
KOM ScenGen
The Swiss Army Knife For Simulation And Emulation

Experiments

Oliver Heckmann, Krishna Pandit, Jens Schmitt, Ralf Steinmetz

KOM Multimedia Communications Lab
Department for Electrical Engineering and Information Technology

& Department for Computer Science
Darmstadt University of Technology

Merckstr. 25, 64283 Darmstadt, Germany

{heckmann,pandit,schmitt,steinmetz}@kom.tu-darmstadt.de

Abstract Multimedia networking involves complex collections of protocols,
in particular protocols that support the inherent quality of service (QoS)
requirements of multimedia applications. Most often analytical treatment falls
short in being able to assess the overall system behaviour or performance.
However, also simulation and testbed experiments alone often leave uneasiness
with the results they deliver. The combination of simulation and testbed
experiments promises to avoid most disadvantages that their isolated usage
bears.
In this paper, we discuss the KOM Scenario Generator, a tool that supports the
integration of simulation and testbed experiments for system-wide assessment of
design alternatives in particular in the complex environment of distributed
multimedia systems.
This paper also systematically analyses the different steps in creating a research
scenario. Even if one is not interested in combining simulations and testbed
experiments our scenario generator is a helpful tool because it systematically
integrates and supports all the different steps in creating a complex network
research scenario from topology creation over traffic generation to evaluation.

1 Introduction
In this paper we introduce the so-called KOM scenario generator (KOM ScenGen) that we
developed in the context of the LETSQoS project (www.letsqos.de). Within the LETSQoS
project we compare different QoS technologies (Intserv/RSVP [1], Diffserv in different fla-
vors [2], ABE [3], Price Controlled Best Effort [4], Load Control Gateways [5], etc.) using
simulations and testbed experiments. We conduct different experiments. For each QoS
technology we estimate the overprovisioning factor that a best-effort network must be
designed with to match the QoS technology. Further, we measure the utility for a wide
range of different application mixes when different QoS technologies are switched on.
Finally we estimate scaling behavior by repeating the utility measurement experiments
with scarce router resources. To support the wide range of technologies and experiments
we developed a scenario generator that supports the manual and automatic creation of
experimentation scenarios for network research from the topology creation over traffic gen-
eration to evaluation. We believe our approach is very general and that our scenario gener-
ator can be helpful for other researchers and in other areas of multimedia network research
as well.
We next continue motivating our approach. An overview of the scenario generator, defini-
tions of the terminology used and related work are discussed in the third section. In the
fourth section we discuss the different steps of scenario generation and how they are sup-
ported by the scenario generator in more detail. We conclude with a summary and a pointer

to a video that demonstrates the KOM ScenGen at work.

2 Motivation
Multimedia network research can be conducted using analytical methods, simulation, test-
bed and real-world experiments. All these methods have their advantages and disadvan-
tages.
Simulations for example are relatively cheap to carry out. However, realistic simulations
depend on the correct and realistic setting of simulation parameters and models. For ana-
lyzing a protocol the simulator cannot be used with the original protocol without reimple-
menting the protocol. The costs of certain operations (e.g. a routing lookup) are hard to
estimate by simulation. This is even harder if the code basis for the simulation is different
from the code of a real-world router - something which is almost always the case. Because
of this if we want to analyse the performance of e.g., RSVP, this can hardly be done by
solely a simulation [6].
For simulation models a certain level of abstraction is necessary, often it is hard to judge
how the realism of the results suffers by these abstractions. Though researchers have to rely
on the correctness of the simulation models and protocol implementations (as for example
the TCP implementation), verification of those models is very hard [7], especially as they
typically have a completely different code basis than real-world implementations.
The realistic setting of parameters is easier in testbed experiments. Also, the costs of opera-
tions can be measured far better in testbed experiments - however one has to admit that
these measurements are still only valid for the hardware and software platform used in the
testbed. Other types of routers may behave differently.
While a testbed is still not the real world at least it is possible to use real-world applications
and protocols (e.g. TCP, current web browsers, FTP server and clients) for the testbed
experiments which increases the realism and decreases the chances of unrealistic and mis-
leading results because of wrong models, bad implementations or neglected details.
So testbed experiments do not share the disadvantages of simulations but they have their
own set of disadvantages. Testbeds are generally relatively expensive. Also testbeds are
typically difficult to configure and reconfigure. And they are limited in scale. Experiments
with hundreds of nodes can usually not be performed in a testbed. The realism of results
based on experiments with very few nodes, which are typical for testbed experiments, is
hard to judge.
Based on these observations it makes sense to combine simulations and testbed experi-
ments, this is also recommended in literature [8, 9, 10] but not often found in actual
research work. The main reason is that most tools are specialized for simulation or for emu-
lation and that thus doing simulation and emulation leads to nearly twice the effort than
using either simulation or emulation. This was our motivation for KOM ScenGen which
supports in an integrated fashion simulation and emulation experiments at the same time.
With KOM ScenGen testbed experiments can be conducted to establish realistic simulation
parameters and to create reference data with which the later simulation results can be com-
pared. The costs of operations can be estimated in the testbed results. Only small testbed
experiments have to be conducted, which decreases the costs of the testbeds as larger
experiments with larger topologies, higher bandwidth or more flows can be conducted
using simulation.
Even if one is not interested in combining simulations and testbed experiments KOM Scen-
Gen and this paper are useful. Scientists should be aware of the different steps undertaken
when doing a simulation or testbed experiment. In this paper we analyse and discuss the
different steps in creating and testing a network research scenario from topology creation
over traffic generation to evaluation. KOM ScenGen supports all the steps without mixing
them up.

3 Overview
In this section, we give an overview over the terminology we use in this paper and over the
different steps in scenario generation. Those steps will be discussed in the following sec-

tion in detail. We also discuss related work.
3.1 Terminology
Traffic The term “traffic” is used to describe the amount of bits that are sent over one
link or are output by a node. Traffic can be described in several ways with an increasing
level of abstraction (see section 4.3.1). With the term traffic we always mean Internet (IP)
traffic.
Network simulation In network simulation computer models of real network compo-
nents are used to estimate the behavior of the network to some input with regard to typical
networking parameters like loss, delay, throughput. Network simulators like NS2 [11, 8],
JavaSim [12], OpNet [13] etc. are used for network simulation. We use NS2 for our simula-
tions.
(Real-world/Testbed) experiment In a real-world or a testbed experiment the behavior
of a network to some input is estimated based on measurements made in a real physically
existing computer network, either a testbed, research network or production network.
(Simulation/Experiment) Scenario By the term “scenario” we describe the simulation
and/or experiment setup, execution and evaluation. The scenario includes all parameters
needed for the simulation and the experiments, e.g. topology, link and node properties, traf-
fic mix, simulation/experiment parameters, measurement points, etc.
Traffic simulator A traffic simulator delivers traffic input for a network simulator (e.g.
for NS2).
Traffic emulator A traffic emulator emulates traffic by sending real packets using a net-
work interface like an ethernet card. Both the traffic simulator and emulator contain a mod-
ule that generates the data structures that resemble traffic, we call this the traffic generator.
Traffic generator The traffic gener-
ator artificially generates traffic. Traf-
fic is derived from so called traffic
models. The generated traffic can be
used for simulation and/or emulation.
Traffic model A traffic model
describes in a general way how traffic
of one kind can be generated. Different
kinds of traffic models are used to
describe different types of traffic like:
Voice over IP traffic, Web traffic, Tel-
net traffic, etc. Traffic models are discussed in section 4.3.1.
Network load With “network load” we characterize the traffic for each node of a given
network topology.
Load generator A load generator generates network load that is traffic for all nodes of a
given topology.
3.2 Generating Scenarios
The different steps in generating a scenario are depicted in figure 2. All of them are sup-
ported by the KOM scenario generator.
In the first step, a topology is created manually or automatically. Then the properties of the
links and nodes (e.g. bandwidth, queuing algorithm) are set manually or automatically.
Also the traffic parameters for the scenario have to be set. Next the network load which is
the traffic of all nodes is created. This step can be followed by a plausibility check where
several things critical for the scenario can be checked for plausibility. An example would
be estimating the bandwidth necessary for the generated traffic and comparing it with the
available bandwidth. If much more bandwidth is needed than offered, the operator might
want to change the scenario parameters. After the plausibility check the scenario is
exported to NS2 for simulation and/or to a collection of scripts and configuration files that
are used to setup the scenario in a testbed. The next step can be to manually adapt the NS2
files or the scripts and configuration files for specific needs. After that the simulation or
experiment can be conducted and in the last step be evaluated.

T Generator T Simulator NS 2

T Generator T Emulator Ethernet

Figure 1. Traffic Generators as part of
SimulatorsandEmulators

3.3 Related Work
For scenario generation many people use small self-written and usually non-published
scripts. We believe that being aware of the different steps discussed above helps writing
better scripts. I also helps developing tools for one step which can be more easily reused
and combined with other tools. The tools which KOM ScenGen consists all have clear
interfaces and are all focused on one specific task and can thus be reused easily in different
contexts. Using the concept of KOM ScenGen eases the writing of scenario-creating scripts
and understanding / reusing third-party scenario-creating scripts.
For the NS2 simulator [11] a simple scenario generator exists [14] plus modifications for
QoS scenarios [15]. The NS2 scenario generator lacks many features we deem important
like support for testbed experiments and for other topology generators apart from GT-ITM.
Also it only supports the built-in (low-level) traffic models of NS2 while we aim for a dif-
ferent (more application oriented) approach to traffic generation (see section 4.3).
For mobility scenarios some scenario generators for NS2 exist [16], [17]. They however
focus on mobility models and are for NS2 only while we aim for an integrated approach for
non-mobility scenarios. Also they do not offer support for emulation.
With respect to combining network emulation and simulation there are also efforts in NS2
[56], which however rather aim at combined experiments where some part of the scenario
is simulated and other parts are emulated whereas we focus on parallel, yet mutually sup-
porting simulation and testbed experiments.
In the context of adhoc routing protocols [10] allows to share the codebase between simula-
tion (NS2) and emulation (Linux/FreeBSD with the Click modular router [18]).
The network emulation testbed (NET) project [19] defines a detailed network scenario
description language based on XML for link-based emulation. We use a similar but much
less complicated description format in our scenario generator and concentrate on support
for all steps of scenario generation. Also we concentrate on smaller lab testbeds while NET
is focused on the 64 machine testbed of the university of Stuttgart. Opposite to us they offer
no simulation support.
In our experiments for the Market Managed Multiservice Internet project (M3I,
www.m3i.org) we successfully integrated simulation and emulation experiments [5].
There is a lot of work that is related to the individual steps of scenario generation. These
works will be presented when the relevant step is discussed in the next section.

4 Scenario Generation
The KOM Scenario Generator is a collection of integrated tools and file format specifica-

Topology Generation Link & Node Properties Load Generation

Experiment (Testbed)

Evaluation

Touchup

Figure 2. Scenario Generation

Simulation (NS2) Touchup

Export

Plausibility Check

tions and supports all steps for generating networking scenarios for simulation and testbed
experiments. We now discuss the individual steps and how they are supported by the KOM
Scenario Generator.

4.1 Topology Creation
When setting up a scenario, first the underlying network topology has to be created. We
have started to collect a library of real-world router and POP level topologies which is pub-
licly available at www.kom.e-technik.tu-darmstadt.de/~heckmann/topologies/. Instead of
using a topology from the library the topology can be created manually with the scenario
generator GUI or imported from one of the following topology generators:

l TIERS Random Network Topology Generator [20]
l BRITE - Boston University Representative Internet Toplogy Generator [21]
l GT-ITM - Georgia Tech Internetwork Topology Models [22]
l Inet - AS Level Network Topology Generator [23].

The converter written to import topologies from these generators can be used indepen-
dently from the scenario generator, it can also read NLANR topology files. It is written in
Java and available at http://www.kom.e-technik.tu-darmstadt.de/~heckmann/topologies/.
We have also investigated how to choose the parameters of the topology generators in order
to obtain realistic topologies. The results show that the topology generators above can
indeed produce realistic topologies with respect to outdegree distribution, the hop-plot and
some other metrics, for details see [24].

4.2 Setting the Node & Link Properties
After the basic topol-
ogy is created the prop-
erties of the nodes and
links have to be speci-
fied. Example proper-
ties are:

l Bandwidth
l Propagation

Delay
l Queue Length
l Queuing Algo-

rithm, RED
parameters, ...

Depending on the kind
of scenario other prop-
erties are important,
too. For a QoS scenario
DiffServ or IntServ/
RSVP parameters have
to be set for the node.
KOM ScenGen sup-
ports the automatic and
manual setting of these parameters. For the manual setting a comfortable GUI is available
(see figure 3). Algorithms to automatically identify and modify edge and core nodes and
links are included in a library and allow an automatization of this step with a script. Instead
of specifying all node/link parameters for every node and link, also link and node types
which all share the same parameters can be used.
Apart from setting the node and link properties, also the parameters for generating traffic
output by the nodes can be set in this step (application mix layer, see section 4.3.1).
We specify an extended topology file format in [25] that is used by the scenario generator
to store the topology, node & link properties and the traffic generation parameters.

Figure 3. Screenshot

4.3 Load Generation
The general structure of the load genera-
tor is depicted in figure 4. Traffic models
are used to generate traffic in edge nodes,
the partner nodes for the traffic are
selected depending on the sink model.
Each traffic model models traffic of one
kind (e.g. IP Telephony traffic, single
WWW traffic or aggregated WWW traf-
fic). A viewer to visualize the traffic and a
test tool to test the traffic for self-similar-
ity are useful in this step. We imple-
mented a tool to estimate the Hurst
parameter of the packet level traffic with a
variance time plot. For a more detailed
analysis SELFIS [26, 27] can be used as
an independent package. We plan to better
integrate SELFIS in a later version.
The generated network load can be
exported to a simulator or testbed traffic
emulator.
We now first discuss what traffic is and
how it can be modeled. This allows us a
very systematic and clear approach to
traffic generation. We then explain our
traffic generation module, the sink models
and compare our approach with related work.
4.3.1 Modeling Traffic. Traffic can be modeled on different
layers with different degrees of abstraction. For ATM traffic we
can distinguish between cell, burst and flow layer [28]. For IP
traffic we think that the 5 layers of figure 5 are appropriate.
On the lowest layer IP traffic can be modeled as a series of
packets. Each packet is specified by a generation time and size
plus source and target node and port plus protocol number.
Traffic can also be modeled on higher more abstract layers. If
traffic is aggregated in time we call this the intensity layer
which specifies traffic as the number of bytes transmitted
between a source and destination(s) or on one link in a single
period of specified length. The information about the individual
packet sizes is lost this way. It is non-trivial to split up an inten-
sity into individual packets again. Traffic matrices are an exam-
ple that typically use traffic intensities. Also some trace files
specify traffic intensities and some self-similar traffic models
specify how to generate traffic intensities.
If traffic is not aggregated in time but instead by context we
speak of the flow layer. Each flow generates a series of packets
with a flow-type specific algorithm. A CBR flow transmits
packets of fixed size in constant intervals. A greedy TCP Reno flow transmits packets as
fast as possible using the TCP Reno flow and congestion control algorithm. The advantage
of flow layer traffic is that it is obviously very powerful and memory efficient as a lot of
packets can be described by a few flow parameters. However each flow type (CBR, greedy
TCP, ...) has a very different set of parameters and the flow algorithm has to be imple-
mented both in the simulator and traffic emulator.
All flows have a start time and a node/port pair. The greedy TCP source has the following
additional parameters:

l Packet size

Traffic

Simulator Emulator

Measurement

Traffic

Results

Model

Test

Viewer

n

Topology

n

Network
Load

Figure 4. Load Generator Structure

Sink
Model

Flow Intensity

Packet

Session

Application
Layer

Layer

LayerLayer

Layer

Figure 5. Traffic Layers

l Amount of data to be transferred
l TCP algorithm parameters

A CBR flow for example is characterized additionally by the following parameters:
l End time
l Packet size
l Interval between two packets

The next highest layer is the session layer. A session consists of a number of closely
related flows or intensities. A simple IP telephony session for example might contain a
number of CBR flows following each other with switching directions. A session can be
seen as the runtime instance of one application.
The highest layer - the application mix layer - models how many sessions of which traffic
model respective application are generated in one edge node (e.g. 40 IP Telephony, 20
Peer-to-Peer and 100 WWW sessions). The application mix is specified in the node & link
property step and used as input for the load generator.
4.3.2 Traffic Generation. The modular and structured approach of our load generator
allows it to easily develop and plug in traffic models. A traffic model instance generates
sessions of one type (e.g. aggregated WWW traffic) consisting of flows, intensities or
directly packets.
Currently the load generator contains the following traffic models:

l Single WWW model (modeling a single WWW user)
l Aggregated WWW model (modeling the aggregate of many WWW user’s traffic)

based on the traffic generator by Kramer [29].
l A simple IP telephony model
l A Peer-to-Peer model
l A model that allows trace-files to be played back. With this model we can for exam-

ple generate video conference or stored video streaming sessions.
It is work in progress to add further traffic models. Also, we do not want to reinvent the
wheel and as there is much work about traffic modeling and many good tools and algo-
rithms exist we aim for as many reuse as possible. Our architecture is open and allows to
plug-in 3rd party tools and algorithms.
4.3.3 Sink Models. Generating packets is not enough. Complex scenarios involve a larger
number of nodes that can act as source and sink for traffic flows. As every session is gener-
ated in one node, this node acts as the source node for the session1. For most sessions a sec-
ond node participates in the session, sometimes more than one (e.g. multicast sessions). An
algorithm is necessary to determine the partner node(s). We call this algorithm the sink
model and currently investigate the influence of different sink models.
Example: Our LETSQoS scenarios are from the point of view of a single ISP. In these sce-
narios we mark nodes as home user access nodes (H), company access nodes (B), intercon-
nection nodes (I) and core nodes (C). Core nodes are not the source and sink of traffic.
Peer-to-Peer traffic uses a sink model that chooses sink nodes from the set of H and I nodes
modeling the fact that Peer-to-Peer traffic is mostly exchanged between private end users.
The WWW model on the other hand uses a sink model that connects B or I nodes with H or
B or I nodes modeling the fact that most WWW servers are connected to company access
nodes and not home user access nodes.
We are currently investigating whether this distinction creates more realistic results than a
purely random selection of partner nodes.
Support for multicast can be added easily also for existing traffic models with the appropri-
ate multicast sink model. This is a strength that comes from the explicit separation between
traffic and sink models.
4.3.4 Related Work. As mentioned before a lot of traffic generators, simulators, emulators

1 This does not mean it is also the source node of all flows belonging to that session, but the exact decision
about the direction of the flows belonging to a single session is given by the traffic model.

and traffic models exist. However, we are not aware of any tool that generates traffic for
both testbed experiments and simulations simultaneously as our tool does. We are also con-
vinced that our approach of distinguishing between the different abstractions layers of traf-
fic and the separation of traffic and sink models is a strong methodological improvement.
Using our terminology the combination of a traffic generator and emulator for testbed
experiments are very common. Commercial solutions like Chariot [30] and Ixia [31]
include a number of traffic models. The Java based traffic emulator GenSyn [32] inspired
our work. GenSyn models individual user’s behavior with state machines for different
applications (Web, FTP, MPEG, VoIP). Opposite to our approach, traffic is generated
online and the feedback of the network can influence the traffic generation (if the through-
put is too low a HTTP session might end earlier because the user gives up).
The scalable URL reference generator SURGE [33] specializes on aggregated WWW traf-
fic as does [29]. Another project from our lab [34] focuses on generating realistic VoIP
flows with control flows for testbed experiments.
The netperf benchmark tool [35] and NetSpec [36] are also often used to generate test traf-
fic.
The combination of some fixed traffic models, a traffic generator and an export module for
NS2 is quite common. NS2 itself contains several traffic models that can be easily used,
e.g. with the NS2 scenario generator [14].
[37] provides detailed support for persistent and pipelined HTTP 1.1 connections and a
SURGE-like load model implementation. RAMP [38] can convert measurements from a
tcpdump-format file into cumulative distribution functions for simulation models which
can then be used to generate realistic synthetic traffic in NS2. The pre-WWW tcplib model
[39] can also be used for NS2 simulations.
fft_fgn [40] and RMD_nn [41] can be used to generate self-similar traffic on intensity
layer. The algorithms of both tools are also integrated into the KOM load generator.
Apart from the traffic generators mentioned above that use one or more traffic models there
is an enormous amount of work about traffic models. We can only discuss a small amount
of those works here. [42] contains a Telnet, FTP and SMTP/NNTP model, [43] concen-
trates on detailed models for WWW traffic and [44] can be used for FTP traffic models. For
a very detailed single WWW user model with packet level details [45] is very useful. [46]
contains an excellent literature overview and specific information about TCP based traffic
models. For ISP level simulations [47] can also be handy, it contains a BGP traffic model
and describes a tool for creating realistic routing tables for testbeds.
Instead of using explicit models traffic is also often generated from trace files although one
should be careful to use trace files in an environment different from the one they were
recorded in [7]. Tracefiles are available e.g. at [48, 49, 50, 51] and can be played back with
KOM ScenGen.

4.4 Plausibility Check
After generating the network load plausibility checks can be started to control whether cer-
tain scenario aspects are sensible. An example would be comparing the bandwidth of the
links with the bandwidth needed by the traffic. KOM ScenGen can estimate the bandwidth
requirements of the generated network load. For the TCP connections the TCP formula
[52] is used to predict the rate. The estimated bandwidth requirement can be compared with
the offered bandwidth. If there is a large mismatch one might want to adapt the bandwidth
of some links or the traffic before conducting the experiment.

4.5 Export
If the scenario setup passes the plausibility check it can finally be exported. Currently two
export modules exist, one for NS2 and one for our testbed. Export modules can be easily
adapted to support other simulators or testbeds.
4.5.1 NS2. The NS2 export module can automatically create an OTcl file for NS2 called
run.tcl that sets up the topology and the traffic sources and starts them. To allow the user to
finetune the setup process for her needs we do not directly configure NS2 in the run.tcl
script but instead call setup functions that are defined in a second OTcl file header.tcl. Usu-
ally, the operator only has to adapt the header.tcl to her specific scenario’s needs while the

run.tcl file can be generated automatically and does not have to be changed. In our LET-
SQoS scenario for example we have different header.tcl files for scenarios with IntServ,
where e.g. RSVP has to be set up, DiffServ, where e.g. the PHBs have to be defined, and
best effort. Each scenario dependent header.tcl file has to implement a fixed set of func-
tions (e.g. “create-node”). For more details see [25].
4.5.2 Testbed. The export module of the scenario generator is written for our testbed in the
LETSQoS project. It should not be too difficult to adapt it to other lab testbeds.
4.5.2.1 Description of our Testbed. The heart of our lab testbed are 16 PCs. Each is
equipped with a Intel Pentium 850 Mhz processor, 256 MB RAM, a 20GB hard disk and 4
network interface cards. Further there are 3 24-port Allied Telesyn AT-8326GB switches
which are stacked. We chose FreeBSD 4.6 as operating system since it has proven itself as
a reliable operating system for our former testbeds. Administrating the testbed is always
tedious as operations have to be performed on 16 machines. Therefore we wrote scripts that
automate many tasks, e.g. we can completely install FreeBSD plus all needed applications
automatically.
For larger experiments we can connect our old 8 machine testbed to the new one which
leaves us with 24 test machines. The clocks of all testmachines are synchronized by a GPS
receiver. This e.g. allows to do one-way delay measurements. The time stamps necessary
for these kind of measurements are added by a Kernel module developed by Martin
Karsten.
As control machine and gateway to the external world (and the Internet) we use a separate
PC that also runs a DNS and DHCP server for the testbed.
4.5.2.2 Automatic Configuration of the Testbed. The export module of the scenario gener-
ator creates a number of configuration files and scripts. When the masterscript is started it
sets up the testbed completely automatic. When a second script is started the experiment is
started automatically.
First SSH host keys on the machines are exchanged. Next the DNS and DHCP server on
the control machine are configured and restarted, then all machines in the testbed are
rebooted. The IP addresses of their interfaces are distributed by the DHCP server, the DNS
server allows us to dress the machines with the same names as in the scenario file.
Next the switch is configured automatically using an “expect” script addressing its telnet
interface. Alternatively SNMP could be used1. The VLANs are set up to represent the links
of the topology. Unused network interfaces are put into dummy VLANS. Because VLAN
headers will be added to every packet we had to modify the Ethernet network drivers
because otherwise full-size ethernet packets could not be sent.
We use a shortest path algorithm to calculate the routes and set up static routing in all
nodes.
After that ALTQ [53] configuration files are distributed to all nodes and ALTQ is started.
ALTQ is a traffic management software that enables certain QoS mechanisms on PC-based
routers.
Further we plan to incorporate a modified version of NIST Net [52] to emulate a wide vari-
ety of network conditions and dummynet [53] to apply bandwidth and queue size limita-
tions and emulate delays and losses.
Then the configuration files for our traffic emulator tool are distributed to all nodes (see
next section).
Finally, a scenario dependent configuration script can be executed. Depending on the sce-
nario KOM RSVP [54] is started on each machine or ALTQ is configured for DiffServ etc.
The scenario dependent script has to be written by the researcher himself.
We also have a video available showing the configuration of the testbed at http://
www.kom.e-technik.tu-darmstadt.de/letsqos/scengen/.
4.5.2.3 Traffic Emulator. After experimenting with some open source tools that can emu-
late traffic on an ethernet interface we decided to develop our own tool. We had some prob-

1 We experienced severe problems with SNMP and our switch.

lems with the timing of other tools. On FreeBSD, netperf [35] for example does not have a
fine grained timer resolution. Netperf will send 128 packets per second for a CBR UDP
Flow with a packet size of 80 bytes if the interarrival time is set to 8ms, 10ms, 12ms or
15ms and 64 if it is set to 16ms.
Our traffic emulation tool has a more finegrained resolution and will really send 125 pack-
ets for an interarrival time of 8ms and 100 for one of 10ms. This tool was originally written
by Martin Karsten and uses the efficient timer library of the KOM RSVP engine [54] (the
excellent timer management is one of the reasons why the KOM RSVP engine performs so
well).
The traffic emulator runs on the sender and receiver side and can send diverse TCP and
UDP flows. Information about the received packets (e.g. the current rate) is recorded and
can be written to an evaluation file after the experiment (file access during the experiment
can disturb the timing of the network operations).
Because all clocks are synchronized by a GPS receiver the traffic emulators on all
machines can start sending at the same point in time.

4.6 Touchup
Sometimes, not all possible steps and measurements can be foreseen and therefore auto-
mated. Although it is the explicit goal of KOM ScenGen to avoid manual intervention as
much as possible it might sometimes be necessary to take a manual touchup step before the
simulation/experiment in which the researcher checks, finetunes and possibly modifies
parts of the scenario file. Note that for all our experiments with KOM ScenGen no touchup
activities were necessary.

4.7 Simulation or Testbed Experiment
Finally, the simulation or the testbed experiment can be conducted by running NS2 with the
generated OTcl file or by running the start script on the testbed control machine.

4.8 Evaluation
The last step is analyzing and evaluating the results of the simulation. Several already exist-
ing tools can be used for this step. We use Gnuplot [55] and Microsoft Excel for evaluation
purposes. For demonstration purposes the network animator NAM [11] can be used. For
future work we plan to support the automatic statistical analysis of the measured data.

4.9 Implementation of KOM ScenGen
KOM ScenGen is implemented in Java, the NS2 parts are written in OTcl and C++, the
testbed export code in Python. The traffic emulator software was originally written by Mar-
tin Karsten as part of the KOM RSVP engine [54].

5 Summary and Conclusions
In this paper we presented a systematic approach to simulation and testbed experiments and
the KOM scenario generator. We discussed the different steps in generating a network
research scenario. They are all supported by KOM ScenGen which contains many helpful
tools like a topology file format converter, an application oriented and topology aware traf-
fic generator and scripts to automatically configure a lab testbed. Apart from this it sup-
ports simulating and emulating (in a lab testbed) the created scenario. The combination of
simulation and testbed experiments avoids most of the drawbacks and pitfalls of those
methods if used alone. As a methodological improvement to traffic and load generation
KOM ScenGen uses different abstraction layers for traffic and the separation between traf-
fic and sink models.
The first version of the scenario generator is finished and already being used for QoS
experiments in the LETSQoS (www.letsqos.de) project. More information about the sce-
nario generator and a video demonstrating the scenario generator at work are available at
www.kom.tu-darmstadt.de/letsqos/scengen/.

Acknowledgments
This work is partly sponsored by the German research network provider DFN
(www.dfn.de). We would like to thank the DFN for their funding, deep insights and valu-

able operational data. Martin Karsten helped us in many aspects, his valuable tools are used
in many parts of KOM ScenGen. We would further like to thank the students Ian Hubbertz
and Martin Jess for their work on the scenario generator and our testbed, Tobias Boll for his
work on the scenario generator and NS2 and last but not least Peter Larem and Thomas
Pfeiffer for their work on the scenario generator.

References
[1] R.Braden, D.Clark, and S.Shenker. Integrated Services in the Internet Architecture: an Over-

view. Informational RFC 1633, June 1994.
[2] D.Black, S.Blake, M.Carlson, E.Davies, Z.Wang, and W.Weiss. An Architecture for Differ-

entiated Services. Informational RFC 2475, December 1998.
[3] P.Hurley, M.Kara, J.Y. Le Boudec, and P.Thiran. ABE: Providing a Low-Delay Service

within Best Effort. IEEE Network Magazine, 15(3), May 2001.
[4] F.Kelly. Models for a self-managed Internet. Philosophical Transactions of the Royal Society,

A358:2335–2348, 2000.
[5] M.Karsten and J.Schmitt. Admission Control based on Packet Marking and Feedback Signal-

ling. Mechanisms, Implementation and Experiments. Technical Report TR-KOM-2002-03,
Darmstadt University of Technology, May 2002.

[6] M.Karsten, J.Schmitt, and R.Steinmetz. Implementation and Evaluation of the KOM RSVP
Engine. In Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM’2001), pages 1290–1299. IEEE, April 2001.

[7] S.Floyd and V.Paxson. Difficulties in Simulating the Internet. Transactions on Networking,
pages 392–403, Feb 2001.

[8] L.Breslau, D.Estrin, K.Fall, S.Floyd, J.Heidemann, A.Helmy, P.Huang, S.McCanne,
K.Varadhan, Y.Xu, and H.Yu. Advances in Network Simulation. IEEE Computer , 33(5):59–
67, May 2000.

[9] A.Hafid, J.D. Meer, A.Rennoch, G.V. Bochmann, and R.Dssouli. Quality of Service Verifi-
cation Experiments. In Proceedings of the Workshop on Distributed Multimedia Applications,
1994.

[10] M.Neufeld, A.Jain, and D.Grunwald. NSClick: Bridging Network Simulation and Deploy-
ment. In Proceedings of the 5th ACM International Workshop on Modeling Analysis and Simula-
tion of Wireless and Mobile Systems, pages 74–81. ACM Press, 2002.

[11] Network Simulator NS2. http://www.isi.edu/nsnam/ns/.
[12] JavaSim Network Simulator. http://www.javasim.org/.
[13] OpNet Network Simulator. http://www.opnet.com/.
[14] NS2 Scenario Generator. http://www.isi.edu/nsnam/dist/scen-gen.tar.
[15] NS2 Scenario Generator Modifications for QoS Experiments. http://keskus.hut.fi/tutkimus/iro-

net/ns2/ns2.html.
[16] MANET Scenario Generator. http://www.comp.nus.edu.sg/liqm/scengen/.
[17] BonnMotion: Java Mobility Scenario Generator and Analyser. http://www.cs.uni-bonn.de/IV/

BonnMotion.
[18] E.Kohler, R.Morris, B.Chen, J.Jannotti, and M.F. Kaashoek. The click modular router. ACM

Transactions on Computer Systems, 18(3):263–297, 2000.
[19] D.Herrscher, A.Leonhardi, and K.Rothermel. Modeling computer networks for emulation. In

International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’02) , pages 1725–1731, June 2002.

[20] TIERS. Tiers Topology Generator. http://www.isi.edu/nsnam/ns/ns-topogen.html#tiers.
[21] BRITE. Boston University Representative Internet Topology Generator. http://www.cs.bu.edu/

brite/.
[22] GT-ITM. Georgia Tech Internetwork Topology Models. http://www.cc.gatech.edu/projects/

gtitm/.
[23] Inet Topology Generator. http://topology.eecs.umich.edu/inet/.
[24] O.Heckmann, M.Piringer, J.Schmitt, and R.Steinmetz. On realistic network topologies for

simulation. In Proceedings of ACM SIGCOMM MoMeTools , Karlsruhe, 2003.
[25] O.Heckmann, K.Pandit, J.Schmitt, M.Hoffmann, and M.Jobmann. LETSQoS Milestone 2.

http://www.letsqos.de, June 2002.
[26] T.Karagiannis and M.Faloutsos. SELFIS: A Tool for Self-Similarity and Long-Range Depen-

dence Analysis. In Proceedings of the 1st Workshop on Fractals and Self-Similarity in Data
Mining, 2002.

[27] T.Karagiannis. SELFIS: A Short Tutorial. http://www.cs.ucr.edu/tkarag/Selfis/Selfis.html,
2002.

[28] J.Roberts, U.Mocci, and J.V. (Eds). Broadband Network Teletraffic (Final Report of COST
242). Springer Verlag LNCS 1155, 1996.

[29] UC Davis Generator of Self-Similar Traffic. http://wwwcsif.cs.ucdavis.edu/kramer/code/
trf_gen2.html.

[30] NetIQ Chariot Traffic Generator. http://www.netiq.com/products/chr/default.asp.
[31] Ixiacom Ixia Traffic Generator. http://www.ixiacom.com/.
[32] P.Heegaard. GenSyn - a generator of synthetic Internet traffic used in QoS experiments. In Pro-

ceedings of 15th Nordic Teletraffic Seminar, 2000.
[33] P.Barford and M.Crovella. Generating Representative Web Workloads for Network and Server

Performance Evaluation. In Measurement and Modeling of Computer Systems , pages 151–160,
1998.

[34] KOM Call Generator. http://www.kom.tu-darmstadt.de/KOMtraffgen/.
[35] Netperf Network Benchmark Tool. http://www.netperf.org/netperf/NetperfPage.htm.
[36] A Tool for Network Experimentation and Measurement (Netspec). http://www.ittc.ukans.edu/

netspec/.
[37] NSWEB HTTP Traffic Generator. http://www.net.uni-sb.de/jw/nsweb/.
[38] K.Lan and J.Heidemann. Rapid Model Parameterization from Traffic Measurements. http://

www.isi.edu/kclan/paper/ramp.pdf.
[39] P.B. Danzig and S.Jamin. tcp-lib: A library of TCP/IP Traffic Characteristics. USC Networking

and Distributed Systems Laboratory TR CS-SYS-91-01, October, 1991.
[40] C.Schuler. fft_fgn: fractional gaussian noise generator. ftp://ita.ee.lbl.gov/software/fft_fgn_c-

1.2.tar.Z.
[41] I.Norros, P.Mannersalo, and J.Wang. Simulation of fractional Brownian motion with condi-

tionalized random midpoint displacement. Advances in Performance Analysis , 1999.
[42] V.Paxson and S.Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/ACM Transac-

tions on Networking, 3(3):226–244, 1995.
[43] G.Abdulla. Analysis and Modelling of World Wide Web Traffic. PhD thesis, Virginia Polytech-

nic Institute and State University, 1998.
[44] D.J. Ewing, R.S. Hall, and M.F. Schwartz. A Measurement Study of Internet File Transfer

Traffic. Technical Report CU-CS 571-92, January, 1992.
[45] J.Charzinski. HTTP/TCP Connection and Flow Characteristics. Performance Evaluation , 42(2-

3):149–162, Sep. 2000.
[46] A.Feldmann. Characteristics of TCP Connection Arrivals, 1998. Technical report, AT&T Labs

Research, 1998.
[47] O.Maennel and A.Feldmann. Realistic BGP Traffic for Test Labs. In Proceedings of ACM SIG-

COMM, 2002.
[48] O.Rose. Statistical properties of MPEG video traffic and their impact on traffic modeling in

ATM systems. Technical Report Technical Report No. 101, University of Wuerzburg, Institute
of Computer Science, 2 1995.

[49] Internet Traffic Archive (ITA). http://ita.ee.lbl.gov/html/traces.html.
[50] NLANR/NZIX Traces. http://pma.nlanr.net/Traces/.
[51] Waikato Internet Traffic Storage Traces. http://wand.cs.waikato.ac.nz/wand/wits/.
[52] J.Padhye, V.Firoiu, D.Towsley, and J.Kurose. Modeling TCP Throughput: A Simple Model

and its Empirical Validation. In Proceedings of the ACM SIGCOMM, 1998.
[53] K.Cho. The Design and Imlementation of the AltQ Traffic Management System. PhD thesis,

Keio University, January 2001.
[54] KOM RSVP Engine. http://www.kom.tu-darmstadt.de/rsvp/.
[55] Gnuplot. http://www.gnuplot.info/.
[56] K. Fall. Network Emulation in the Vint/NS Simulator. In Proceedings of the 4th IEEE Sympo-

sium on Computers and Communications, 1999.

