then,

h(A,D) =h
(
α� δTα ,

[(
α� δTα

)
⊗ ξ
]+)

Fig. 4: Vertical deviation in case of a negative service curve.

(29)
= h

(
α� δTα ,

(
α� δTα

)
⊗ ξ
)

(37)
(13)
= sup

t≥0

{
inf
{
τ ≥ 0 |

(
α� δTα

)
(t) ≤((

α� δTα
)
⊗ ξ
)
(t+ τ)

}}
(3)
≥ inf

{
τ ≥ 0 | 0 ≤

((
α� δTα

)
⊗ ξ
)
(τ)
}

(6)
≥ inf

{
τ ≥ 0 | 0 ≤

(
(α⊗ ξ)� δTα

)
(τ)
}

= inf
{
τ ≥ 0 | 0 ≤ (α⊗ ξ) (τ + Tα)

}
= inf

{
τ ′ − Tα ≥ 0 | 0 ≤ (α⊗ ξ) (τ ′)

}
(38)

= inf {τ ′ ≥ 0 | 0 ≤ (α⊗ ξ) (τ ′)} − Tα (39)
=z(α, ξ)− Tα.

In the second line (Eq. (37)), we apply Lem. 20, since
the convolution remains again right-continuous [27]. In the
seventh step (Eq. (38)), we perform a variable substitution
τ ′ := τ + Tα. In the second to last line (Eq. (39)), we use the
distributivity of the addition over the infimum.

As we have shown for an actual sample path that h(A,D) ≥
z(α, ξ)−Tα, we also have that WCD ≥ z(α, ξ)−Tα, and from
Thm. 19 we have that WCD ≤ z(α, ξ) = z(α, ξ) ∨ h(α, ξ).

Moreover, the created sample paths (A,D) and (AWC,DWC)
are conforming to their arrival and service curves. The system
is also causal, i.e. AWC ≥ DWC, since ξ(0) ≤ 0 and, thus,
for instance DWC =

[
AWC ⊗ ξ

]+ ≤ [AWC
]+

= AWC.

B. Backlog Bound

While it is explicitly mentioned in [12, p. 115] that service
curves have to be an element of F↑0 for finite delay bounds
to exist, the same assumption is implicitly made for the
backlog bound. However, as we show in the following, the
backlog bound from Thm. 14 can be applied to negative
service curves with a slight technical adaptation and, more
importantly, without the need to assume a minimal arrival
curve. The latter becomes clear when looking at Fig. 4. We
can see that the backlog remains finite even for this notorious
example of a maximal arrival curve and thus without the
departure guarantee ever becoming positive.

Theorem 22 (Backlog Bound). Let an arrival process A
traverse a system S. Further, let the arrivals be constrained

by maximal arrival curve α ∈ F↑0 , and let the system offer a
service curve ξ ∈ F↑≤0. The backlog q(t) satisfies for all t

q(t) ≤ v(α, ξ) ∧ sup
s≥0
{α(s)} . (40)

Proof. We have that

q(t)
(7)
=A(t)−D(t)

(10)
≤ A(t)−A⊗ ξ (t)
(1)
= sup

0≤s≤t
{A(t)−A(t− s)− ξ(s)}

(9)
≤ sup

0≤s≤t
{α(s)− ξ(s)}

(3)
≤ sup

t≥0
{α(s)− ξ(s)} = v(α, ξ) . (41)

In the last line (Eq. (41)), we took the supremum over a larger
set, so it can potentially increase. On the other hand, we also
have that

q(t)
(7)
=A(t)−D(t)

≤A(t) (42)
(9)
≤ α(t)
≤ sup
s≥0
{α(s)}

In the second line (Eq. (42)) we used the fact that D ≥ 0.
Therefore, the backlog is less than the minimum of the two
bounds.

So, the usual backlog bound from Thm. 14 is almost
recovered. Note, however, that the special case of a bounded
arrival curve needs to be treated explicitly in the case of
negative service curves, since the vertical deviation can be
conservative for the case that the arrival curve never reaches
v(α, ξ) (see also Fig. 5c).

This observation indicates that proving the tightness of the
backlog bound is more involved than in the standard case,
where we achieve the vertical deviation by simply setting A =
α (”greedy arrivals”) and D = α⊗β (”lazy server”) [12]. The
complication arises due to the fact that the vertical deviation
is taken on when ξ < 0, yet for the actual departures we have,
of course, D ≥ 0. Hence, we need to find a worst-case sample
path that actually provokes the backlog bound from Thm. 22.

Next, we prove the tightness of the backlog bound. Here,
we need to distinguish cases corresponding to the minimum
v(α, ξ) ∧ sups≥0 {α(s)} in Thm. 22. Further, for ease of
presentation in the proof, we make the assumption of the
maximal arrival curve α being continuous ∀t > 0.

Theorem 23 (Tightness of the Backlog Bound). Let an arrival
process A traverse a system S. Further, let the arrivals be
constrained by a sub-additive maximal arrival curve α ∈ F↑0 ,
α(t) being continuous ∀t > 0. The system offers a service

Fig. 5: Graphical illustration of different cases in Thm. 23.

curve ξ ∈ F↑≤0. Let tvd := arg sups≥0 {α(s)− ξ(s)}. We have
to treat the following cases:

Case I (”No plateau”): ∃t ≥ 0 : α(t) ≥ v(α, ξ).
That means we have an arrival curve which grows large

enough such that it is possible for the backlog to attain v(α, ξ).
Case I-A (”The standard case”, see Fig. 5a): ξ(tvd) ≥ 0.

Set AWC := α and DWC := [α⊗ ξ]+, then,

q(tvd) = v(α, ξ) ∧ sup
s≥0
{α(s)} . (43)

In this case, the negativity of ξ essentially plays no role
(as the vertical deviation is attained when ξ ≥ 0, see again
Fig. 5a) and the worst-case sample path is the conventional
one with greedy arrivals and lazy server.

Case I-B (”The interesting case”, see Fig. 5b): ξ(tvd) < 0.
Set tB := α−1(v(α, ξ)),

AWC(t) :=

{
α(tB)− α(tB − t), if t ≤ tB ,
α(tB), otherwise,

and DWC :=
[
AWC ⊗ ξ

]+
.

Then,
q(tB) = v(α, ξ) ∧ sup

s≥0
{α(s)} . (44)

This is the interesting case where v(α, ξ) is attained at
a later point in time on the worst-case sample path than
for arrival and service curve, because ξ is still negative at
time tvd. Here, the worst-case sample path is not just greedy
arrivals and lazy server.

Case II (”The plateau case”, see Fig. 5c):
α(t) < v(α, ξ) ,∀t ≥ 0 and ∃tp ≥ 0 such that ∀t ≥ tp :
α(t) = p := sups≥0 α(s). Set

AWC(t) :=

{
α(tp)− α(tp − t), if t ≤ tp,
α(tp), otherwise,

and DWC :=
[
AWC ⊗ ξ

]+
. Then,

q(tp) = v(α, ξ) ∧ sup
s≥0
{α(s)} . (45)

The special case of an arrival curve with a plateau needs
to be dealt with separately, since the backlog may never attain
v(α, ξ), when the plateau is not high enough.

Proof. Let us consider Case I-A, then:

q(tvd)
(7)
=AWC(tvd)−DWC(tvd)

=α(tvd)− [α⊗ ξ(tvd)]+

=α(tvd)− α⊗ ξ(tvd) (46)
≥α(tvd)− ξ(tvd) (47)
=v(α, ξ)

=v(α, ξ) ∧ sup
s≥0

α(s).

Due to ξ(tvd) ≥ 0, the third Eq. (46) holds. In the fourth
step (Eq. (47)) we used the fact that ξ = δ0 ⊗ ξ ≥ α ⊗ ξ,
since α(0) = 0 and the isotonicity of the convolution (see
Remark 5). Then, by the upper bound on the backlog from
Thm. 22 and sups≥0 α(s) ≥ v(α, ξ), the claim follows.

The arrival and service curve properties as well as causality
are obviously fulfilled since we are in the standard case.

For Case I-B, we first check that the sample path AWC is
conforming to the maximal arrival curve α.

To that end, it suffices to verify the maximal arrival curve
property in the interval [0, tB], since for t > tB , AWC(t) is
trivially conforming. Hence, ∀s, t ∈ [0, tB] with s ≤ t:

AWC(t)−AWC(s) =α(tB)− α(tB − t)−
(α(tB)− α(tB − s))

=α(tB − s)− α(tB − t)
(19)
≤ α(t− s).

Next, we show that

DWC(tB) = 0. (48)

For this, it suffices to show that AWC ⊗ ξ (tB) = 0:

AWC ⊗ ξ (tB) = inf
0≤s≤tB

{
AWC(tB − s) + ξ(s)

}
= inf

0≤s≤tB
{α(tB)− α(s) + ξ(s)}

(1)
= α(tB)− sup

0≤s≤tB
{α(s)− ξ(s)}

=v(α, ξ)− v(α, ξ) = 0.

In the last line, we used the definition of tB and the fact
that tvd ≤ tB in this case, since ξ(tvd) < 0 and thus
α(tvd) ≤ α(tvd) − ξ(tvd) = v(α, ξ) = α(tB), and α being
non-decreasing.

Then, we obtain

q(tB)
(7)
=AWC(tB)−DWC(tB)

(48)
= AWC(tB) = α(tB)

=α(α−1(v(α, ξ))

=v(α, ξ) (49)
=v(α, ξ) ∧ sup

s≥0
α(s),

where in the second to last step (Eq. (49)) the pseudo-
inverse (Def. 2) is exact, due to the continuity of α, and in
the last step we use the same argument as in the last step of
Case I-A. We note that due to Th. 22, ∀t ≥ 0:

q(t) ≤ v(α, ξ) ∧ sup
s≥0
{α(s)} = q(tB).

DWC is clearly conforming to the service curve ξ. Further,
we created a system which is causal, i.e. AWC ≥ DWC since
AWC ∈ F↑0 and thus AWC ≥

[
AWC ⊗ ξ

]+
(using again the

special case of the isotonicity of the convolution).
Lastly, we treat Case II: clearly p < v(α, ξ). Again, AWC

is conforming to the maximal arrival curve α (due to the sub-
additivity of α, see Case I-B).

We show that
DWC(tp) = 0, (50)

for which it is sufficient to show that AWC ⊗ ξ (tp) < 0:

AWC ⊗ ξ (tp) = inf
0≤s≤tp

{
AWC(tp − s) + ξ(s)

}
= inf

0≤s≤tp
{α(tp)− α(s) + ξ(s)}

(1)
= α(tp)− sup

0≤s≤tp
{α(s)− ξ(s)} . (51)

To continue with Eq. (51), we need to distinguish two cases:
(a) if tp ≥ tvd, we have

α(tp)− sup
0≤s≤tp

{α(s)− ξ(s)} = p− v(α, ξ) < 0;

(b) if tp < tvd, we have ξ(tp) ≤ ξ(tvd) (as ξ is non-
decreasing) and α(tp) = α(tvd) = p. This implies

p− ξ(tp) = α(tp)− ξ(tp)
≥ α(tvd)− ξ(tvd) = v(α, ξ) .

For p < v(α, ξ), we see ξ(tp) < 0, and thus ∀t ≤ tp, ξ(t) < 0
(as ξ is non-decreasing). We continue with Eq. (51):

α(tp)− sup
0≤s≤tp

{α(s)− ξ(s)} < α(tp)− sup
0≤s≤tp

{α(s)} = 0.

Thus, we obtain

q(tp)
(7)
=AWC(tp)−DWC(tp)

(50)
= AWC(tp)

=α(tp) = p = v(α, ξ) ∧ p
=v(α, ξ) ∧ sup

s≥0
{α(s)} ,

where in the second to last step we use p < v(α, ξ). We note
that due to Th. 22, ∀t ≥ 0:

q(t) ≤ v(α, ξ) ∧ sup
s≥0
{α(s)} = q(tp).

DWC is clearly conforming to the service curve ξ. Further,
we created a system which is causal, i.e. AWC ≥ DWC since
AWC ∈ F↑0 and thus AWC ≥

[
AWC ⊗ ξ

]+
(again by the

special case of the isotonicity of the convolution).

IV. PATTERNS OF APPLICATION

With a broader set of service curves that we can derive
performance bounds from, the question of potential appli-
cations arises. The extended NC results remove a previous
blind spot, where a system with multiple flows but no strict
service curve could not be adequately modeled and analyzed.
We are now also able to exploit the concatenation theorem
(see Thm. 15) while still obtaining performance bounds in a
system that would normally rely on a strict service curve. This
is desirable, as a node-by-node analysis often cannot capture
certain properties of the overall system [18], [24, Section
1.4.3], resulting in less accurate performance bounds.

In this section, we highlight two possible patterns of ap-
plications that have found previous research interest in the
real-time domain and where the novel results provide an
interesting insight into the system performance analysis. Due
to the assumptions typically made in these systems, a minimal
arrival curve usually exists. We show that the new analysis can
improve on results of state-of-the-art techniques and may even
enable a system analysis for certain areas of the parameter
space where existing techniques deliver no solution at all.

A. Computation-Communication Systems

When conducting a system performance analysis, a frequent
convenient assumption is that of a homogeneous network
where each node fulfills the same purpose. This allows us
to exploit the central NC theorems and efficiently calcu-
late performance bounds. However, if we cannot make this
assumption, the system analysis quickly deteriorates into a
node-by-node analysis not utilizing the concatenation property
(see Thm. 15). Of special interest are applications whose
components fulfill different tasks, e.g., loosely time-triggered
architectures [28] or in-network processing [23], mixing com-
putation and communication resources. In general, whenever
we encounter a system with both computational and communi-
cation components, our new analysis gives interesting insights
and potential improvements over conventional NC analyses.

We consider a pattern of a mixed Computation-
Communication (C/C) system consisting of n components and
n + 2 flows (see Fig. 6 on the next page), and proceed with
deriving formulas for calculating the end-to-end delay bound
across the n components. Let f1 be the flow of interest and

Fig. 6: General form of a C/C system with three flows crossing each C/C component.

f2 a cross-flow. Both flows traverse components 1, . . . , n as
an aggregate. Assume that there are n additional cross-flows
fi, i ∈ {3, n + 2}, passing through each C/C component
i−2, respectively. We assume static priority scheduling at each
component, and assign the highest priority to flows fi, i ∈
{3, n + 2}. Flow f2 is assigned the second highest priority,
and the foi the lowest. Each flow is constrained by a maximal
token-bucket arrival curve αi = γri,bi . The foi is additionally
restricted by a minimal arrival curve α1 = β

r1,Tα1

. We assume
that the delay at each computational element i ∈ {1, n}
in the system is lower bounded by mi and upper bounded
by Mi (modeled in Fig. 6 as service curves using the shift
function δ as in [12, Theorem 6.2]). Let Ti := Mi − mi

be the delay variance at each computational element i. Each
communication element i ∈ {1, n} provides a simple constant-
rate service curve βRi,0. Using the results proposed in Sect. III
for our new analysis (na), we first calculate the residual service
curve for flow f1 as

βna
res :=

(n⊗
i=1

(βRi,Ti − αi+2)

)
↓

− α2

↓

=
(
ξbi+2+ri+2

∑n
i=1 Ti,

∧n
i=1(Ri−ri+2),

∑n
i=1 Ti

− α2

)
↓

=ξb2+bi+2+(r2+ri+2)
∑n
i=1 Ti,

∧n
i=1(Ri−ri+2)−r2,

∑n
i=1 Ti

,

with
ξbN ,R,T (t) := βR,T (t)− bN .

An end-to-end delay bound for flow f1 using the new
analysis is then calculated as

dnae2e = max{h(α1, β
na
res), z(α1, β

na
res)}. (52)

For the conventional analysis (ca), we determine the input to
the C/C components by using the output bound (see Eq. (18)),
as the input to each component is the output of the respective
flow at the preceding component. For the communication
element of component i, the input flows are thus given as

α1
2 = α2 � δT1

, α1
1 = α1 � δT1

,

αi2 = αi−12 � [βRi−1,0 − (αi+1 � δTi−1)]
+ � δTi = γri2,bi2 ,

αi1 = αi−11 � [βRi−1,0 − ((αi−12 + αi+1)� δTi−1)]
+ � δTi ,

αoi+2 = γri+2,bi+2+ri+2·Ti = γroi+2,b
o
i+2
.

Next, the residual service curve for flow f1 employing a static
priority policy can be calculated for each component i as

βca,i
res :=

[
βRi,0 − αi2 − αoi+2

]+
= βRca,i

res ,T
ca,i
res

.

A delay bound for communication component i is obtained by

h(αi1, β
ca,i
res) =

b1 + r1
∑i
j=1 Tj + r1

∑i−1
j=1

bj2+b
o
j+2

Rca,j
res

Rca,i
res

+ T ca,i
res

A delay bound for the whole C/C component i is simply di =
Ti+h(α1, β

ca,i
res). An end-to-end delay bound for flow f1 using

the conventional analysis is then calculated as

dcae2e =

n∑
i=1

di. (53)

Equipped with these formulas, we proceed with a small case
study, evaluating the two analyses. To this end, we consider
the general system previously described (see Fig. 6). We
calculate the end-to-end delay bound for the foi f1 in this
system. To evaluate the effect of the minimal arrival curve,
we define a general parameter set and vary the minimal rate
r1 over a range of values. Let b1 = b2 = b3 = 1Mbit,
r1 = r2 = r3 = 5 Mbit

s , Ri = 20 Mbit
s =: R, and

Ti = 50ms, i ∈ {1, . . . , n}. We set Tα1
= b1

R and choose r1 ∈
{0.5, 1.25, 2.5, 3.75, 5} Mbit

s . The delay bound is calculated
for different numbers of C/C components n ∈ {2 . . . , 20}.
For each value of r1 and n, we calculate the end-to-end
delay bounds for the new analysis using Eq. (52), and for the
conventional analysis using Eq. (53). The results are shown
in Fig. 7. We can see that for r1 ∈ {3.75 Mbit

s , 5 Mbit
s },

we always achieve a much more accurate end-to-end delay
bound. For r1 ∈ {1.25 Mbit

s , 2.5 Mbit
s }, the new delay bound

is below the conventional delay bound from 5 resp. 3 C/C
components in the system onwards. For 0.5 Mbit

s , however,
the new end-to-end delay bound becomes more conservative

Fig. 7: Comparison of delay bounds for varying rates of r1.

Fig. 9: Illustration of finite buffer service curves, stability regions and delay bounds for the case study.

for small numbers of components. Expectedly, with our newly
proposed approach, we rely on the guarantees provided by a
minimal arrival curve. Consequently, the better the guarantees,
i.e., the higher r1, the better the calculated end-to-end delay
bound becomes. However, we can observe in Fig. 7 that even
for the smallest minimum arrival rate of 0.5 Mbit

s we have a
better scaling of the delay bound than for the conventional
analysis, which exhibits a super-linear scaling in the number
of components. This means that, for large enough systems,
the new approach will eventually outperform the conventional
analysis, even with low minimal arrival guarantees.

B. Finite Shared Buffers

Systems with finite buffers and their sizing are of high
relevance in various application areas, such as Network-on-
Chip [29]–[31]. Especially systems employing window-based
flow control in the event of the input exceeding the capacity of
a component have seen previous work [32]–[34]. All of these
have treated the case of a single flow (aggregate). However,
oftentimes multiple flows are sharing buffers in such systems,
potentially with different priorities, and it is necessary to size
buffers for each priority adequately.

In this application pattern, we consider two priority queues,
one for a high and the other for a low priority flow. First,
we derive the required buffer sizes for each flow and find that
conventional NC analyses cannot properly express and analyze
all feasible system designs. Next, we calculate delay bounds
for the low priority foi fL in this finite shared buffer system.

Before we can derive performance bounds in the system for
the low priority flow fL, we need to determine the residual
service curve for both the conventional and new analysis.

Fig. 8: System with a finite shared buffer.

Consider the system in Fig. 8. Let IB be the service curve
of the feedback control for arrivals exceeding the finite buffer
with capacity B at β2. We define IB(t) = +∞ for t > 0 and
IB(0) = B, as in [12], [34], [16, Section 2.3.7]. It holds that
D ⊗ IB(t) = D(t) + B, and, hence, A′ cannot be more than
B data units ahead of D (as A′ = A ∧ (D ⊗ IB)). We let
βi = βRi,0, i = 1, 2, R = R1∧R2, and T = T1+T2. For this
closed-loop feedback system, we have

A′ ≥ A ∧ (D ⊗ IB), D ≥ A′ ⊗ β1 ⊗ β2,

where A = AH+AL. Combining both inequalities, we obtain

D ≥ A⊗ (β1 ⊗ β2) ∧D ⊗ (IB ⊗ β1 ⊗ β2),

which can be turned into an open-loop system [16, Section
2.3.7]

D ≥ A⊗ (β1 ⊗ β2)⊗ (IB ⊗ β1 ⊗ β2)∗,

where (IB⊗β1⊗β2)∗ is the sub-additive closure (see Def. 17).
Hence, the system offers a service curve βFB = β1⊗β2⊗(IB⊗
β1 ⊗ β2)∗. In general, it holds that, for RT ≤ B, the service
curve offered to the flow is equal to βFB

R,T = β1 ⊗ β2. If,
however, the bandwidth-delay product RT is greater than the
available buffer B, it holds that the service curve is a staircase
function βFB

stair, since there is not enough buffer space available
to serve the flow without delaying it at the entrance to the
feedback loop. Both service curves are illustrated in Fig. 9a.

In the following, we assume that both flows are upper-
constrained by token buckets αH = γrH ,bH and αL = γrL,bL ,
respectively. We let Ti = 0 for β1 and β2. Consequently, it
always holds that βFB = βFB

R,T = βR,0 for the aggregate of
the flows. Thus, the buffer requirement for the high priority
queue is equal to

v(αH , β
FB) = v(γrH ,bH , βR,0) = bH ,

independent of which analysis we choose. This is not the case
for flow fL, though. For this, we first have to calculate the
residual service curves for each analysis. For the new analysis,
the residual service curve is calculated as

βna
res =

(
βFB − αH

)
↓ = (βR,0 − αH)↓ = ξbH ,R−rH ,0.

Note that βna
res is independent of the feedback control, i.e.,

its shape does not depend on the relation of RT and B.
In contrast, the residual service curve for the conventional
analysis does depend on this relation. We calculate it as

βca
res = [β1 ⊗ β2 − αH]

+ ⊗ ([β1 ⊗ β2 − αH]
+ ⊗ IB−v(αH ,β))

∗

= β
R−rH ,

bH
R−rH

⊗ (β
R−rH ,

bH
R−rH

⊗ IB−bH)∗.

Using each residual service curve, we determine the buffer
requirement for the low priority queue. For the new analysis,
we obtain

v(αL, β
na
res) = bH + bL. (54)

For the conventional analysis, we need to consider the relation
of the bandwidth-delay product for the residual feedback
system RresT res = (R − rH) bH

R−rH = bH , and the buffer
available in it for the low priority flow Bres = B − bH . If
RresT res ≤ Bres, i.e., bH ≤ B− bH , then the residual service
curve βca

res follows the shape of βFB
R,T (see Fig. 9a). In this

case, i.e., bH ≤ B
2 , we obtain that

v(αL, β
ca
res) = v(γrL,bL , βR−rH , bH

R−rH
) = bL + rL

bH
R− rH

.

For RresT res > Bres, i.e. bH > B
2 , we follow the shape of

βFB
stair, and discover an interesting restriction regarding the rate
rL of flow fL in order to not diverge from βca

res:

rL ≤
Bres

T res
=

(
B

bH
− 1

)
(R− rH). (55)

We give a brief intuition for Eq. (55). Bres

T res is the long-term
rate of βca

res. We can only calculate finite bounds if αL and
βca
res do not diverge. If rL > Bres

T res , i.e., the rate of αL is larger
than the long-term rate of βca

res, then the stability of the system
is not ensured and infinite performance bounds result.

As Bres = B − bH , we recognize that for bH ≥ B, we
cannot compute a backlog bound for fL using the conventional
residual service curve βca

res. Furthermore, as we see in Eq. (55),
the feasible rate rL decreases hyperbolically in bH over the
interval

(
B
2 , B

)
, further limiting the ability to calculate a

backlog bound. In Fig. 9b, the so-called stability region of the
conventional analysis is shown. Here, the stability region is
the parameter space for which we can compute finite backlog
bounds.

Clearly, the closer the buffer is to being full with traf-
fic of fH , the less fL can send in each window interval
[(i − 1)T res, iT res), i > 1, eventually diverging from βca

res.
As a result, we cannot determine the vertical deviation for
arbitrary rL that would be valid under the ”normal” stability
condition rL ≤ R−rH , but violate Eq. (55). In conclusion, the
conventional analysis is not able to provide a backlog bound
for arbitrary flows fH , fL. In contrast, the calculation of the
buffer requirement based on the new analysis in Eq. (54) is
only restricted by rL ≤ R − rH , thus resulting in a much
larger stability region (see again Fig. 9b).

We move on to the delay bound calculation. For flow fH ,
the delay bound calculation is the same for both analyses:

h(αH , β
FB) = h(γrH ,bH , βR,0) =

bH
R
.

For flow fL, this looks different, as we have different residual
service curves. For the new anaysis, assuming αL = βrL,TαL ,
we calculate

dnae2e = h(αL, ξbH ,R−rH ,0) ∨ z(αL, ξbH ,R−rH ,0)

=

(
bH + bL
R− rH

)
∨
(
TαL +

bH
rL

)
. (56)

For the conventional analysis, if we have a staircase residual
service curve, we calculate the number of stairs that are needed
in the delay bound calculation as i∗ := d bL

B−bH e, and obtain

dcae2e =

{
bH+bL
R−rH , RresT res ≤ Bres,
bL−(i∗−1)(B−bH)

R−rH + i∗T res, otherwise,
(57)

where Eq. (55) and bH < B have to hold (see also Fig. 9b
again), otherwise, h(αL, βca

res) =∞.
We proceed with a brief case study on the two approaches to

calculating delay bounds. Consider again the system in Fig. 8.
Let bL = 2Mbit, bH = 1Mbit, and rL = rH = 5 Mbit

s . For
αL, we let TαL = bL

R and rL ∈ {3.75 Mbit
s , 4.5 Mbit

s }. Each
system offers a service curve βi = βRi,0 with Ri = 12.5 Mbit

s .
We calculate the delay bound using these parameter values for
both approaches, varying the size of the finite buffer B. The
results are given in Fig. 9. For rL = 4.5 Mbit

s (Fig. 9c), we
see that the delay bound of the new analysis is always either
equal to or more accurate than the conventional analysis. For
rL = 3.75 Mbit

s (Fig. 9d), the delay bound calculation using
Eq. (56) falls into the second case of the maximum operator.
As a result, for bH ≤ B

2 , the conventional analysis achieves
slightly more accurate bounds. However, for bH > B

2 , this
changes, as the conventional analysis now calculates its delay
bound using the second case of Eq. (57), instead. Now, the
delay bound becomes much larger than for the new analysis.

V. CONCLUSION

In this paper, we extended the NC framework to deal with
scenarios in which an aggregate min-plus service curve is
given and we want to calculate residual service curves in
order to compute per-flow performance bounds. In this case,
partially negative service curves arise and existing NC results
on performance bounds cannot be applied. We remove this
blind spot with the aid of minimal arrival curves, which allow
us to calculate tight or at least approximately tight performance
bounds even for negative service curves.

This generalization of the performance bounds for negative
service curves leads to more flexibility in the modeling of
applications, though also requiring more assumptions towards
the system. However, this assumption, the minimal arrival
curve, is often given in real-time systems. Using the new NC
results, we have shown that we can improve the performance
analysis of interesting application patterns that occur in real-
time systems; we are even able to analyze systems for which
a conventional analysis fails to provide performance bounds.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for their insight-
ful and constructive feedback. Special thanks to our shepherd
for his guidance.

REFERENCES

[1] L. Maile, K.-S. Hielscher, and R. German, “Network calculus results for
TSN: An introduction,” in 2020 Information Communication Technolo-
gies Conference (ICTC). IEEE, 2020, pp. 131–140.

[2] J. A. R. De Azua and M. Boyer, “Complete modelling of AVB in
network calculus framework,” in Proceedings of the 22nd International
Conference on Real-Time Networks and Systems, 2014, pp. 55–64.

[3] L. Zhao, P. Pop, and S. S. Craciunas, “Worst-case latency analysis for
IEEE 802.1 Qbv time sensitive networks using network calculus,” IEEE
Access, vol. 6, pp. 41 803–41 815, 2018.

[4] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul, “Methods for
bounding end-to-end delays on an AFDX network,” in 18th Euromicro
Conference on Real-Time Systems (ECRTS’06). IEEE, 2006, pp. 10–19.

[5] F. Frances, C. Fraboul, and J. Grieu, “Using network calculus to optimize
the AFDX network,” in Conference ERTS’06, 2006.

[6] M. Boyer and C. Fraboul, “Tightening end to end delay upper bound
for AFDX network calculus with rate latency FIFO servers using
network calculus,” in 2008 IEEE International Workshop on Factory
Communication Systems. IEEE, 2008, pp. 11–20.

[7] M. Bakhouya, S. Suboh, J. Gaber, and T. El-Ghazawi, “Analytical mod-
eling and evaluation of on-chip interconnects using network calculus,”
in 2009 3rd ACM/IEEE International Symposium on Networks-on-Chip.
IEEE, 2009, pp. 74–79.

[8] M. Boyer, A. Graillat, B. D. De Dinechin, and J. Migge, “Bounding the
delays of the MPPA network-on-chip with network calculus: Models and
benchmarks,” Performance Evaluation, vol. 143, pp. 102–124, 2020.

[9] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in 2000 IEEE International Sym-
posium on Circuits and Systems (ISCAS), vol. 4. IEEE, 2000, pp.
101–104.

[10] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, “System archi-
tecture evaluation using modular performance analysis: a case study,”
International Journal on Software Tools for Technology Transfer, vol. 8,
pp. 649–667, 2006.

[11] E. Wandeler and L. Thiele, “Workload correlations in multi-processor
hard real-time systems,” Journal of Computer and System Sciences,
vol. 73, no. 2, pp. 207–224, 2007.

[12] A. Bouillard, M. Boyer, and E. Le Corronc, Deterministic Network
Calculus: From Theory to Practical Implementation. John Wiley &
Sons, 2018.

[13] S. Chakraborty, S. Künzli, L. Thiele, A. Herkersdorf, and P. Sagmeister,
“Performance evaluation of network processor architectures: Combining
simulation with analytical estimation,” Computer Networks, vol. 41,
no. 5, pp. 641–665, 2003.

[14] R. L. Cruz, “A calculus for network delay. I. Network elements in
isolation,” IEEE Transactions on Information Theory, vol. 37, no. 1,
pp. 114–131, 1991.

[15] ——, “A calculus for network delay. II. Network analysis,” IEEE
Transactions on Information Theory, vol. 37, no. 1, pp. 132–141, 1991.

[16] C.-S. Chang, Performance Guarantees in Communication Networks.
Springer Science & Business Media, 2000.

[17] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic, “Improving performance
bounds in feed-forward networks by paying multiplexing only once,” in
14th GI/ITG Conference-Measurement, Modelling and Evalutation of
Computer and Communication Systems. VDE, 2008, pp. 1–15.

[18] J. B. Schmitt, F. A. Zdarsky, and M. Fidler, “Delay bounds under
arbitrary multiplexing: When network calculus leaves you in the lurch...”
in IEEE INFOCOM 2008-The 27th Conference on Computer Commu-
nications. IEEE, 2008, pp. 1669–1677.

[19] F. Geyer and S. Bondorf, “DeepTMA: Predicting effective contention
models for network calculus using graph neural networks,” in IEEE IN-
FOCOM 2019-IEEE Conference on Computer Communications. IEEE,
2019, pp. 1009–1017.

[20] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of
deterministic network calculus: Design and evaluation of an accurate and
fast analysis,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 1, no. 1, pp. 1–34, 2017.

[21] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., “The
worst-case execution-time problem—overview of methods and survey
of tools,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 7, no. 3, pp. 1–53, 2008.

[22] I. Stoica, H. Zhang, and T. E. Ng, “A hierarchical fair service curve
algorithm for link-sharing, real-time, and priority services,” IEEE/ACM
Transactions on Networking, vol. 8, no. 2, pp. 185–199, 2000.

[23] J. B. Schmitt, F. A. Zdarsky, and L. Thiele, “A comprehensive worst-
case calculus for wireless sensor networks with in-network processing,”
in 28th IEEE International Real-Time Systems Symposium (RTSS 2007).
IEEE, 2007, pp. 193–202.

[24] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Springer, 2001.
[Online]. Available: https://leboudec.github.io/netcal/

[25] M. Moy and K. Altisen, “Arrival curves for real-time calculus: the
causality problem and its solutions,” in International Conference on
Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2010, pp. 358–372.

[26] R. Agrawal, R. Cruz, C. M. Okino, and R. Rajan, “A framework for
adaptive service guarantees,” in Proceedings of the Annual Allerton
Conference on Communication Control and Computing, vol. 36, 1998,
pp. 693–702.

[27] D. Guidolin-Pina and M. Boyer, “Looking for equivalences of the
services between left and right continuity in the Network Calculus
theory,” Sep. 2022, working paper or preprint. [Online]. Available:
https://hal.science/hal-03772867

[28] A. Benveniste, P. Caspi, P. L. Guernic, H. Marchand, J.-P. Talpin, and
S. Tripakis, “A protocol for loosely time-triggered architectures,” in
International Workshop on Embedded Software. Springer, 2002, pp.
252–265.

[29] M. Coenen, S. Murali, A. Rădulescu, K. Goossens, and G. De Micheli,
“A buffer-sizing algorithm for networks on chip using TDMA and credit-
based end-to-end flow control,” in Proceedings of the 4th International
Conference on Hardware/Software Codesign and System Synthesis,
2006, pp. 130–135.

[30] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg,
K. Tiensyrja, and A. Hemani, “A network on chip architecture and
design methodology,” in Proceedings IEEE Computer Society Annual
Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI
2002. IEEE, 2002, pp. 117–124.

[31] Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds
for best-effort communication in wormhole networks on chip,” in 2009
3rd ACM/IEEE International Symposium on Networks-on-Chip. IEEE,
2009, pp. 44–53.

[32] A. Bose, X. Jiang, B. Liu, and G. Li, “Analysis of manufacturing block-
ing systems with network calculus,” Performance Evaluation, vol. 63,
no. 12, pp. 1216–1234, 2006.

[33] A. Bouillard, L. T. Phan, and S. Chakraborty, “Lightweight modeling
of complex state dependencies in stream processing systems,” in 2009
15th IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE, 2009, pp. 195–204.

[34] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan, “Performance bounds
for flow control protocols,” IEEE/ACM Transactions on Networking,
vol. 7, no. 3, pp. 310–323, 1999.

