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Abstract From these observations it becomes obvious that for the

Providing guaranteed QoS necessarily requires alloca- €fficientand dynamic provision of QoS in the Internet there
tion of scarce resources. It is conceivable that at least at IS a good potential for optimization of resource allocations
system edges scarcity of resources, exposed in the form o&t provider edges. In particular, this optimization of

non-negligible (virtual) costs, will prevail to necessitate resource allocations becomes a competitive factor for Inter-

explicit allocation of resources as opposed to pure overdi- : P
mensioning. An example of this logic is constituted by the net providers. However, such an optimization can only be

Differentiated Services (DiffServ) architecture. Often such done on a multi-period basis, i.e., by making decisions
resource allocation decisions are done on a multi-period based on earlier decisions about resource allocations at
basis because resource allocation decisions at a certainpeering providers. In this paper, we want to deal with a
point in time may depend on earlier decisions and thus it yeneral problem class called multi-period resource alloca-

can turn out sub-optimal to look at decisions in an isolated : : )
fashion. Therefore, in this paper, we investigate a fairly tion at system edges (MPRASE) for which the peering pro

large and diverse set of (network) QoS problems all of viders have been the motivating scenario, although some
which deal with the problem of multi-period resource allo- other network QoS problems also fit into this problem class
cation at system edges. We devise a taxonomy for the clasas we will discuss later on.

sification of these problems and introduce a common

mathematical framework under which these problems can At . : :
be tackled. The ultimate goal of our work is to strive for 1.1 Motivating Example: Decoupling Different

solution techniques towards the generalized class of prob- Time Scales of Network QoS Systems

lems such that these are applicable in a number of scenar- . . : ,
ios which have so far not been regarded in an integrated  Different ime scales of providers’ network QoS systems

fashion. may arise due to different QoS architectures like RSVP/Int-
Serv (Resource reSerVation Protocol/ Integrated Services)
[3], DiffServ (Differentiated Services) [4], or ATM (Asyn-

1. Introduction chronous transfer Mode) [5] being used. Choosing differ-

Decentralized organization has always been at the heartem QoS architectures results from serving different needs,

of the Internet’s philosophy. Actually, this is one of the key €9 for an access and ba.\ckbone provider. An access pro
: : . : . vider that has a comparatively moderate load and directly
explanations for its success in a world of increasing dereg-

ulation. The decentralized organization is exhibited by the connects to end-systems may favour a fast time scale sys-

fact that the Internet consists of multiple independent pro- tem responding immediately to the end-systems requess.

. A backbone provider that connects access providers
viders that usually operate so-called autonomous systems

which interwork with each other by peering agreements. It respectively offers transit services is generally faced with a
is interesting to note that both the number of ASes as Well drastically higher load of individual transmissions, so that
as the avergge number of ASes a given AS is peering Withreaction on the time scale of individual requests is usually
is increasing at a fairly high rate. The number of ASes rose not possible anpl a slowgr t|m.e scale system needs to be
from 909 in 9/95 to 4427 in 12/98 and 7563 in 10/00 [1,2]. enforced. A realistic configuration for access and backbone
Similarly, the average peering degree, i.e., the number Ofprowders may be, e.g., that access providers use RSVP/Int-

providers a certain provider has peering agreements with Serv to suit their customers’ needs while a backbone pro-
rose from 2.99in 9/95t0 4.12 in 12/98. It is also very nota- vider uses DiffServ with a Bandwidth Broker (DiffServ/

ble that a single provider may peer with up to 1000 other BB.) 0 allow.folr some dynamlcs but on a slower time scale.
providers [1] This scenario is shown in Figure 1.

Here it is also very obvious why a BB is generally not



Invokation of BB
for global admission control

: N In the next section, we generalize the above presented
all the different facets of the MPRASE problem structure.
Edge Device Diftserv Domain
\ \i ncoming problems. We thus establish the incentive to treat the gener-
able to react to individual RSVP requests that are arriving least establish relationships between different problem
throughput of requests that is proportional to the square offor a certain problem as part of a solution strategy of
haveM (new or modified) RESV messages for each other so-called single provider problem (SPP). We devise exact
with N x (N —=1) x M requests in the same period. Note the SPP could be the basis for a solution strategy to the
RESV messages the aggregate would have to be reartutes an example where a relation between the different
“depots” of capacity which stabilize the fluctuations of the different dimension: the number of providers. Therefore, in
technique can also be viewed as introducing a combinedever by using our techniques for the SPP we are at least
local admission control at an edge device runs out of to compare the different alternatives.
resources from the global admission control represented bywork. In Section 6, we summarize our findings and draw
to the BB. 2. MPRASE - Generalization & Taxonomy
requests for QoS at short time scales but by the fact thatperio d resource allocation at system edges (MPRASE)
of QoS tariffing is an instance where a QoS strategy of g along its components which establishes the relations
that the charging and accounting system is not able to dealz'1 Generalized Problem Structure Model
In conclusion, we have here a certain instance of the gentomers which generate requests towards several providers.

1.2 Outline
\ ” - ntro
y 4 . \* Rsvprnserv example problem and extend it along several dimensions of
///// 1\ a conceptual component model by which we try to capture
ﬁ‘ ] We show how the different characteristics of the compo-
////// ] /01 nents and their combinations lead to known network QoS
) ) S alized problem in a framework that has the potential to
Figure 1: Combined local and global admission control. gg|ve all MPRASE problems in an integrated fashion or at
at edge devices between access and backbone provideinstances which may be helpful when approaching a cer-
Because if it did, the BB would need to operate at a tain problem, e.g., by making use of an existing algorithm
the number of access providers it serves - that is not scal-another (more complicated) problem instance.
able. To see this, assume eachNfdge devices would In Section 3, we then look at the most basic problem, the
edge device in a given time period and would query the BB algorithms for its solution as well as some heuristics since
for each of these requests. Then the BB would have to dealit turns out to be fairly compute-intensive. Techniques for
that the problem is not solved by spatial aggregation example problem described in Section 1.1 and in fact that
approaches like, e.g., [6] or [7] since for each of e  is what has been proposed and evaluated in [8]. This consti-
ranged. Here a decoupling of the different time scales is problem instances captured by our general model is used.
necessary. The decoupling can be achieved by buildingIn this paper, however, we try to exploit the SPP along a
“nervous” demand curve for backbone capacity by individ- Section 4, we turn to the so-called multi-provider problem
ual requests. From another perspective, the decouplingMPP). The MPP constitutes a really hard problem, how-
local and global admission control for the DiffServ/BB net- able to devise heuristic approaches towards the MPP. To
work. Global admission control is only invoked whenever evaluate our techniques we carry out extensive simulations
resources in its capacity depot. In such a case, local admis- In Section 5, we review related work and discuss how
sion control on an edge device tries to obtain more our approach differs from respectively extends former
the BB. This scheme allows to trade off resource efficiency some conclusions.
for a more stable and long-term capacity demand presented
Note that the slow time scale of an underlying QoS sys- In thi i introd | structural model
tem may not express itself in being unable to process n this section, we infroduce a general structural mode
which tries to capture all the different facets of multi-
significant setup costs are incurred for QoS requests bl Thi del th I 0 dert ;
between different administrative domains. Such a schemg?'02'€ms. This model then aflows us 1o derive a taxonomy
network provider restricts the capabilities of the employed between the different problem incarnations.
QoS architecture. A possible reason for this may be, e.g.,
with a large number of individual requests since this  Figure 2 shows the overall structural model of the gen-
involves a lot of operational costs. eral class of MPRASE problems. Obviously, there are cus-
eral problem class of multi-period resource allocation at These two groups are separated by a system edge on which
system edges. an intermediary instance is located. The intermediary tries



that made it.

2.1.4 Cost.The cost model seizes the cost structure for

allocation requests, i.e., whether these incur certain fixed or
transactional costs or whether the number of requests is
just bounded and how variable costs for resource alloca-
tions are modelled, e.qg., linearly or non-linearly.

2.1.5 EdgeThe edge model encompasses the nature of
knowledge about capacity demands at the system edges,
i.e., whether deterministic or statistical knowledge about
future demands is available or if total uncertainty needs to
Time ' be assumed. In our work here, we focus on deterministic
System Edge Request knowledge at system edges because methods for this case
Figure 2: MPRASE problem structure. may be used as basic methods for other edge models, as is

. . . i . Furth h inisti
to mediate between the two by selecting providers on thedemonstrated in [8]. Furthermore, the deterministic edge

. e model is not totally unrealistic as it applies to advance res-
one hand and enforcing admission control of the customers . ; : .

. ; ervation scenarios as described in [10, 11] and may play an
on the other hand. Note that the logical separation of the. L . : :
) L . important role in DiffServ-based scenarios as described in
intermediary instance from customer and provider does not[lz]
necessarily imply that it may not belong to either customer '
or provider premises. The requests are originated by the2.1.6 Intermediary. Note that the intermediary is the com-
customers which desire a certain amount of resourcesponent where solution techniques towards MPRASE prob-
offered by the providers. Furthermore, requests incur cer-lems are conceptually located. Therefore, this component
tain costs at the providers which need to be accounted fordoes not capture problem characteristics but characteristics
by customers. Several requests are generated in the coursef the solution techniques, e.g., whether these are striving
of time, thereby, reacting upon the dynamics of customers’ for the exact solution or whether they are just heuristics
demand. Let us now look at the different components of the which could again be classified in construction and
structural model for MPRASE. improvement techniques.

Customer

2.1.1 CustomerThe customer component of the .
MPRASE model captures the number of customers, i.e., if2'2 MPRASE Problem Incarnations

a single or multiple customers are considered, and the flex- The above dimensions, which are largely orthogonal to
ibility of the demand, i.e., whether demand may be dissat- each other, span a large space of MPRASE problem incar-
isfied or be served with a degraded quality. nations. Some of these - the ones considered in this paper
i i in varying detail - are given in Table 1. The darkly shaded
2.1.2 Pronger.The provider model encompasses the UM ows of the table represent problems we treat in detail in
ber of providers and whether they are modelled as havmgthis paper, whereas the lightly shaded are solely modelled

!imited or unli'mite.d papacity. While the Iattgr is unrealistic i, 1o next section and the white rows are not investigated
it can be a simplifying, yet valid assumption for the case here due to space restriction. However, the interested

where supply exceeds demand with very high probability. reader is referred to [8, 9] for the latter MPRASE problem

2.1.3 ResourceThis component models the resources, i.e., incarnations. Nevertheless, the table shows MPRASE
whether they are one- or multidimensional or whether they Problem incarnations where each component is varied at
are provided on a deterministic or statistical basis. In this least once (indicated by bold entries). This illustrates our
paper, we focus on one-dimensional resource models, i.e.basic goal of treating MPRASE problems in an integrated
on capacity management, in order to keep the prob|emfashion by making their relations explicit and using that

complexity manageable. However, in [9] we also extend knowledge for solution approaches.

our MPRASE models towards a two-dimensional resource i .

model motivated by the token bucket mechanism. Further-2-3 Mathematical Programming Models for

more, we make no particular assumption on the kind of MPRASE

ghuarantee W'Fh.wr}:Ch re;ource; are plrlowde(.jl, LF ¥Eether As a common framework for the general MPRASE prob-
they are statistically or deterministically available. There- |\ class we make use of mathematical programming

forg, aln all(;)catloln in our context does not necfessarlly meangvlp) techniques [13]. From our point of view, MP tech-
an isolated, exclusive access to resources for a custome, iques provide a good tool to model this problem class as



Problem Abbrev. Cost Resource Custome Provide Edgk
Single provider proble SPH Imear e one-dimensiong  single customs single provide| deterministi
variable cost:
Multi-provider problen MPP Ilnea.r I one-dimensiong single customg multiple providery deterministi
variable cost:
capacitated MP cMPP| Imea.r REYE one-dimensiond  single custome n_]ultl_pl_e prowde_rs deterministi
variable cost with finite capacity
Flex!ble demand problem SPPAC ||nea_r fixed an ! one-dimensiong multiple reject single provide}  deterministc
with admission contrgl variable costs able customers
Flexible demand proble S linear fixed an . . single degradabl . . N
P H
with degraded qualif H)Q variable cost one-dimension4 custome single provide| deterministi
Limited number of alloca- limited number of allo . . . . .
. SPR AP| .. . one-dimensional single customer single provjder  deterministic
tions problen cations, linear var. costs
Buffered capacity linear fixed an . . . ]
SP L
allocation Problen Rscp variable costk Token Bucke single customer single provider  determinigtic
Uncertain SPF SPRyE Ilnear fixed and one-dimensional single customer single provjder uncertain|
variable costs

Table 1: MPRASE problem incarnations.

well as they allow for a common set of standard solution
techniques for the different problem incarnations. In the
following MP formulations of MPRASE problem incarna-
tions we try to illustrate this point.

2.3.1 The Single Provider Problem (SPPLet us first
look at the single provider allocation problem (SPP). The
customer has capacity demargdhat must be fully satis-
fied at every discrete time intervak 1,...;T. As the edge
model is deterministic, the demand is known in advance for
all periods. Capacity is requested from a single provider
who is charging a fixed costfs for every allocation and
variable allocation costs; per reserved capacity unit and
period. A new allocation is constituted by a change in the
allocated capacity. Using two types of variables and a num-
ber of parameters, this problem can be formulated as mode
M1.

The objective function (1) minimizes total costs. (2)
ensures that demand is fully satisfied in each period. (3)
and (4) forcez to one whenevek; and x;.; differ, i.e., a
new resource allocation takes place. Note thaitill be set
to 0 in all other cases automatically because of the non-

negative entry; in the objective function.

2.3.2 Multi-Provider Allocation Problems. In this sec-

tion, we present the multi-provider allocation problem in Here,

M1  Single Provider Problem - SPP
Variables:
X Amount of reserved capacity in peribd 1,...,T.
z Binary variable, 1 if a allocation is made at beginning of
periodt = 1,...T and O otherwise.
Parameters:
b, Demanded capacity in peridd= 1,....T. Demand is ag-
sumed to be greater than 0.
fi Fixed allocation costs, costs per allocation. We asqume
positive costsf{> 0).
c; Variable allocation costs, costs per reserved capacity unit
per period.
Xg Allocation level before the beginning of the first period.
M M is a sufficiently high number (e.g., mab}).
T T
T +
Minimize z f.z Z PG X 1)
t=1 t=1
subject to
X 2 b, ot =1,..,T 2
Xi—X_1SM & t=1,...,T 3)
Xi_1—=% <M ot=1,..,T (4)
z, 0O{0, 1} ot =1,..,T (5)
defect variablesd;, and the constraints (10) and (11).
€ needs to be chosen small, e.g,

an uncapacitated and a capacitated version of it. Let us€ = 1/(maxb}), whereasM andL need to be chosen
M = max{b;}

assume that there is more than one provider offering capaclarge,

ity to the customer. We assign index 1, ...,J to the differ-
ent providers. Based on M1 we can model this problem
with M2.

This model mainly differs from M1 in the additional

in a certain period no capacity is allocated at a certain pro-
vider. This is captured by the introduction of demand

e.g.,

L = 1/(min{ bt‘ b,>0).
In the next step we use additional parametés, to

model by (15) that each providgcan offer only a limited

amount of resourceg; in periodt. This leads to model M3,

indexj. Furthermore, we now have to model the case that the capacitated MPP (cMPP).

and

2.3.3 Single Provider Problems with Flexible Demand.
Above, we have assumed that the provider(s) had to sat-



M2  Multi-Provider Allocation Problem - MPP

Variables:

Xt Amount of allocated capacity in intervgrom providerj.

z; 1if an allocation for providej is made at the beginning
periodt and O otherwise.

diy 1if allocation for providef drops to O in interval and O oth
erwise.

Parameters:

by Demanded capacity in intervak 1, ..., T. Demand must 4
fully satisfied in each period.

f.

! from providerj, we assumef it> 0

Variable costs, i.e., costs per capacity unit per period (sj

C.
" ic per provider and period).

e

Fixed allocation costs, i.e., cost for an allocation in petiod

ecif-

pe-

Xjo Allocation level before the beginning of the first planning
riod.
J T J T
Minimize Z Z fi( Zp —dj) + Z Cjt Xt (6)
j=1t=1 j=1t=1
subject to
J
3 X 2b Ot=1,..,T ()
i=1
Xjt=Xje-nysSMIg U =1,..,3 0t =1,..,T (8)
Xj(t-1) = Xjt S M Lz dj=1,.,30t=1..T 9)
djt texs1l j=1,..,30t =1 .., T (10
L(xjt +xj(t_1))2djt 0j=12,.,30t=1.,T (11)
djt o{o, 1} Oj=1..,30t=1..,T (12
zZ; o{o, 1} Oj=1,..,30t=1,...,T (13)
X;;20 Oj=1,.,30t=1..,T (14
M3  Capacitated Multi-Provider Allocation
Problem - cMPP
Minimize (6)
subject to (7)-(14) and
Xji < k]-t Oj=1..,30t=1,..T (15)

M4 Single Provider Problem with
Degraded Quality - SPRyq

Variables:
s Unsatisfied demand in periad
Parameters:

CtS Penalty costs per unit of dissatisfied demand in petipd

T T T
Minimize § fz+ § cx + § Cis, (16)
22,
subject to (4), (5) and
X ts2hb ot =1,.., T a7

uncapacitated single provider problem at a deterministic
edge. From simulative experiments as well as theoretical
observations it turns out that even this problem is not abso-
lutely trivial although we are able to devise reasonably effi-
cient exact solutions as well as computationally
inexpensive, yet qualitatively satisfying heuristic tech-
niques. Besides the value of having a solution for the SPP,
these techniques are also the base components for devising
techniques for more advanced problems. This will be dem-
onstrated in Section 4 where we tackle the MPP by reusing
solution techniques for the SPP.

3.1 Exact Algorithms

At first we want to look at techniques that guarantee to
produce an optimal solution for the SPP.

3.1.1 Branch and Bound with Linear Programming

(LP) Relaxation. A standard approach to solve the single
provider problem SPP is to use a mixed integer problem
solver in order to solve model M1. A typical algorithm for
solving a mixed integer LP model is a branch and bound
algorithm that uses the LP relaxed problem M1’ of M1:

M1 LP Relaxation of M1 (SPP)

The binary condition (5) is dropped from M1 and replaced
0<z<1 ot =1,..,T (18)

by

isfy customers’ demand at all times. Now we describe a The resulting problem can be easily solved with the sim-
related SPP formulation where this is not the case, i.e., weplex algorithm. The solution of M1’ is a lower bound to the
have a different customer model. The demand can be dis-optimal solution of M1. Branching can be done by fixing
satisfied (leading to degraded quality for the customer), yetthe highest not yet fixed, to 1 in the first and to 0 in the
for dissatisfying demand the intermediary has to take pen-second subproblem.

alty costs into account. Those can be either real costs or An example problem with only 50 periods took already
opportunity costs because he risks to loose customers. Thi$3 minutes to be solvéd Problems with more than 100
model as well as other models with flexible demand are periods could not be solved within several days. The reason

discussed in [9].

3. Tackling the Single Provider Problem

for this is that the structure of the problem does not make it
very amenable to branch and bound algorithms simeee

often set to very low values greater O resulting in a vast
underestimation of fixed costs which leads to very loose

After the presentation of the general MPRASE frame- pounds. Therefore, we strived for more efficient, yet still
work, we now want to investigate different solution tech-

niques for the simplest possible problem incarnation: the

L All experiments have been performed on a 400 MHz Pen-
tium Il processor.



exact algorithms for the SPP.

3.1.2 Dynamic Programming (DP).
Let (t3, tp) be the edge from vertetg to vertext,. The
costs (or length) of edge (t,) are defined as

t

ﬁJ+§ECTDnaKbﬁ[Htr"qg}y
T=t;

With this, the problem can be solved efficiently with a
dynam|c programming algorithm which has a complexity
of O(T?) (see Figure 3).
Preparation:

Prepare an empty arrain and an empty arragred each
with T entries.

Clty tp) =

Start:
cMin(1) = C(ty, t1)
predl) =1
lterationt =2, ..., T:

cMin(t) = min{C(i, t) + cMin(i-1) |i
predt) = argmin{C(i, t) + cMin(i-1) Lt

Result:
cMin(T+1) contains the minimal costs while arrgyed
stores the hops towards that solution.

=1,. }
|:

Figure 3: Dynamic programming algorithm for SPP.

3.1.3 Assessment of Execution Time$able 2 shows the
execution times for all of the exact algorithms for two dif-
ferently sized problem instances.

Algorithm B&B DP
T=50 1920.7 0.0026
T=1000 n.a 9.0

simplex algorithm), any, # 0 is set to 1 wherever neces-
sary (that is, where; andx_; differ). This leads to a rela-
tive high number of allocations since fixed costs are
systematically underestimated by allowing continuqus z

3.2.2 Merge Heuristic (MH).

The merg
heuristic start
with a separal
allocation fo
each period ar
then tries
merge two suc
cessive alloc:
tions into one i
the saved fixe
costs of th
allocation are
less than the waste of variable costs (see Figure 4 for an
illustration of this).

- — — - allocation
demand

cap./sec

allocation 1
i |

waste allocation 2

L .

time
Figure 4: Waste of variable costs.

3.2.3 Split Heuristic (SH).The split heuristic starts with a
single allocation and then tries for all periods to split exist-
ing allocations if the fixed costs for the new allocation are
less than the saved waste of variable costs.

3.2.4 Combined Heuristics (CH[x,y]).The merge and
split heuristics can also be used to further improve the
results of other heuristics. In our simulations we therefore
iterated through merge and split in sequence until no fur-
ther improvement could be achieved (CH[MH, SH]).
Moreover, we also tried the combination of merge and split
based on the result of the LP heuristic (CH[LP,MH,SH]).

Table 2: Execution times for exact SPP algorithms (in sec).

3.2 Heuristics

While the last section introduced exact solutions for the
SPP, which while they provided fairly good performance
still required a certain computational effort that might be

prohibitive in scenarios where there is either a large num-

ber of periods to be planned for or where there is only an
extremely limited amount of time available for computa-
tion as, e.g., if the resource allocation is done in response to

signalling messages and thus affects setup latencies. There-

fore, we now want to investigate heuristic techniques
which do not guarantee an optimal solution but allow very
fast allocation decisions. A further reason for investigating

heuristics becomes obvious when we extend the SPP tech-
niques towards the MPP in Section 4 where we then need

to solve a potentially large number of SPPs.

3.2.1 LP Heuristic (LH). The LP heuristic is solving the
LP relaxation M1’ of Section 3.1.1 to determine the
amount of allocated capacity. After solving M1’ (using the

3.3 Simulations for Qualitative Assessment of the
Heuristics

In order to evaluate the performance of the heuristics we
ran a simulation over 100 random problem instances, each
with T=1000, fixed cost§ O [200,800] drawn from a uni-
form random distribution once and then set equal fofTall
periods. Variable costs are drawn from [3,5] and remain
equal forp periodsyp is drawn from [10,20].

The demand is

calculated by
superposing a 20
number of 2.4

requests (for &

example  repre- © 10
senting individ- .,

ual requests from
several users) % 200 400 L. 600 800 1000
with their interar- g re 5: Sample capacity demand
rival time mod-

elled by a poisson distributiorh (= 4) and their duration



) Costs Relative deviation from optimum costs Allocation Waste | Time (sec
Algorithm length
av a stdde min max v v av
Optimum (DP) 452304 n.a. n.a. n.a. n.a. 943 36515 9.000
PH 1010199 123.81% 32.96% 58.97% 221.713% 1000.00 645804 <0.001
MH 474027 4.79% 1.07% 2.05% 7.15% 10.65 64257 0.002
SH 568759 25.93% 10.4300 12.96% 73.65% 3.72 63295 0.010
LP 554317 22.34% 8.37% 6.12% 39.07% 2.62 424 0,452
CH[MH, SH] 469723 3.85% 0.74% 1.80% 5.34% 9.81 56064 0,005
CHILP, MH, SH] 460404 1.77% 0.70% 0.39% 3.7%% 893 41918 0.452
Table 3: SPP simulation results.
modelled by an exponential distributiop € 20)2. For cal- results can be achieved by integrating LP with MH and SH.

culating the requests’ capacity demand we draw from a In conclusion, the best results are achieved by
uniform random distribution from one out of three possible CH[LP,MH,SH], yet the most attractive trade-off between
intervals [2,8], [10,20] and [35,50] representing small, cost performance and execution time is probably achieved
medium and high capacity requests. The interval itself is by MH or CH[MH,SH].

selected for each request with a probability of 40%, 30%

and 30%. Figure 5 shows a sample problem generated i, Extension to the Multi-Provider Problem

this way. ,
Table 3 shows the results generated by the simulations. After the rather extensive treatment of the SPP, we now

Here, allocation length denotes the average duration of avant to extend our investigations along the provider model
single allocation and waste is the total waste of variable PY @ssuming more than one provider, i.e., we move to the
costs for a single SPP instance (as illustrated in Figure 4). MPP. Note that .the MP,P can also moldel a single provider

As a very simple alternative heuristic and to have a refer- that offers multiple tariffs among which can be chosen,

ence value we also used what we called the peak heuristi€-9-+ triffs comprising different fixed and variable costs

(PH) which makes a single allocation with the highest Which do not dominate each other. In line with our argu-
capacity demand over all periods. Expectedly, PH per- ment for taking an integrated view on MPRASE problems

formed very poorly compared to the other techniques. A W€ @pproach the MPP by trying to take advantage from the

much better performance at very low execution time is €chniques developed for the SPP.

achieved by the merge heuristic (MH): on average it 'In Section 2.3.2, we have modelled two differgnt ver-
imposes less than 5% additional costs relative to the opti-Sions of the MPP, an uncapacitated and a capacitated one.

mum and reduces execution time by a factor of 4500. The H€re, we want to take a look at both of them. The uncapac-
conceptually very similar split heuristic (SH) is consider- It@ted MPP represents a situation where a customer's
ably less effective. Looking at the allocation length shows démand is relatively small compared to the provider's sup-

the reason: it overdoes its job by splitting too often, result- PY such that the resulting problem consists mainly in the

ing in too short allocation lengths and thus incurring fixed S€léction of the cheapest provider. The capacitated MPP
costs more often although waste of variable costs is (CMPP), onthe other hand, rather deals with a good mixing

roughly equal to MH. of providers to achieve low total cos_ts. _

The LP heuristic performs only marginally better than _NOté that the problem complexity of MPP is much
SH, although it consumes considerably more time. This is Nigher than that of JS_PlP First, the demand of each period
due to its characteristic of underestimating fixed costs ¢@n be satisfied by different combinations of provid-
which is also expressed in a very low waste and small allo- €S @nd second, if two or more providers are selected to sat-
cation lengths. isfy t_he demand of one period therg is a high numbe_r of

Next, let us see how these results may be improved bysensmle shares between these. This higher complexity is
the combination of heuristics as described in Section 3.2.4.2/S0 illustrated by the execution times of applying the stan-
The combination of MH and SH leads expectedly to better dard branch and bound solver to model M2. A small MPP
results than the techniques in isolation. Yet, even betterWith T=20 andJ=4 already took 1920.8 seconds to solve
, _ o ' while the corresponding SPP wiil+20 only took 1.2 sec-

"We have to admit that parameter choice is rather arbitrary onds. For any larger MPPs execution times were no longer
(albeit sensible) due to lack of empirical data. However, we reasonable. With this complexity in mind we go directly for

have experimented with other values without changing the ..
results in a significant manner. heuristics and try to use our knowledge about the SPP.




4.1 SPP-Based Heuristics for the Uncapacitated Section 3.1.2, this algorithm does not necessarily lead to
MPP the optimal result as it does not allow for a constellation as

) ) o depicted for the optimal solution in Figure 6. Again, we
4.1.1 Static Cheapest Provider Heuristic (SCPHA have the freedom of selecting any of the SPP algorithms for
straightforward approach to tackle the uncapacitated MPPgqying the sub-SPPs. In our simulations, we choose again
is to transform it intoJ SPPs, one for each provider and pp and PH.

each with the full demand. The SPPs can then be solved by

any of the algorithms discussed in Section 3. After solving 4.2 Adaptation of the Heuristics for the

theJ SPPs we select the pr_owder of.the SPP with the 'e_aStCapacitated MPP

costs. That means we obtain a solution where one provider

is used for all periods. If the capacity of one provider is not enough to satisfy
In our simulations, we use DP to solve the SPPs becauséhe whole demand we can no longer simply select a single

it yields the optimal results for the SPP at affordable execu- provider in SCPH and DCPH but have to combine several

tion time. Alternatively, we use the peak heuristic to see providers. We do this by first cropping the demands in each

how non-optimal solutions for the SPP will affect the result SPP to the capacity of the according provider. We then

for the MPP.

4.1.2 Dynamic Cheapest Provider Heuristic (DCPH).
One drawback of

SCPH is that it SCPH

does not allow Pro-p, e —
vider changes.p3

Using a technique |
similar to the bCPH

dynamic program-
ming  algorithm E; -— —
from Section 3.1.2p3

we can eliminate >
this characteristic
of the SCPH. TheP1

resulting algo- P2 -F
rithm is called 73 >

dynamic cheapesgigyre 6: Provider usage of the differ-

provider heuristic  gnt algorithms for the MPP.
(DCPH). This is

also illustrated in
Figure 6.

We use the
same algorithm as p1
in Section 3.1.2, P2
but the minimal P3
costsC(ty, ty) for

Optimal Solution

SCPH

satisfying the DCPH

demand between P; —

two periodst; and §3 = —
t2 are Obtained by P4 ]
solving J inde- -

pendent SPPs for 1
the interval {1, t)]  p»
and choosing the p3
cheapest pro- P4
vider. Unlike the
DP algorithm
from

Optimal Solution

I
-

Figure 7: Provider usage of the differ-
ent algorithms for the cMPP.

solve the SPPs for all providers and select the provider
that has the minimum costs per satisfied demand. The over-
all demand is then reduced by the capacity served by the
selected provider and the procedure is repeated until no
more demand remains unsatisfied. Example allocations are
shown in Figure 7.

Please note that the non-zero demand assumption in sec-
tion 2.3.1 can now no longer be held and model M1 as well
as the heuristics of Section 3.2 had to be adapted to cope
with periods of no demand.

4.3 Other Heuristics for the MPP

4.3.1 LP Heuristic (LP).Of course, we can again use the
results of the LP relaxation for M2 and M3 to obtain a solu-
tion for MPP/cMPP.

4.3.2 Merge Heuristic (MH).We adapted the merge heu-

ristic to the multi-provider case and to the capacity con-
straints and combined it with DCPH and LP in order to
investigate whether it can improve their solutions.

4.4 Simulations for Qualitative Assessment of the
Heuristics

In order to evaluate the MPP heuristics described above
we ran a simulation over 50 MPP instances similar to the
simulations in Section 3. Because of the much higher com-
putational complexity we reduced the number of peridds
from 1000 to 100. We used 10 providers and three different
levels of capacity: first the uncapacitated MPP, second a
cMPP with the capacity of each provider drawn from
[30%, 50%] of the maximum demand over all periods, and
third a cMPP with provider capacity drawn from [15%,
35%].



identically, although the SPP heuristics are very different.

Table 6: Results for the capacitated MPP

Total Av.
Algorithm Costs ALIE:' Waste |Num.of| Num. of Even if using the simple PH as SPP solver the results are
' Prov. | Prow. very good (in contrast to SCPH(PH)). The explanation for
SCPH (PH) 50563 100.00 350954  1.00 1joo this behaviour is that the use of the dynamic programming
SCPH (DP) 36428 828 31271 100  1.00 garadlgm as provider selescggn tstr(:[attegy makesg;t\;{zt use of
ynamic programming as strategy unnece e
p S . e
DCPH (PH) 31999 76 29751 540 1.p0 that MH is ineffective for DCPH because within its range
DCPH(DP) || 31999 7.62 29751 510 100 (e, only one provider at a time) the solution is already
CHI[DCPH (PH), i isti i i
[ o (PH. 31004 762 20781 540 100 Optimal. The LP heuristic shows the same behaviour as in
the SPP case and can again be further improved by MH.
LP 2 b . 2 -
39165 25 35 3.28 1.27 In Table 5 and 6 . Execution
CHILP, MH] || 35246 555 27269 328 1.p7 the results for the Algorithm Time (sec)
: cMPP with high
. . SCPH (PH .
Table 4: Results for the .uncapacnate(.j MPR. respectively  low (PH) 0.010
The results for the uncapacitated MPP simulations are capacity providers SCPH (DP) 0.397
displayed in Table 4. Here, the total number of providers g given. Now DCPH (PH) 0.689
denotes how many of the providers were selected at leashcpH with DP is DCPH (DP) 243.073
once by a heuristic Whereqs average number of pr‘?V'derSsignificantly bet- ["CH[DCPH (PH), MH 0,689
expresses how many providers were on average simultatar than with PH.
neously active. Since more pro- LP 2.323
ol T A viders are involved CHILP, MH] 2.323
Algorithm Costs Alloc. Waste | Num. of | Num. of at the sgme time Table 7: Execution times.
Length Prov. | Prov. there is  now
potential for more intelligent SPP strategies such as DP.
SCPH (PH .. . )
(PH)|| 65548 321y 320415 3.4 314 Not surprisingly, the number of providers in the low capac-
SCPH (DP) || 38890  7.64 31421 304 180ty provider case is higher.
DCPH (PH) || 38048 563 45981 6.68  1.88 To make recommendations for the MPP heuristics we
DCPH (DP) || 35650 6.72 29182 5.52 1.79 also have to take into account the execution times of the
CH[DCPH different alternatives as given in Table 7. While DCPH(DP)
(PH), MH] || 3699Q 721 49292 664  1.88 exhihits the best cost performance it needs considerably
LP 44334 221 10 4.96 205 Mmore t_in;ne tlhar;] thesoér;elf' r1De|lDJri§tics. If erﬁu_tion time plays
CHILP, MH] || 38010 504 273ds 496 2ps 2cruciairoethen (DP) s a good choice.
Table 5: Results for the capacitated MPP 5. Related Work
(high capacity providers). o i ) ]
It is difficult to find directly related work since our
Alloc Total Av. MPRASE approach is very general and other work mainly
Algorithm || Costs Lengfh Waste | Num. of [Num. of treated individual MPRASE problem incarnations in isola-
Prov. | Prov. tion. Yet, interestingly, work done in the field of renegotia-
SCPH (PH) || 62219 19.6D 348896 5.18 58 ble services, e.g. [15,16] , arrives at very similar algorithms
SCPH (DP)|| 37084 7.42 34826 468 2177 to calculate renegotiation schedules for stored video trans-
missions which furtherly emphasizes the general structure
DCPH (PH 5 22 . . .
(PH) || 3910 S-2¢ 58985 758 2 35 of the MPRASE framework for problems found in the
DCPH (DP) || 34976 ~ 6.52 29759 636 258 domain of providing network QoS. However, the emphasis
E:PI—||_|[;DCI\:APHI—]| 37168 761 63301 700 275 of [15,16] is on the definition of renegotiable ;ervices and
’ not so much on algorithms and their evaluation whereas
LP 45167  2.04 78 572 275 this is the main focus of our paper.
CHILP, MH] || 37860 5.25 32848  5.72 .75 Relating to the analysis of dynamic provisioning in a

multi-provider environment (in particular a DiffServ envi-
ronment), the work described in [17] gives very interesting

(low capacity providers).
DCPH is obviously and expectedly significantly better

than SCPH, however all DCPH-based heuristics perform

insights into the global behaviour of such a system by

3-This is due to the fact that under the further constraint of

using only one provider at a time DCPH is an exact algorithm.
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