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Abstract
Providing guaranteed QoS necessarily requires alloca-

tion of scarce resources. It is conceivable that at least at
system edges scarcity of resources, exposed in the form of
non-negligible (virtual) costs, will prevail to necessitate
explicit allocation of resources as opposed to pure overdi-
mensioning. An example of this logic is constituted by the
Differentiated Services (DiffServ) architecture. Often such
resource allocation decisions are done on a multi-period
basis because resource allocation decisions at a certain
point in time may depend on earlier decisions and thus it
can turn out sub-optimal to look at decisions in an isolated
fashion. Therefore, in this paper, we investigate a fairly
large and diverse set of (network) QoS problems all of
which deal with the problem of multi-period resource allo-
cation at system edges. We devise a taxonomy for the clas-
sification of these problems and introduce a common
mathematical framework under which these problems can
be tackled. The ultimate goal of our work is to strive for
solution techniques towards the generalized class of prob-
lems such that these are applicable in a number of scenar-
ios which have so far not been regarded in an integrated
fashion.

1.  Introduction

Decentralized organization has always been at the heart
of the Internet’s philosophy. Actually, this is one of the key
explanations for its success in a world of increasing dereg-
ulation. The decentralized organization is exhibited by the
fact that the Internet consists of multiple independent pro-
viders that usually operate so-called autonomous systems
which interwork with each other by peering agreements. It
is interesting to note that both the number of ASes as well
as the average number of ASes a given AS is peering with
is increasing at a fairly high rate. The number of ASes rose
from 909 in 9/95 to 4427 in 12/98 and 7563 in 10/00 [1,2].
Similarly, the average peering degree, i.e., the number of
providers a certain provider has peering agreements with,
rose from 2.99 in 9/95 to 4.12 in 12/98. It is also very nota-
ble that a single provider may peer with up to 1000 other
providers [1].

From these observations it becomes obvious that for t
efficient and dynamic provision of QoS in the Internet the
is a good potential for optimization of resource allocation
at provider edges. In particular, this optimization o
resource allocations becomes a competitive factor for Int
net providers. However, such an optimization can only b
done on a multi-period basis, i.e., by making decision
based on earlier decisions about resource allocations
peering providers. In this paper, we want to deal with
general problem class called multi-period resource alloc
tion at system edges (MPRASE) for which the peering pr
viders have been the motivating scenario, although so
other network QoS problems also fit into this problem cla
as we will discuss later on.

1.1 Motivating Example: Decoupling Different
Time Scales of Network QoS Systems

Different time scales of providers’ network QoS system
may arise due to different QoS architectures like RSVP/In
Serv (Resource reSerVation Protocol/ Integrated Servic
[3], DiffServ (Differentiated Services) [4], or ATM (Asyn-
chronous transfer Mode) [5] being used. Choosing diffe
ent QoS architectures results from serving different nee
e.g., for an access and backbone provider. An access p
vider that has a comparatively moderate load and direc
connects to end-systems may favour a fast time scale s
tem responding immediately to the end-systems reque
A backbone provider that connects access provide
respectively offers transit services is generally faced with
drastically higher load of individual transmissions, so th
reaction on the time scale of individual requests is usua
not possible and a slower time scale system needs to
enforced. A realistic configuration for access and backbo
providers may be, e.g., that access providers use RSVP/
Serv to suit their customers’ needs while a backbone p
vider uses DiffServ with a Bandwidth Broker (DiffServ/
BB) to allow for some dynamics but on a slower time scal
This scenario is shown in Figure 1.

Here it is also very obvious why a BB is generally no
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able to react to individual RSVP requests that are arriving
at edge devices between access and backbone provider.
Because if it did, the BB would need to operate at a
throughput of requests that is proportional to the square of
the number of access providers it serves - that is not scal-
able. To see this, assume each ofN edge devices would
haveM (new or modified) RESV messages for each other
edge device in a given time period and would query the BB
for each of these requests. Then the BB would have to deal
with requests in the same period. Note
that the problem is not solved by spatial aggregation
approaches like, e.g., [6] or [7] since for each of theM
RESV messages the aggregate would have to be rear-
ranged. Here a decoupling of the different time scales is
necessary. The decoupling can be achieved by building
“depots” of capacity which stabilize the fluctuations of the
“nervous” demand curve for backbone capacity by individ-
ual requests. From another perspective, the decoupling
technique can also be viewed as introducing a combined
local and global admission control for the DiffServ/BB net-
work. Global admission control is only invoked whenever
local admission control at an edge device runs out of
resources in its capacity depot. In such a case, local admis-
sion control on an edge device tries to obtain more
resources from the global admission control represented by
the BB. This scheme allows to trade off resource efficiency
for a more stable and long-term capacity demand presented
to the BB.

Note that the slow time scale of an underlying QoS sys-
tem may not express itself in being unable to process
requests for QoS at short time scales but by the fact that
significant setup costs are incurred for QoS requests
between different administrative domains. Such a scheme
of QoS tariffing is an instance where a QoS strategy of a
network provider restricts the capabilities of the employed
QoS architecture. A possible reason for this may be, e.g.,
that the charging and accounting system is not able to deal
with a large number of individual requests since this
involves a lot of operational costs.

In conclusion, we have here a certain instance of the gen-
eral problem class of multi-period resource allocation at
system edges.

1.2 Outline

In the next section, we generalize the above presen
example problem and extend it along several dimensions
a conceptual component model by which we try to captu
all the different facets of the MPRASE problem structure
We show how the different characteristics of the comp
nents and their combinations lead to known network Qo
problems. We thus establish the incentive to treat the gen
alized problem in a framework that has the potential
solve all MPRASE problems in an integrated fashion or
least establish relationships between different proble
instances which may be helpful when approaching a c
tain problem, e.g., by making use of an existing algorith
for a certain problem as part of a solution strategy
another (more complicated) problem instance.

In Section 3, we then look at the most basic problem, t
so-called single provider problem (SPP). We devise exa
algorithms for its solution as well as some heuristics sin
it turns out to be fairly compute-intensive. Techniques fo
the SPP could be the basis for a solution strategy to t
example problem described in Section 1.1 and in fact th
is what has been proposed and evaluated in [8]. This con
tutes an example where a relation between the differe
problem instances captured by our general model is us
In this paper, however, we try to exploit the SPP along
different dimension: the number of providers. Therefore,
Section 4, we turn to the so-called multi-provider problem
(MPP). The MPP constitutes a really hard problem, how
ever by using our techniques for the SPP we are at le
able to devise heuristic approaches towards the MPP.
evaluate our techniques we carry out extensive simulatio
to compare the different alternatives.

In Section 5, we review related work and discuss ho
our approach differs from respectively extends form
work. In Section 6, we summarize our findings and dra
some conclusions.

2.  MPRASE - Generalization & Taxonomy

In this section, we introduce a general structural mod
which tries to capture all the different facets of multi
period resource allocation at system edges (MPRAS
problems. This model then allows us to derive a taxonom
along its components which establishes the relatio
between the different problem incarnations.

2.1 Generalized Problem Structure Model

Figure 2 shows the overall structural model of the ge
eral class of MPRASE problems. Obviously, there are cu
tomers which generate requests towards several provid
These two groups are separated by a system edge on w
an intermediary instance is located. The intermediary tri

BB

RSVP/IntServ
Access Networks

DiffServ Domain

Control

IntServ/DiffServ
Edge Device

Invokation of BB
for global admission control

Figure 1: Combined local and global admission control.
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to mediate between the two by selecting providers on the
one hand and enforcing admission control of the customers
on the other hand. Note that the logical separation of the
intermediary instance from customer and provider does not
necessarily imply that it may not belong to either customer
or provider premises. The requests are originated by the
customers which desire a certain amount of resources
offered by the providers. Furthermore, requests incur cer-
tain costs at the providers which need to be accounted for
by customers. Several requests are generated in the course
of time, thereby, reacting upon the dynamics of customers’
demand. Let us now look at the different components of the
structural model for MPRASE.

2.1.1 Customer.The customer component of the
MPRASE model captures the number of customers, i.e., if
a single or multiple customers are considered, and the flex-
ibility of the demand, i.e., whether demand may be dissat-
isfied or be served with a degraded quality.

2.1.2 Provider.The provider model encompasses the num-
ber of providers and whether they are modelled as having
limited or unlimited capacity. While the latter is unrealistic
it can be a simplifying, yet valid assumption for the case
where supply exceeds demand with very high probability.

2.1.3 Resource.This component models the resources, i.e.,
whether they are one- or multidimensional or whether they
are provided on a deterministic or statistical basis. In this
paper, we focus on one-dimensional resource models, i.e.,
on capacity management, in order to keep the problem
complexity manageable. However, in [9] we also extend
our MPRASE models towards a two-dimensional resource
model motivated by the token bucket mechanism. Further-
more, we make no particular assumption on the kind of
guarantee with which resources are provided, i.e., whether
they are statistically or deterministically available. There-
fore, an allocation in our context does not necessarily mean
an isolated, exclusive access to resources for a customer

that made it.

2.1.4 Cost.The cost model seizes the cost structure f
allocation requests, i.e., whether these incur certain fixed
transactional costs or whether the number of requests
just bounded and how variable costs for resource alloc
tions are modelled, e.g., linearly or non-linearly.

2.1.5 Edge.The edge model encompasses the nature
knowledge about capacity demands at the system edg
i.e., whether deterministic or statistical knowledge abo
future demands is available or if total uncertainty needs
be assumed. In our work here, we focus on determinis
knowledge at system edges because methods for this c
may be used as basic methods for other edge models, a
demonstrated in [8]. Furthermore, the deterministic ed
model is not totally unrealistic as it applies to advance re
ervation scenarios as described in [10, 11] and may play
important role in DiffServ-based scenarios as described
[12].

2.1.6 Intermediary.Note that the intermediary is the com
ponent where solution techniques towards MPRASE pro
lems are conceptually located. Therefore, this compone
does not capture problem characteristics but characteris
of the solution techniques, e.g., whether these are striv
for the exact solution or whether they are just heuristi
which could again be classified in construction an
improvement techniques.

2.2 MPRASE Problem Incarnations

The above dimensions, which are largely orthogonal
each other, span a large space of MPRASE problem inc
nations. Some of these - the ones considered in this pa
in varying detail - are given in Table 1. The darkly shade
rows of the table represent problems we treat in detail
this paper, whereas the lightly shaded are solely model
in the next section and the white rows are not investigat
here due to space restriction. However, the interest
reader is referred to [8, 9] for the latter MPRASE problem
incarnations. Nevertheless, the table shows MPRAS
problem incarnations where each component is varied
least once (indicated by bold entries). This illustrates o
basic goal of treating MPRASE problems in an integrate
fashion by making their relations explicit and using tha
knowledge for solution approaches.

2.3 Mathematical Programming Models for
MPRASE

As a common framework for the general MPRASE prob
lem class we make use of mathematical programmi
(MP) techniques [13]. From our point of view, MP tech
niques provide a good tool to model this problem class

System Edge

Costs

Resources

Costs

Resources

Costs

Resources
Provider

Provider
Provider

Provider

Customer
Customer

Figure 2: MPRASE problem structure.
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well as they allow for a common set of standard solution
techniques for the different problem incarnations. In the
following MP formulations of MPRASE problem incarna-
tions we try to illustrate this point.

2.3.1 The Single Provider Problem (SPP).Let us first
look at the single provider allocation problem (SPP). The
customer has capacity demandsbt that must be fully satis-
fied at every discrete time intervalt = 1,...,T. As the edge
model is deterministic, the demand is known in advance for
all periods. Capacity is requested from a single provider
who is charging a fixed costsft for every allocation and
variable allocation costsct per reserved capacity unit and
period. A new allocation is constituted by a change in the
allocated capacity. Using two types of variables and a num-
ber of parameters, this problem can be formulated as model
M1.

The objective function (1) minimizes total costs. (2)
ensures that demand is fully satisfied in each period. (3)
and (4) forcezt to one wheneverxt and xt-1 differ, i.e., a
new resource allocation takes place. Note thatzt will be set
to 0 in all other cases automatically because of the non-
negative entryft in the objective function.

2.3.2 Multi-Provider Allocation Problems. In this sec-
tion, we present the multi-provider allocation problem in
an uncapacitated and a capacitated version of it. Let us
assume that there is more than one provider offering capac-
ity to the customer. We assign indexj = 1, ...,J to the differ-
ent providers. Based on M1 we can model this problem
with M2.

This model mainly differs from M1 in the additional
index j. Furthermore, we now have to model the case that
in a certain period no capacity is allocated at a certain pro-
vider. This is captured by the introduction of demand

defect variables,djt, and the constraints (10) and (11)
Here, needs to be chosen small, e.g

, whereasM and L need to be chosen
large, e.g., and

.
In the next step we use additional parameters,kjt, to

model by (15) that each providerj can offer only a limited
amount of resourceskjt in periodt. This leads to model M3,
the capacitated MPP (cMPP).

2.3.3 Single Provider Problems with Flexible Demand.
Above, we have assumed that the provider(s) had to s

Problem Abbrev. Cost Resource Customer Provider Edge

Single provider problem SPP
linear fixed and

variable costs
one-dimensional single customer single provider deterministic

Multi-provider problem MPP
linear fixed and

variable costs
one-dimensional single customermultiple providers deterministic

capacitated MPP cMPP
linear fixed and

variable costs
one-dimensional single customer

multiple providers
with finite capacity

deterministic

Flexible demand problem
with admission control

SPPAC
linear fixed and

variable costs
one-dimensional

multiple reject-
able customers

single provider deterministic

Flexible demand problem
with degraded quality

SPPDQ
linear fixed and

variable costs
one-dimensional

single degradable
customer

single provider deterministic

Limited number of alloca-
tions problem

SPPLAP
limited number of allo-

cations, linear var. costs
one-dimensional single customer single provider deterministic

Buffered capacity
allocation Problem

SPPBCP
linear fixed and

variable costs
Token Bucket single customer single provider deterministic

Uncertain SPP SPPUE
linear fixed and

variable costs
one-dimensional single customer single provider uncertain

Table 1: MPRASE problem incarnations.

M1 Single Provider Problem - SPP

Variables:
xt Amount of reserved capacity in periodt = 1,...,T.
zt Binary variable, 1 if a allocation is made at beginning o

periodt = 1,...,T and 0 otherwise.
Parameters:

bt Demanded capacity in periodt = 1,...,T. Demand is as-
sumed to be greater than 0.

ft Fixed allocation costs, costs per allocation. We assum
positive costs (ft > 0).

ct Variable allocation costs, costs per reserved capacity u
per period.

x0 Allocation level before the beginning of the first period.
M M is a sufficiently high number (e.g., max {bt}).

Minimize (1)

subject to

(2)

(3)

(4)

(5)

f tzt

t 1=

T

∑ pctxt

t 1=

T

∑+

xt bt≥ t∀ 1 ..., T,=

xt xt 1–– M zt⋅≤ t∀ 1 ..., T,=

xt 1– xt– M zt⋅≤ t∀ 1 ..., T,=

zt 0 1,{ }∈ t∀ 1 ..., T,=

ε
ε 1 max bt{ }( )⁄=

M max bt{ }=
L 1 min bt bt 0>{ }( )⁄=
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isfy customers’ demand at all times. Now we describe a
related SPP formulation where this is not the case, i.e., we
have a different customer model. The demand can be dis-
satisfied (leading to degraded quality for the customer), yet
for dissatisfying demand the intermediary has to take pen-
alty costs into account. Those can be either real costs or
opportunity costs because he risks to loose customers. This
model as well as other models with flexible demand are
discussed in [9].

3. Tackling the Single Provider Problem

After the presentation of the general MPRASE frame-
work, we now want to investigate different solution tech-
niques for the simplest possible problem incarnation: the

uncapacitated single provider problem at a determinis
edge. From simulative experiments as well as theoretic
observations it turns out that even this problem is not abs
lutely trivial although we are able to devise reasonably ef
cient exact solutions as well as computational
inexpensive, yet qualitatively satisfying heuristic tech
niques. Besides the value of having a solution for the SP
these techniques are also the base components for devi
techniques for more advanced problems. This will be de
onstrated in Section 4 where we tackle the MPP by reusi
solution techniques for the SPP.

3.1 Exact Algorithms

At first we want to look at techniques that guarantee
produce an optimal solution for the SPP.

3.1.1 Branch and Bound with Linear Programming
(LP) Relaxation.A standard approach to solve the singl
provider problem SPP is to use a mixed integer proble
solver in order to solve model M1. A typical algorithm for
solving a mixed integer LP model is a branch and boun
algorithm that uses the LP relaxed problem M1’ of M1:

The resulting problem can be easily solved with the sim
plex algorithm. The solution of M1’ is a lower bound to the
optimal solution of M1. Branching can be done by fixing
the highest not yet fixedzt to 1 in the first and to 0 in the
second subproblem.

An example problem with only 50 periods took alread
33 minutes to be solved1. Problems with more than 100
periods could not be solved within several days. The reas
for this is that the structure of the problem does not make
very amenable to branch and bound algorithms sincezt are
often set to very low values greater 0 resulting in a va
underestimation of fixed costs which leads to very loo
bounds. Therefore, we strived for more efficient, yet st

M2 Multi-Provider Allocation Problem - MPP

Variables:
xjt Amount of allocated capacity in intervalt from providerj.
zjt 1 if an allocation for providerj is made at the beginning of

periodt and 0 otherwise.
djt 1 if allocation for providerj drops to 0 in intervalt and 0 oth-

erwise.
Parameters:
bt Demanded capacity in intervalt = 1, ...,T. Demand must be

fully satisfied in each period.
fjt Fixed allocation costs, i.e., cost for an allocation in periodt

from providerj, we assume .
cjt Variable costs, i.e., costs per capacity unit per period (specif-

ic per provider and period).
xj0 Allocation level before the beginning of the first planning pe-

riod.

Minimize (6)

subject to

(7)

, (8)

, (9)

, (10)

, (11)

, (12)

, (13)

, (14)

M3 Capacitated Multi-Provider Allocation
Problem - cMPP

Minimize (6)
subject to (7)-(14) and

, (15)

f jt 0>

f jt zjt d jt–( )
t 1=

T

∑
j 1=

J

∑ cjt xjt

t 1=

T

∑
j 1=

J

∑+

xjt

j 1=

J

∑ bt≥ t∀ 1 ..., T,=

xjt xj t 1–( )– M zjt⋅≤ j∀ 1 ..., J,= t∀ 1 ..., T,=

xj t 1–( ) xjt– M zjt⋅≤ j∀ 1 ..., J,= t∀ 1 ..., T,=

djt εxjt+ 1≤ j∀ 1 ..., J,= t∀ 1 ..., T,=

L xjt xj t 1–( )+( ) djt≥ j∀ 1 ..., J,= t∀ 1 ..., T,=

djt 0 1,{ }∈ j∀ 1 ..., J,= t∀ 1 ..., T,=

zjt 0 1,{ }∈ j∀ 1 ..., J,= t∀ 1 ..., T,=

xjt 0≥ j∀ 1 ..., J,= t∀ 1 ..., T,=

xjt k jt≤ j∀ 1 ..., J,= t∀ 1 ..., T,=

1. All experiments have been performed on a 400 MHz Pen-
tium II processor.

M4 Single Provider Problem with
Degraded Quality - SPPDQ

Variables:
st Unsatisfied demand in periodt.

Parameters:
Penalty costs per unit of dissatisfied demand in periodt.

Minimize (16)

subject to (4), (5) and

(17)

ct
s

f tzt

t 1=

T

∑ ctxt

t 1=

T

∑ cs
tst

t 1=

T

∑+ +

xt st+ bt≥ t∀ 1 ..., T,=

M1’ LP Relaxation of M1 (SPP)

The binary condition (5) is dropped from M1 and replaced by

(18)0 zt 1≤ ≤ t∀ 1 ..., T,=
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exact algorithms for the SPP.

3.1.2 Dynamic Programming (DP).
Let (t1, t2) be the edge from vertext1 to vertext2. The

costs (or length) of edge (t1, t2) are defined as

.

With this, the problem can be solved efficiently with a
dynamic programming algorithm which has a complexity
of O( ) (see Figure 3)..

3.1.3 Assessment of Execution Times.Table 2 shows the
execution times for all of the exact algorithms for two dif-
ferently sized problem instances.

3.2 Heuristics

While the last section introduced exact solutions for the
SPP, which while they provided fairly good performance
still required a certain computational effort that might be
prohibitive in scenarios where there is either a large num-
ber of periods to be planned for or where there is only an
extremely limited amount of time available for computa-
tion as, e.g., if the resource allocation is done in response to
signalling messages and thus affects setup latencies. There-
fore, we now want to investigate heuristic techniques
which do not guarantee an optimal solution but allow very
fast allocation decisions. A further reason for investigating
heuristics becomes obvious when we extend the SPP tech-
niques towards the MPP in Section 4 where we then need
to solve a potentially large number of SPPs.

3.2.1 LP Heuristic (LH). The LP heuristic is solving the
LP relaxation M1’ of Section 3.1.1 to determine the
amount of allocated capacity. After solving M1’ (using the

simplex algorithm), any is set to 1 wherever nece
sary (that is, wherext andxt-1 differ). This leads to a rela-
tive high number of allocations since fixed costs a
systematically underestimated by allowing continuous zt.

3.2.2 Merge Heuristic (MH).
The merge

heuristic starts
with a separate
allocation for
each period and
then tries to
merge two suc-
cessive alloca-
tions into one if
the saved fixed
costs of the
allocation are
less than the waste of variable costs (see Figure 4 for
illustration of this).

3.2.3 Split Heuristic (SH).The split heuristic starts with a
single allocation and then tries for all periods to split exis
ing allocations if the fixed costs for the new allocation ar
less than the saved waste of variable costs.

3.2.4 Combined Heuristics (CH[x,y]).The merge and
split heuristics can also be used to further improve th
results of other heuristics. In our simulations we therefo
iterated through merge and split in sequence until no fu
ther improvement could be achieved (CH[MH, SH])
Moreover, we also tried the combination of merge and sp
based on the result of the LP heuristic (CH[LP,MH,SH]).

3.3 Simulations for Qualitative Assessment of the
Heuristics

In order to evaluate the performance of the heuristics w
ran a simulation over 100 random problem instances, ea
with T=1000, fixed costsft ∈ [200,800] drawn from a uni-
form random distribution once and then set equal for allT
periods. Variable costsct are drawn from [3,5] and remain
equal forp periods;p is drawn from [10,20].

The demand is
calculated by
superposing a
number of
requests (for
example repre-
senting individ-
ual requests from
several users)
with their interar-
rival time mod-
elled by a poisson distribution (λ = 4) and their duration

Algorithm B&B DP

T=50 1920.7 0.0026

T=1000 n.a. 9.0

Table 2: Execution times for exact SPP algorithms (in sec).

C t1 t2,( ) f t1
cτ max bt t t1 ... t2, ,{ }∈( )⋅

τ t1=

t2

∑+=

T2

Preparation:
Prepare an empty arraycMin and an empty arraypred, each
with T entries.

Start:
cMin(1) = C(t1, t1)
pred(1) = 1

Iterationt = 2, ...,T:
cMin(t) = min{C(i, t) + cMin(i-1) | i = 1, ...,t}
pred(t) = argmin{C(i, t) + cMin(i-1) | i = 1, ...,t}

Result:
cMin(T+1) contains the minimal costs while arraypred
stores the hops towards that solution.

Figure 3: Dynamic programming algorithm for SPP.
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Figure 4: Waste of variable costs.
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modelled by an exponential distribution (µ = 20)2. For cal-
culating the requests’ capacity demand we draw from a
uniform random distribution from one out of three possible
intervals [2,8], [10,20] and [35,50] representing small,
medium and high capacity requests. The interval itself is
selected for each request with a probability of 40%, 30%
and 30%. Figure 5 shows a sample problem generated in
this way.

Table 3 shows the results generated by the simulations.
Here, allocation length denotes the average duration of a
single allocation and waste is the total waste of variable
costs for a single SPP instance (as illustrated in Figure 4).

As a very simple alternative heuristic and to have a refer-
ence value we also used what we called the peak heuristic
(PH) which makes a single allocation with the highest
capacity demand over all periods. Expectedly, PH per-
formed very poorly compared to the other techniques. A
much better performance at very low execution time is
achieved by the merge heuristic (MH): on average it
imposes less than 5% additional costs relative to the opti-
mum and reduces execution time by a factor of 4500. The
conceptually very similar split heuristic (SH) is consider-
ably less effective. Looking at the allocation length shows
the reason: it overdoes its job by splitting too often, result-
ing in too short allocation lengths and thus incurring fixed
costs more often although waste of variable costs is
roughly equal to MH.

The LP heuristic performs only marginally better than
SH, although it consumes considerably more time. This is
due to its characteristic of underestimating fixed costs
which is also expressed in a very low waste and small allo-
cation lengths.

Next, let us see how these results may be improved by
the combination of heuristics as described in Section 3.2.4.
The combination of MH and SH leads expectedly to better
results than the techniques in isolation. Yet, even better

results can be achieved by integrating LP with MH and SH
In conclusion, the best results are achieved b

CH[LP,MH,SH], yet the most attractive trade-off betwee
cost performance and execution time is probably achiev
by MH or CH[MH,SH].

4.  Extension to the Multi-Provider Problem

After the rather extensive treatment of the SPP, we no
want to extend our investigations along the provider mod
by assuming more than one provider, i.e., we move to t
MPP. Note that the MPP can also model a single provid
that offers multiple tariffs among which can be chose
e.g., tariffs comprising different fixed and variable cos
which do not dominate each other. In line with our argu
ment for taking an integrated view on MPRASE problem
we approach the MPP by trying to take advantage from t
techniques developed for the SPP.

In Section 2.3.2, we have modelled two different ve
sions of the MPP, an uncapacitated and a capacitated o
Here, we want to take a look at both of them. The uncapa
itated MPP represents a situation where a custome
demand is relatively small compared to the provider’s su
ply such that the resulting problem consists mainly in th
selection of the cheapest provider. The capacitated M
(cMPP), on the other hand, rather deals with a good mixi
of providers to achieve low total costs.

Note that the problem complexity of MPP is much
higher than that of SPP. First, the demand of each per
can be satisfied by different combinations of provid
ers and second, if two or more providers are selected to s
isfy the demand of one period there is a high number
sensible shares between these. This higher complexity
also illustrated by the execution times of applying the sta
dard branch and bound solver to model M2. A small MP
with T=20 andJ=4 already took 1920.8 seconds to solv
while the corresponding SPP withT=20 only took 1.2 sec-
onds. For any larger MPPs execution times were no long
reasonable. With this complexity in mind we go directly fo
heuristics and try to use our knowledge about the SPP.

2. We have to admit that parameter choice is rather arbitrary
(albeit sensible) due to lack of empirical data. However, we
have experimented with other values without changing the
results in a significant manner.

Algorithm
Costs Relative deviation from optimum costs

Allocation
length

Waste Time (sec)

av av stddev min max av av av

Optimum (DP) 452304 n.a. n.a. n.a. n.a. 9.43 36515 9.000

PH 1010199 123.81% 32.96% 58.97% 221.73% 1000.00 645804 < 0.001

MH 474027 4.79% 1.07% 2.05% 7.15% 10.65 64257 0.002

SH 568759 25.93% 10.43% 12.96% 73.65% 3.72 63295 0.010

LP 554317 22.34% 8.37% 6.12% 39.07% 2.62 424 0.452

CH[MH, SH] 469723 3.85% 0.74% 1.80% 5.34% 9.81 56064 0.005

CH[LP, MH, SH] 460404 1.77% 0.70% 0.39% 3.75% 8.93 41918 0.452

Table 3: SPP simulation results.
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4.1 SPP-Based Heuristics for the Uncapacitated
MPP

4.1.1 Static Cheapest Provider Heuristic (SCPH).A
straightforward approach to tackle the uncapacitated MPP
is to transform it intoJ SPPs, one for each provider and
each with the full demand. The SPPs can then be solved by
any of the algorithms discussed in Section 3. After solving
theJ SPPs we select the provider of the SPP with the least
costs. That means we obtain a solution where one provider
is used for all periods.

In our simulations, we use DP to solve the SPPs because
it yields the optimal results for the SPP at affordable execu-
tion time. Alternatively, we use the peak heuristic to see
how non-optimal solutions for the SPP will affect the result
for the MPP.

4.1.2 Dynamic Cheapest Provider Heuristic (DCPH).
One drawback of

SCPH is that it
does not allow pro-
vider changes.
Using a technique
similar to the
dynamic program-
ming algorithm
from Section 3.1.2
we can eliminate
this characteristic
of the SCPH. The
resulting algo-
rithm is called
dynamic cheapest
provider heuristic
(DCPH). This is
also illustrated in
Figure 6.

We use the
same algorithm as
in Section 3.1.2,
but the minimal
costsC(t1, t2) for
satisfying the
demand between
two periodst1 and
t2 are obtained by
solving J inde-
pendent SPPs for
the interval [t1, t2]
and choosing the
cheapest pro-
vider. Unlike the
DP algorithm
from

Section 3.1.2, this algorithm does not necessarily lead
the optimal result as it does not allow for a constellation
depicted for the optimal solution in Figure 6. Again, w
have the freedom of selecting any of the SPP algorithms
solving the sub-SPPs. In our simulations, we choose ag
DP and PH.

4.2 Adaptation of the Heuristics for the
Capacitated MPP

If the capacity of one provider is not enough to satisf
the whole demand we can no longer simply select a sing
provider in SCPH and DCPH but have to combine seve
providers. We do this by first cropping the demands in ea
SPP to the capacity of the according provider. We the
solve the SPPs for allJ providers and select the provide
that has the minimum costs per satisfied demand. The ov
all demand is then reduced by the capacity served by
selected provider and the procedure is repeated until
more demand remains unsatisfied. Example allocations
shown in Figure 7.

Please note that the non-zero demand assumption in s
tion 2.3.1 can now no longer be held and model M1 as w
as the heuristics of Section 3.2 had to be adapted to co
with periods of no demand.

4.3 Other Heuristics for the MPP

4.3.1 LP Heuristic (LP).Of course, we can again use the
results of the LP relaxation for M2 and M3 to obtain a solu
tion for MPP/cMPP.

4.3.2 Merge Heuristic (MH).We adapted the merge heu
ristic to the multi-provider case and to the capacity co
straints and combined it with DCPH and LP in order t
investigate whether it can improve their solutions.

4.4 Simulations for Qualitative Assessment of the
Heuristics

In order to evaluate the MPP heuristics described abo
we ran a simulation over 50 MPP instances similar to th
simulations in Section 3. Because of the much higher co
putational complexity we reduced the number of periodsT
from 1000 to 100. We used 10 providers and three differe
levels of capacity: first the uncapacitated MPP, second
cMPP with the capacity of each provider drawn from
[30%, 50%] of the maximum demand over all periods, an
third a cMPP with provider capacity drawn from [15%
35%].

P1
P2
P3

SCPH

P1
P2
P3

DCPH

P1
P2
P3

Optimal Solution

Figure 6: Provider usage of the differ-
ent algorithms for the MPP.

P1
P2
P3

SCPH

DCPH

Optimal Solution

Figure 7: Provider usage of the differ-
ent algorithms for the cMPP.
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The results for the uncapacitated MPP simulations are
displayed in Table 4. Here, the total number of providers
denotes how many of the providers were selected at least
once by a heuristic whereas average number of providers
expresses how many providers were on average simulta-
neously active.

DCPH is obviously and expectedly significantly better
than SCPH, however all DCPH-based heuristics perform

identically, although the SPP heuristics are very differen
Even if using the simple PH as SPP solver the results a
very good (in contrast to SCPH(PH)). The explanation fo
this behaviour is that the use of the dynamic programmi
paradigm as provider selection strategy makes the use
dynamic programming as SPP strategy unnecessary.3 Note
that MH is ineffective for DCPH because within its rang
(i.e., only one provider at a time) the solution is alread
optimal. The LP heuristic shows the same behaviour as
the SPP case and can again be further improved by MH

In Table 5 and 6
the results for the
cMPP with high
respectively low
capacity providers
are given. Now
DCPH with DP is
significantly bet-
ter than with PH.
Since more pro-
viders are involved
at the same time
there is now
potential for more intelligent SPP strategies such as D
Not surprisingly, the number of providers in the low capac
ity provider case is higher.

To make recommendations for the MPP heuristics w
also have to take into account the execution times of t
different alternatives as given in Table 7. While DCPH(DP
exhibits the best cost performance it needs considera
more time than the other heuristics. If execution time pla
a crucial role then SCPH(DP) is a good choice.

5.  Related Work

It is difficult to find directly related work since our
MPRASE approach is very general and other work main
treated individual MPRASE problem incarnations in isola
tion. Yet, interestingly, work done in the field of renegotia
ble services, e.g. [15,16] , arrives at very similar algorithm
to calculate renegotiation schedules for stored video tra
missions which furtherly emphasizes the general structu
of the MPRASE framework for problems found in the
domain of providing network QoS. However, the emphas
of [15,16] is on the definition of renegotiable services an
not so much on algorithms and their evaluation where
this is the main focus of our paper.

Relating to the analysis of dynamic provisioning in
multi-provider environment (in particular a DiffServ envi-
ronment), the work described in [17] gives very interestin
insights into the global behaviour of such a system b

Algorithm Costs
Alloc.
Len.

Waste
Total

Num.of
Prov.

Av.
Num. of

Prov.

SCPH (PH) 59563 100.00 350954 1.00 1.00

SCPH (DP) 36428 8.23 31271 1.00 1.00

DCPH (PH) 31999 7.62 29751 5.10 1.00

DCPH (DP) 31999 7.62 29751 5.10 1.00

CH[DCPH (PH),
MH] 31999 7.62 29751 5.10 1.00

LP 39165 2.52 35 3.28 1.27

CH[LP, MH] 35246 5.55 27269 3.28 1.27

Table 4: Results for the uncapacitated MPP.

Algorithm Costs
Alloc.
Length

Waste
Total

Num. of
Prov.

Av.
Num. of

Prov.

SCPH (PH) 65548 32.17 320415 3.14 3.14

SCPH (DP) 38890 7.64 31421 3.04 1.90

DCPH (PH) 38048 5.63 45981 6.68 1.88

DCPH (DP) 35650 6.72 29182 5.52 1.79

CH[DCPH
(PH), MH] 36990 7.21 49292 6.64 1.88

LP 44334 2.21 10 4.96 2.05

CH[LP, MH] 38910 5.04 27344 4.96 2.05

Table 5: Results for the capacitated MPP
(high capacity providers).

Algorithm Costs
Alloc.
Length

Waste
Total

Num. of
Prov.

Av.
Num.of

Prov.

SCPH (PH) 62219 19.60 348896 5.18 5.18

SCPH (DP) 37084 7.42 34826 4.68 2.77

DCPH (PH) 39105 5.22 58985 7.08 2.75

DCPH (DP) 34976 6.52 29759 6.26 2.58

CH[DCPH
(PH), MH] 37165 7.61 63301 7.00 2.75

LP 45167 2.04 78 5.72 2.75

CH[LP, MH] 37860 5.25 32848 5.72 2.75

Table 6: Results for the capacitated MPP
(low capacity providers).

3. This is due to the fact that under the further constraint of
using only one provider at a time DCPH is an exact algorithm.

Algorithm
Execution
Time (sec)

SCPH (PH) 0.010

SCPH (DP) 0.397

DCPH (PH) 0.689

DCPH (DP) 243.073

CH[DCPH (PH), MH] 0.689

LP 2.323

CH[LP, MH] 2.323

Table 7: Execution times.
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game-theoretic observations. Yet, our perspective is more
local from a single system’s point of view and how to opti-
mize resource allocations for its purposes. It would cer-
tainly be interesting to investigate how providers using
optimized resource allocation strategies as proposed in our
work would interoperate from a global point of view.

In [8], we dealt with the SPP under uncertainty and made
use of the deterministic edge SPP in an adaptive heuristic
scheme which is based on past optimal resource alloca-
tions. This constitutes another example of utilization of the
MPRASE framework in that it links different problem
incarnations together. In general, MPRASE problems with
an uncertain edge model show similarities to capacity man-
agement problems from other domains like air-line reserva-
tions or hotel booking in which usually yield management
techniques are applicable, e.g. [18]. In contrast to yield
management, however, we view the MPRASE problems
from the perspective of an intermediary acting on behalf of
the customer (in most models) and not so much from the
provider’s perspective as is the case with yield manage-
ment.

6.  Conclusion & Outlook

This paper has dealt with a so far largely neglected class
of network QoS problems related to resource allocation at
system edges over multiple time periods. We developed the
MPRASE model to classify and describe this class of prob-
lems and to analyse their mutual dependencies and rela-
tionships. Next, we have established a solution framework
for MPRASE based on mathematical programming mod-
els. The most basic MPRASE problem (SPP) has been
dealt with extensively by developing and evaluating a vari-
ety of exact as well as heuristic techniques. The algorithms
perform fast and well. We have then shown how to extend
the SPP along one dimension of MPRASE (the provider
model) towards the MPP and how to apply the SPP tech-
niques to this extension. Since the MPP is a very complex
problem we concentrated on the development and evalua-
tion of heuristics. With these it has been possible to solve
the MPP in an efficient way.

Many interesting issues for future work arise from our
MPRASE framework. For example, it will be very interest-
ing to investigate solution techniques for other problem
incarnations with resource models that incorporate more
than one dimension of capacity and to extend our models
towards a stochastic edge. Also, a parameter sensitivity
analysis for the problems discussed in this paper is planned
as future work.
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