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odel of the MPRASE model captures the num-
a single or multiple customers are considered, and
i.e., whether demand may be dissatisfied or be
. In the case that multiple customers exist the total
ividual customers’ demand that is .
chanism the number of served customersn is

egraded quality the amount of the demanddi of a
e provider becomes flexible itself.

er model is displayed in Table 1. We describe the
ing both parameters of Table 1. The abbreviation
is value does not need to be specified, it is the
del consisting of a single customer with inflexible
pressed by “1” while a model containing multiple
d quality are identified with “NDQ” or “N, DQ”.

del encompasses the number of providers and
aving limited or unlimited capacity. While the lat-
plifying, yet valid assumption for the case where
ery high probability.

Value Abbrev.

single Customer 1

multiple Customers N

inflexible
(satisfied 100%)

-

dissatisfied/admission control
(satisfied 0 or 100%)

AC

degraded quality
(satisfied between 0 and 100%)

DQ

 1: Customer Model

Value Abbrev.

ers single Provider 1

multiple Providers N

ity unlimited -

limited Cap

 2: Provider Model

D dii 1=
n∑=
hich we call theproviders. Note that the customers can be end-users or them-
lves providers for other customers (at another edge). There is a third party

volved, theintermediaryinstance that is located at the edge. The intermediary
es to mediate between the two by selecting providers on the one hand and
forcing admission control of the customers on the other hand. Note that the

gical separation of the intermediary instance from customer and provider does
t necessarily imply that it may not belong to either customer or provider pre-

ises, in fact, this will usually be the case. If the intermediary is, e.g., imposing
mission control, he will usually belong to the provider’s premises.
Allocating the resources to satisfy the customers demand incurs certaincosts
hich need to be accounted for by the customers. These costs can be real (mone-
ry) costs, computational costs, purely fictive / calculatory costs or a mix of
ose.
The demand changes over thetimeso that resources might be reallocated. Let
now look at the different components / submodels of the structural model for

PRASE.

2.2 The 6 Submodels
2.2.1 Customer.The customer m
ber of customers, i.e., whether
the flexibility of the demand,
served with a degraded quality
demandD is the sum of the ind
With an admission control me
becoming variable while with d
customeri that is satisfied by th

The taxonomy for the custom
customer submodel by specify
“-” in that table means that th
default. A simple customer mo
demand would therefore be ex
customers that accept degrade

2.2.2 Provider.The provider mo
whether they are modelled as h
ter is unrealistic it can be a sim
supply exceeds demand with v

System Edge
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Resources
Costs

Resources

Costs

Resources Provider
Provider

Provider
Provider

Customer
Customer

Figure 1: MPRASE problem structure.
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Value Abbrev.

rallocation /
etup Costs)

Non-Existent -

Existent F

Infinite Setup Costsa F

nt ofallocated
rces per time

Non-Existent -

Existent V

ed resources
per time

Non-Existent -

Existent U

fquested but
rces per time

Non-Existent -

Existent R

le Costs per

d customerb
Non-Existent -

Existent P

: Cost Model Elements

d and infinite fixed costs for all other periods. This effec-
simplifies the resulting problem. We introduce this special
ill be used quite often in the MPRASE problems below.

egative term modelling the profit per served customer.

Value Addition

Linear -

Non-Linear and Convex cx

Non-Linear and Concave cv

Otherwise Non-Linear nl

Costs can vary between
different periods

-

osts remain equal for all periods =

Costs are unconstrained -

Budget constraint budg

Time constraint time

 Cost Model Additions

∞

The taxonomy for the provider model is displayed in Table 2. A simple pro-
der model with a single provider that has unlimited capacity would therefore be
pressed by “1” while a model containing multiple customers with limited
sources are identified with “NCap” or “N, Cap”.

2.3 Resource.This component models the resources, i.e., whether they are
e- or multidimensional or whether they are provided on a deterministic or sta-
tical basis.

A one-dimensional deterministic resource like guaranteed bandwidth is
pressed by “1”, a token bucket would be described by “NTB“. The taxonomy is
mmarized in Table 3, we specify abbreviations for some well-known multi-
mensional resource models in Table 4.

2.4 Cost.The cost model seizes the cost structure for allocation requests, i.e.,
hether these incur certain setup or transactional costs or whether the number of
quests is bounded and how variable costs for resource allocations are modelled,
g., linearly or non-linearly. Please note that costs do not have to be monetary
sts, they can also reflect imputed or fictive/ calculatory costs. Please note, too,
at profit is in effect negative costs and is thus included in the cost model. The
rm “cost” is also used if we refer to purely technical constraints.2

Table 5 specifies the different types of costs that can be used, Table 6 specifies
e properties of those cost types. A budget constraint means the following: for

Parameter Value Abbrev.

Dimensions one-dimensional Resource 1

multi-dimensional Resource NType

Stochastic Behaviour deterministic -

statistical Stat

Table 3: Resource Model

Parameter Value Abbrev.

Buffer + Rate Token Bucket TB

n-Level Token-Bucket
(n=2 equals a TSPEC)

n-TB

Leaky Bucket LB

Table 4: Some Multi-Dimensional Resource Models

2. This is because if we model the problem mathematically we need the same kind of variable to
measure the number of reallocations independent of whether we use it for calculating real fixed
costs or as a technical constraint; see e.g. M1.

Parameter

Fixed Costs pe
reallocation (= S

Variable Costs per amou
resou

Variable Costs per amount ofus

Variable Costs per amount ore
not satisfied resou

Variab

serve

Table 5

a. Finite fixed costs for the first perio
tively prohibits reallocations and thus
notation because this simplification w
b. This will in many problems be a n

Parameter

Linearity

Time dependent costs

C

Cost-Constraint

Table 6:
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2.

rce | Cost | Intermediary | Edge.
he MPRASE problem incarnation with one cus-
ensional resource, linear fixed setup and variable
under deterministic knowledge.

ASE Problems
t problem incarnations from the MPRASE frame-
and encompasses all problems discussed later in
he smallest non-trivial problem of the framework.
ion of the second problem as the results come in
SE problems.

izing Social Welfare at the Edge
overall goal at an edge between a number of

maximize social welfare. Thus we first look at a
x MPRASE problem incarnation which models an
tomers and a number of providers where the inter-
ocial welfare.
nsiderable number of customers, the intermediary
them. Additionally the providers are allowed to
ers’ demand (degraded quality), although doing
us the customer model is „NAC,DQ“.

with limited capacity; the provider model is there-

Value Abbrev.

All *

Cost Term F,V,U,R,C...

Demand D

get / Technical Constraint(s) Budg / Tech

Provider’s capacity Cap

...

Deterministic -

Stochastic S

Discrete Stochastic D

Total Uncertainty T

le 8: Edge Model
e related cost term that only a limited budget is available which can not be
ceeded. This can also be used in a plain technical context: If all setup costs are
and the budget is N we only allow a maximum of N reallocations/allocations.
ith a time constraint we describe that - again using the setup costs as example -
ere has to be a certain time interval between two reallocations.
To specify the cost model in the taxonomy we list all existent cost terms plus
e necessary additions for each cost term. Linear fixed and variable allocation
sts are described by “FV” while “F=Vnl” would denote linear fixed setup costs
at are equal for all periods and non-linear changing variable costs.

2.5 Intermediary.Note that the intermediary is the component where solution
chniques towards MPRASE problems are conceptually located. Mathemati-
lly speaking, it captures the target function of the optimization problem that is
scribed by the taxonomy.

If all cost terms of the cost model are to be optimized (minimized) this is indi-
ted by “*”. A combination of the cost model “FbudgV” with intermediary
odel “V” means that only the variable costs are to be minimized, the fixed setup
sts only have to remain below their budget constraint.

2.6 Edge.The edge model encompasses the nature of knowledge about the
oblem parameters at the system edge. Deterministic knowledge means that we
ow the exact values of the parameter for all periods. If the knowledge is sto-
astic, we do not know the exact value of the parameter for the future periods
t have some knowledge of statistical nature about it, e.g., the probability distri-
tion. Discrete stochastic means that the parameter set is chosen from a number
known scenarios. And we speak of total uncertainty if no assumptions about

e parameter can be made.
For the taxonomy we specify the parameters that are not deterministic and
scribe their uncertainty with a small index (S, D or T). So if every parameters
deterministic instead of the future demand which is totally uncertain we would
rite “DT”. If all parameters are deterministic we write “*”.

3 The Complete Taxonomy
We can now describe each MPRASE problem incarnation by describing all of

the six components as follows:
Customer | Provider | Resou
1|1|1|FV|*|* thus describes t

tomer, one provider, a one-dim
costs that are to be minimized 

3.  Selected Abstract MPR
We now present two abstrac

work. The first is very complex
this paper while the second is t
We concentrate on the discuss
handy later for the other MPRA

3.1 General Model: Maxim
3.1.1 Problem Formulation.The
customers and providers is to
very general but rather comple
edge between a number of cus
mediary’s goal is to maximize s

We assume that there is a co
performs admission control on
dissatisfy a part of the custom
this imposes costs on them. Th

There are multiple providers

Parameter Value Abbrev.

Part of the Target Function All Cost Terms *

Individual Cost Terms of the
Cost Model

F,V,U,R,C...

Table 7: Intermediary Model

Parameter

Parameter

Bud

Uncertainty

Tab
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RASE framework and show that it is sensible to
ms edges in an integrated fashion.

o change the customer model to „1“ parameter
ping the „AC“ (admission control) in the customer
ll ai to 1 in (19). Dropping the „DQ“ (degraded
ll to infinity. Changing the provider model to

ity is done by setting all and to infinity.
to „1“J has to be set to 1.
rce model „1“ shall be used instead of a token

e set to zero. To drop „Ftime“ from the cost model
nly allow one allocation in the first period and for-
ost model has to be replaced withF . This is

 to infinity for all but the first period.
blems of M1 are modeled and solved in the fol-

roblem (SPP)
ile M1 is the most complex and comprehensive
ere, the single provider problem is the most sim-
em. In terms of the MPRASE taxonomy it is
mer that has one-dimensional capacity demands
every discrete time intervalt = 1,...,T. The edge is
ested from a single provider who is charging a
allocation and variable allocation costs per

iod. A new allocation is constituted by a change in
d capacity is available in the period the allocation
periods until the next allocation is made. Note that
lly used capacity causes the costs.

.At first we want to look at techniques that
al solution for the SPP.

 Linear Programming (LP) Relaxation.
the single provider problem SPP is to use a mixed

r to solve M2. A typical algorithm for solving a
nch and bound algorithm that uses the LP relaxed

e easily solved with the simplex algorithm. The
to the optimal solution of M2. Branching can be

cit
u

Cjt
r Cjt

d

∞
t

ct
r

re „N Cap“. We use a token bucket as resource model: „NTB “. There are fixed
tup costs for each (re)allocation. As a technical limit for the reallocations there
a minimum time that has to pass between to reallocations at the same provider.
ere are variable costs imposed for the token bucket parameters, degraded qual-
leads to costs as well as rejecting customers leads to lost profit. The cost

odel is thus „FFtimeVRC“ . The intermediary tries to maximize social welfare
d thus embraces all costs („*“ ) and for ease of description we look at the deter-

inistic version of the problem, leading to„*“  as edge model.
In terms of our taxonomy the problem is described by
NAC,DQ | NCap | N

TB | FFtimeVRC | * | *.
It is formulated in MIP (Mixed Integer Programming, [32]) form as M1. The
cial welfare is the total utility of the providers and the customers, it is maxi-
ized in (1) and consists of the profit for accepting customeri minus the costs for
e resource allocation, consisting of the fixed setup costs and the variable costs
r the token bucket rate and depth, minus the costs for degraded quality.
For M1 we assume that all the cost terms are non-negative and that the profitpi
customeri is lower than so that there is an incentive to impose
mission control.
In M1 the constraints (3) to (6) forcesijt to 1 whenever a reallocation is made,
dicated by a change inrijt and/ordijt . Constraints (7) and (17) set the variable
to the unsatisfied demand but not smaller than zero. (8) updateslijt , the tokens
the bucket at the end of periodt are the ones left from last period plus the cur-
nt rate minus the tokens used to satisfy demand as expressed byvijt . (9) makes
re that there are never more tokens in the bucket than the bucket depth at the
d of the period. The provider’s maximum rate and bucket depth is accounted

r by (10) and (11). (12) is the technical constraint that makes sure that realloca-
ns can only occur once every∆T periods. (13) to (19) are the non-negativity
d binary constraints for the variables.

1.2 Solution.As M1 is a MIP problem it can be solved with standard MIP solv-
g techniques like branch and bound with LP relaxation [32]. This is however
t necessary. A huge system edge between customers and providers as assumed
M1 cannot be solved centrally in the Internet because of the scalability issues

volved. There is no central intermediary in the Internet that could ever manage
l requests from the customers. Proposals like [46] that rely on a central interme-
ary (there called broker) are generally regarded as unrealistic approaches.
The goal of M1 must be aimed at with distributed algorithms. Therefore we do
t intend to look for algorithms that solve M1, instead we use M1 to show that a
mber of problems in the literature are actually subproblems of M1. Thus we

prove the generality of the MP
look at these problems at syste

3.1.3 Modelling Subproblems.T
I in M1 has to be set to 1. Drop
model is reflected by forcing a
quality) is reflected by setting a
providers with unlimited capac
To change the provider model 

If the one-dimensional resou
bucket model all have to b
∆T has to be set to zero. If we o
bid all reallocations „F“ in the c
done by setting the setup costs

Many of the possible subpro
lowing parts of the paper.

3.2 The Single Provider P
3.2.1 Problem Formulation.Wh
MPRASE problem discussed h
ple non-trivial MPRASE probl
1|1|1|FV|*|*. There is one custo
bt that must be fully satisfied at
deterministic. Capacity is requ
fixed setup cost for each
reserved capacity unit and per
the allocated capacity. Allocate
is made and in all subsequent
the allocated and not the actua

3.2.2 Exact Solution Algorithm
guarantee to produce an optim

3.2.2.1 Branch and Bound with
A standard approach to solve

integer problem solver in orde
mixed integer LP model is a bra
problem M3 of M2:

The resulting problem can b
solution of M2’ is a lower bound

cit
u

bitt∑i∑

Cjt
d

cj
s

ct
s



M

In

V

P

(1)

(2)

, , (3)

, , (4)

, , (5)

, , (6)

, (7)

, (8)

, , (9)

, (10)

, (11)

, , (12)

, , (13)

, , (14)

, , (15)

, , (16)

, (17)

, , (18)

(19)

j t
s sijt cjt

r r ijt
t

∑
j

∑
i

∑–

cit
u uit

t
∑

i

i∀ j∀ t∀

i∀ j∀ t∀

i∀ j∀ t∀

i∀ j∀ t∀

i∀ t∀

i∀ t∀

i∀ j∀ t∀

j∀ t∀

j∀ t∀

i∀ j∀ t∀ 1 ..., T-∆T,=

i∀ j∀ t∀

i∀ j∀ t∀

i∀ j∀ t∀

i∀ j∀ t∀

i∀ t∀

i∀ j∀ t∀

i∀
1 Basic MPRASE Model
(Variables and Parameters)

dices:

i Index for customersi = 1, ...,I

j Index for providersj = 1, ...,J

t Index for periodst = 1, ...,T

ariables:

rijt Allocated token bucket rate for customeri by providerj in periodt.

dijt Allocated token bucket depth for customeri by providerj in periodt.

lijt Amount of buckets left in token bucket of customeri at providerj at the end of pe-
riod t.

sijt Auxiliary binary variable for accounting the setup costs. Set to 1 if customeri real-
locates resources (bucket rate and/or depth) at providerj in periodt and to 0 other-
wise.

ai Binary variable, set to 0 if customerj is rejected by the admission control and to 1
otherwise.

vijt Amount of demand by customerj in periodt that is satisfied by providerj.

uit Amount of unsatisfied demand of customerj in period t.

arameters:

bit Demand of customeri in period t.

Setup costs of providerj in period t.

Costs per allocated rate of providerj in period t.

Costs per allocated bucket depth of providerj in periodt.

Costs per unsatisfied demand (degraded quality) of customeri in periodt.

Maximum total rate available at providerj in periodt.

Maximum total bucket depth available at providerj in periodt.

pi Profit for accepting customeri.

rij0 = 0. Rate allocated for customeri at providerj before the first period.

dij0 = 0. Bucket depth allocated for customeri at providerj before the first period.

lij0 = 0. Tokens in the bucket of customeri at providerj before the first period.

M M is a sufficiently high number ( ).

∆T Time interval that must pass between two (re)allocations.

cjt
s

cjt
r

cjt
d

cit
u

Cjt
r

Cjt
d

max bit i∀ t,{ }

M1 Basic MPRASE Model

Maximize

subject to

piai
i

∑ c
t

∑
j

∑
i

∑–

cjt
d dijt

t
∑

j
∑

i
∑– ∑–

r ijt r ijt 1–– M sijt⋅≤

r ijt 1– r ijt– M sijt⋅≤

dijt dijt 1–– M sijt⋅≤

dijt 1– dijt– M sijt⋅≤

uit aibit vijt
j

∑–≥

l i jt l i jt 1– r ijt vijt–+≤

l i jt dijt≤

r ijt
i

∑ Cjt
r≤

dijt
i

∑ Cjt
d≤

sij τ
τ t=

t ∆T+

∑ 1≤

r ijt 0≥

dijt 0≥

sijt 0 1,{ }∈

l i jt 0≥

uit 0≥

vijt 0≥

ai 0 1,{ }∈
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which leads to very loose bounds. Therefore, we
ill exact algorithms for the SPP.

 (DP).
ertext1 to vertext2. The costs (or length) of edge

. (7)

e solved efficiently with the following algorithm
ramming paradigm [1] and has a complexity of

on Times.Table 9 shows the execution times for
wo differently sized problem instances.

hms.The last section introduced exact solu-
le they provided fairly good performance still
nal effort that might be prohibitive in scenarios
mber of periods to be planned for or where there is
unt of time available for computation as, e.g., if
in response to signalling messages and thus affects

B&B DP

1920.7 0.0026

n.a. 9.0

mes for exact SPP algorithms (in sec).

t t1 ... t2, ,{ }∈ )

arraycMin and an empty arraypred, each

t) + cMin(i-1) | i = 1, ...,t}
(i, t) + cMin(i-1) | i = 1, ...,t}

s the minimal costs while arraypred
wards that solution.

mic Programming (DP) Algorithm.
ne by fixing the highest not yet fixedst to 1 in the first and to 0 in the second
bproblem.
Even for this very simple MPRASE problem incarnation an example with only
periods took already 33 minutes to be solved3. Problems with more than 100

riods could not be solved within several days. The reason for this is that the
ructure of the problem does not make it very amenable to branch and bound
gorithms sincest are often set to very low values greater 0 resulting in a vast

underestimation of fixed costs
strived for more efficient, yet st

3.2.2.2 Dynamic Programming
Let (t1, t2) be the edge from v

(t1, t2) are defined as

With this, the problem can b
which uses the dynamic prog
O( ) (see Figure 2).

3.2.2.3 Assessment of Executi
all of the exact algorithms for t

3.2.3 Heuristic Solution Algorit
tions for the SPP, which whi
required a certain computatio
where there is either a large nu
only an extremely limited amo
the resource allocation is done

3. All experiments have been performed on a 400 MHz Pentium II processor using the
commercial MIP Solver CPLEX [11].

M2 Single Provider Problem - SPP

Variables:

rt Amount of reserved capacity in periodt = 1,...,T.

st Binary variable, 1 if a allocation setup is made at beginning
of periodt = 1,...,T and 0 otherwise.

Parameters:

bt Demanded capacity in periodt = 1,...,T. Demand is as-
sumed to be greater than 0.

Setup costs in period t.

Costs per allocated rate in period t.

r0 Allocation level before the beginning of the first period.

M M is a sufficiently high number (e.g., max {bt}).

Minimize (1)

subject to

(2)

(3)

(4)

(5)

ct
s

ct
r

ct
sst

t 1=

T

∑ ct
r r t

t 1=

T

∑+

r t bt≥ t∀ 1 ..., T,=

r t r t 1–– M st⋅≤ t∀ 1 ..., T,=

r t 1– r t– M st⋅≤ t∀ 1 ..., T,=

st 0 1,{ }∈ t∀ 1 ..., T,=

M3 LP Relaxation of M1 (SPP)

The binary condition (5) is dropped from M1 and replaced by

(6)0 st 1≤ ≤ t∀ 1 ..., T,= Algorithm

T=50

T=1000

Table 9: Execution ti

C t1 t2,( ) ct1

s cτ
r max bt(⋅

τ t1=

t2

∑+=

T2

Preparation:

Prepare an empty
with T entries.

Start:

cMin(1) = C(t1, t1)
pred(1) = 1

Iterationt = 2, ...,T:

cMin(t) = min{C(i,
pred(t) = argmin{C

Result:

cMin(T+1) contain
stores the hops to

Figure 2: Basic Dyna
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], [10,20]
, medium and high capacity requests. The interval
st with a probability of 40%, 30% and 30%. Fig-
 generated in this way.
generated by the simulations. Here, allocation

ration of a single allocation and waste is the total
ngle SPP instance (as illustrated in Figure 3).
heuristic and to have a reference value we also
euristic (PH) which makes a single allocation with
over all periods. Expectedly, PH performed very
chniques. A much better performance at very low
the merge heuristic (MH): on average it imposes
elative to the optimum and reduces execution time
ptually very similar split heuristic (SH) is consid-
t the allocation length shows the reason: it over-

ten, resulting in too short allocation lengths and
often although waste of variable costs is roughly

nly marginally better than SH, although it con-
. This is due to its characteristic of underestimating
essed in a very low waste and small allocation

sults may be improved by the combination of heu-
3.2.3.4. The combination of MH and SH leads
an the techniques in isolation. Yet, even better

ct
s

r choice is rather arbitrary (albeit sensible) due to lack of
 experimented with other values without changing the
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Figure 4: Sample capacity demand
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tup latencies. Therefore, we now want to investigate heuristic techniques which
not guarantee an optimal solution but allow very fast allocation decisions. A

rther reason for investigating heuristics becomes obvious when we extend the
P techniques towards other MPRASE problems later in this paper when we
metimes end up having to solve huge numbers of SPPs.

2.3.1 LP Heuristic (LH).The LP heuristic is solving the LP relaxation M3 of
ction 3.2.2.1 to determine the amount of allocated capacity. After solving M3

sing the simplex algorithm), any is set to 1 wherever necessary (that is,
herert andrt-1 differ). This leads to a relative high number of allocations since
ed costs are systematically underestimated by allowing continuousst.

2.3.2 Merge Heuristic (MH).The
erge heuristic starts with a separate
location for each period and then
es to merge two successive alloca-
ns into one if the saved fixed costs
the allocation are less than the
ste of variable costs (see Figure 3

r an illustration of this).

2.3.3 Split Heuristic (SH).The
lit heuristic starts with a single allo-
tion and then tries for all periods to
lit existing allocations if the fixed costs for the new allocation are less than the
ved waste of variable costs.

2.3.4 Combined Heuristics (CH[x,y]).The merge and split heuristics can also
used to further improve the results of other heuristics. In our simulations we

erefore iterated through merge and split in sequence until no further improve-
ent could be achieved (CH[MH, SH]). Moreover, we also tried the combination
 merge and split based on the result of the LP heuristic (CH[LP,MH,SH]).

2.4 Evaluation.In order to evaluate the performance of the heuristics we ran a
mulation over 100 random problem instances, each withT=1000, fixed costs

∈ [200,800] drawn from a uniform random distribution once and then set
ual for allT periods. Variable costs are drawn from [3,5] and remain equal

r p periods;p is drawn from [10,20].

The demandbt is calculated b
posing a number of requests (
ple representing individual
from several users) with their
rival time modelled by a Poiss
bution (λ = 4) and their d
modelled by an exponential dis
(µ = 20)4. For calculating the r
capacity demand we draw fro
form random distribution from
of three possible intervals [2,8
and [35,50] representing small
itself is selected for each reque
ure 4 shows a sample problem

Table 10 shows the results
length denotes the average du
waste of variable costs for a si

As a very simple alternative
used what we called the peak h
the highest capacity demand
poorly compared to the other te
execution time is achieved by
less than 5% additional costs r
by a factor of 4500. The conce
erably less effective. Looking a
does its job by splitting too of
thus incurring fixed costs more
equal to MH.

The LP heuristic performs o
sumes considerably more time
fixed costs which is also expr
lengths.

Next, let us see how these re
ristics as described in Section
expectedly to better results th

st 0≠

time

cap./sec

allocation 1

allocation 2waste

Figure 3: Waste of variable costs.

allocation
demand

ct
r

4.We have to admit that paramete
empirical data. However, we have
results in a significant manner.
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ere is no uncertainty with regard to a parame-
is known at the time the decision is made. We then
M2 was an example for a model which has only

rameters like future bandwidth demand which
optimization process can be and in practice often
of uncertainty can be distinguished for a parame-

known about which values the parameter will
n do in this case is to try to react flexibly and learn

eter took. Section 4.3 gives an example for an
tal uncertainty and presents an efficient and flexi-

xact value the parameter will take is not known
ws the probability distribution of the parameter
redictions about the parameter. [16] and [54] are
stochastic uncertainty for bandwidth allocation
point of view by assuming sources with on-off

nty: The parameter is drawn from a discrete set of
rtain probability. The set is typically modelled as a
pproach is discussed below in more detail as it is
on 4.2.

Waste Time (sec)

av av

36515 9.000

00 645804 < 0.001

5 64257 0.002

2 63295 0.010

2 424 0.452

1 56064 0.005

3 41918 0.452
sults can be achieved by integrating LP with MH and SH.
In conclusion, the best results are achieved by CH[LP,MH,SH], yet the most
tractive trade-off between cost performance and execution time is probably
hieved by MH or CH[MH,SH].

2.5 Related Work.The deterministic single provider problem is treated in
ore detail in [27] and [26]. The algorithms for the single provider problem are
tremely useful for many other MPRASE problems and are reused several times
 the following chapters.

  Selected Uncertain MPRASE Problems

1 Background on Uncertain Optimization Models
Many decisions and optimizations in the areas of network design, traffic engi-
ering and other resource allocation problems are based on uncertain data due to

e relatively long timescales on which these mechanisms operate. In this section
e derive several fairly general strategies for dealing with uncertain problems of
e MPRASE framework.

1.1 Stochastic Programming.We will use methods from stochastic program-
ing in this section. Stochastic programming deals with optimization under
certainty and was introduced in 1955 by Dantzig [12]. Good overviews on sto-
astic programming are given in [38, 63, 73, 24]. Many economical problems
e solved using stochastic programming; e.g., a case study that uses stochastic
ogramming for capacity planning in the semiconductor industry can be found
 [39].

4.1.2 Modeling Uncertainty.If th
ter the value of that parameter
call that parameterdeterministic.
deterministic parameters.

4.1.2.1 Types of Uncertainty.Pa
form the basis for a decision or
are uncertain. Several degrees
ter:
• Total uncertainty: Nothing is

take. The best thing one ca
from past values the param
MPRASE problem under to
ble self-learning algorithm.

• Stochastic uncertainty: The e
but the decision maker kno
and can thus make some p
typical works that deal with
problems from a provider’s
traffic.

• Discrete stochastic uncertai
values, each value has a ce
number of scenarios. This a
the approach taken in Secti

Algorithm
Costs Relative deviation from optimum costs

Allocation
length

av av stddev min max av

Optimum (DP) 452304 n.a. n.a. n.a. n.a. 9.43

PH 1010199 123.81% 32.96% 58.97% 221.73% 1000.

MH 474027 4.79% 1.07% 2.05% 7.15% 10.6

SH 568759 25.93% 10.43% 12.96% 73.65% 3.7

LP 554317 22.34% 8.37% 6.12% 39.07% 2.6

CH[MH, SH] 469723 3.85% 0.74% 1.80% 5.34% 9.8

CH[LP, MH, SH] 460404 1.77% 0.70% 0.39% 3.75% 8.9

Table 10: SPP simulation results.
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, 21]), potentially in support of business-critical
tuates heavily over the course of a day with peaks
on hours and far lower demand in the night hours
he week with ups on the weekdays and downs on

43, 74, 25] has shown that it is generally favorable
r to allow renegotiation of bandwidth allocations.
ring phases of low demand and the provider can
of the network. Among other findings, the simula-
t without renegotiation the costs increase consid-
in our settings). A lot of research in the area of

e to increase the flexibility of VPNs [14, 41, 36,
e renegotiations easy and common.
s critical applications renegotiation can be a dan-
ustomers are given no guarantees that they obtain

they need for their peak demands as the provider
uch times leading to a rejection of the request.

if renegotiation is combined with reservation in
request their increased bandwidth ahead of time.
f running out of bandwidth for business critical

section that they will usually still save costs. So
 customers to use reservation in advance.
vation in advance the provider has a better progno-
ork in advance which may allow him in turn to

more efficiently at further providers, yet the latter
this paper. We assume that if there is not enough
dvance that either the provider allocates the miss-

der or the customer changes providers.
lem we take the viewpoint of a (e.g., VPN) cus-
(e.g., for one of the trunks of his VPN) in advance
andwidth-assured VPN service). The problem for
d forecast is necessarily uncertain.
blem is the MPRASE problem incarnation
an uncertain edge (discrete stochastic demand)
e provider, uses a one-dimensional resource model
ed and variable costs. Our prior discussion of the
as the VPN provisioning problem is quite similar
rtain parameterbt for periodt =1,...,T. Using the

.1.2 we assume that we have a numberSof scenar-
1.2.2 Modeling Uncertainty with Scenarios.The idea of modeling uncer-
inty with scenarios has its roots in scenario analysis [49, 47]. Scenario analysis
a method for long-range planning under uncertainty. Conformant and plausible
mbinations of the realizations of all uncertain parameters yield a number of
enarios. These scenarios form the basis for the following decision process (e.g.,
production plan is based on the assumption that one of the three scenarios will
cur: “prices and demand go up”, “prices fall slightly and demand remains
ual”, “demand goes back and prices fall heavily”). An application example and

erature overview is given in [39].
However, describing uncertainty with a range of scenarios also makes sense for
ort- and mid-range planning and is often used for stochastic programming [38,
, 63] as it has some crucial advantages over using a parametrized probability

stribution:
It is easy and intuitive for the decision maker to create the scenarios, they
could also be created automatically [22].
Scenarios are easy to analyze, their plausibility can be approved easier than by
creating a mathematical probability distribution.
Scenarios are flexible, every kind and number of possible events can be easily
accounted for in the scenarios.
Finally, scenarios can be used as a discretization of probability distributions
for numerical algorithms.

1.3 Robustness.The notion of robust plans stems from decision theory [63].
ecision makers are typically evaluated ex post by how good their proposed plan
rformed in reality (i.e., in the scenario that actually occurred). As they can

ose their job and career when their plan performs badly in the occurring sce-
rio and this typically outweighs the praise if the plan performs well, clever
cision makers are risk-averse to a certain degree and biased towards robust

ans. A robust plan is a plan that is judged positive in most of the scenarios and
es not perform too badly in any of the scenarios.

1.4 Strategies for Dealing with Uncertainty.
In the following two sections we examine two MPRASE problems that act
der varying degree of uncertainty to demonstrate various strategies that deal

ith uncertainty.

2 VPN Provisioning
2.1 Problem Formulation.In this section, we look at a customer that needs a
nsiderable, varying amount of network resources (e.g., bandwidth) over long
escales, for example for a provider provisioned virtual private network (see

IETF working group ppvpn, [9
applications. The demand fluc
in the late morning and afterno
as well as over the course of t
the weekend.

Previous research work [23,
for both customer and provide
The customer saves costs du
make better use of the capacity
tions in this section confirm tha
erably (at least by a factor of 3
virtual private networks is don
35, 48], a trend which will mak

On the downside, for busines
gerous mechanism because c
the higher amount of bandwidth
could run out of resources in s

This problem can be avoided
advance. Customers can now
They can thus avoid the risk o
applications. We show in this
there are strong arguments for

On the other hand with reser
sis of the utilization of the netw
potentially allocate bandwidth
recursion is not in the scope of
bandwidth for a reservation in a
ing bandwidth at another provi

In the VPN provisioning prob
tomer that reserves bandwidth
at a provider (e.g., offering a b
the customer is that its deman

The VPN provisioning pro
1|1|1|FV|*|DD as it deals with
between one customer and on
and a linear cost model with fix
SPP M2 comes in handy now,
to it. The difference is the unce
scenario model from Section 4
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is why such a strategy is also called fat solution

trategies.The deterministic strategies have no
at their plan violates the uncertain constraints with
akes sure that the plan is valid for 100% of the

rained strategy CC allows finer control over the
introducing a factorα and forcing the uncertain
eastα percent of the scenarios.
tegy is much harder to implement than the deter-
. The MIP model and an efficient algorithm to
ined strategy CC are presented in [28], there also a
ategy is presented, the so called separated chance

CC strategy controls the risk that a solution is
se strategies control the risk in a different way. In
pected recourse (RER) is given.

riablefts measures by which amount the demand
for the resulting planned allocation in periodt,
into account that demand is unsatisfied or not, the
to account how much demand is unsatisfied in a

cation with
ourses (RER)

nario s = 1,...,S for periodt = 1,...,T.

d

or scenario s = 1,...,S for periodt = 1,...,T.

city in scenario s = 1,...,S
.,T.

nario s = 1,...,S

(12)

 and

, (13)

, (14)

ct
r r t psct

f f ts
s

∑
t

∑+

t∀ s∀

t∀ s∀
s with the demand forecastbts for periodt and scenarios, each scenario has a
obabilityps with

. (8)

2.2 Strategies for Dealing with Uncertainty.Because the demandbt is now
certain, we can no longer use the algorithms of the SPP. We now derive strate-

es that can deal with the uncertain parametersbts and evaluate their robustness
ter in simulations.
In general, uncertain parameters can occur in the objective function and the
nstraints of an optimization problem. If the objective function is affected the
cision maker runs the risk of not achieving optimal results because of the
certainty. If, however, the constraints are affected the decision maker risks cre-

ing plans that are not valid or realizable in reality. Dealing with uncertainty in
e constraints is usually harder and more complex, yet more important than
aling with uncertainty in the objective function [63]. In our problem constraint
) of M2 is affected by the uncertain parametersbts. We now present some gen-
al strategies how to deal with problems that have uncertain constraints.

2.2.1 Deterministic Substitution Strategies.For the deterministic substitution
rategies we substitute the uncertain (scenario dependent) parameterbts with a
terministic (scenario independent) parameter and then solve the resulting
terministic problem M2 with the algorithm presented in Section 3.2.2.2.
Several substitutions can be used. An obvious one is to use the expected value

(9)

as substitute, we call this strategy DED (deterministic with expected demand).
avoid underestimating the demand a surchargeα can be added to the substi-

te. We call this strategy surcharge strategy (DSUα):

(10)

For the deterministic worst-case strategy DWC we use the highest value of all
enarios as substitute:

(11)

A plan based on the worst case values yields a solution that satisfies all con-

straints for all scenarios, this
strategy [38, 63].

4.2.2.2 Chance Constrained S
real control over the chance th
the exception of DWC which m
scenarios. The chance const
chance that a plan is valid by
constraint to be satisfied in at l

The chance constrained stra
ministic substitution strategies
implement the chance constra
simplified version of the CC str
constrained strategy SCC.

4.2.2.3 Recourse Strategies.The
invalid to some extent. Recour
M4 a recourse strategy with ex

In constraint (13) the new va
remains unsatisfied in scenarios
rt. The CC strategy only takes
recourse strategy also takes in
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has to be zero5. As the slope of is the difference
slope of and the decreasing slope of it is
single interval [ta, tb]. therefore only has one
t the same time the global minimum. If there is
be easily found with a binary search over all
,...,S. This results in a worst-case complexity of

omparison is used in [28] to assess the merits of
ic demand patterns for 20 scenarios with peaks in
n and downs during the night in accordance with
ribe empirically found traffic patterns. The exact
e possible demand of one scenario is depicted in
ation made by the RER strategy. As can be seen,
ot allocate sufficient bandwidth for the demand of
rio. To account for such failures of the bandwidth

isfied demand is penalized with penalty costs that
riable costs.
eneral performance of the strategies are evaluated
ults here, the minimal, average and maximum rel-

r maximum is zero. The difference function here obvi-

C̃
C̃1 C̃2

C̃

150 200 250 300

Demand
Bandwidth Allocations of RER

nd for one week and the allocations
by the RER strategy

t

ven scenario.
The recoursefts has to be penalized in the objective function. The RER does
is by weightingfts with and adding the expected value over all scenarios to
e objective function(12).
In order to implement the recourse strategy the algorithm of Section 3.2.2.2
n be reapplied with some modifications. It uses as new cost function

, (15)

the optimal rateropt (that leads to minimal costs
 betweent1 andt2)

(16)

and the recourse  which is defined as
(17)

As ct1 is fixed, the minimum costs from (15) can also be written

(18)

which can be rewritten as

(19)

(20)

nction (21)

is a linear strictly monotonic increasing function ofr.

nction (22)

is a wide-sense increasing piecewise linear function that starts with negative
lues. Its slope is decreasing and becomes zero for all
max{ bts | s=1,...,S, } . For a local minimum the slope of the differ-

ence of these two functions
between the constant positive
zero only for a single point ta or a
local minimum which is then a
only a single minimum it can

with ands=1
O(T2log(TS)).

4.2.3 Evaluation.A simulative c
the different strategies. Realist
the late morning and afternoo
[57] and [37] are used to desc
method is described in [28]. Th
Figure 5 together with the alloc
it is possible that a plan does n
some periods for a given scena
allocation strategies the unsat
are 10 times as high as the va

In [28] the robustness and g
in detail, we summarize the res
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advance is vital to avoid the risk of not getting
riods. Even if that is not the case reservation in
ort-term reservations: short term reservations will
use they leave the provider with a much higher

risk of underutilizing his resources. The results
ons are priced only 15 to 20% higher than long-
mbined with a robust algorithm are cheaper than
ns.

vice provisioning for distributed communication
studied. Several service provisioning models are

veral types of uncertainty. However, no efficient
ted and no simulations are carried out. Another
rvice provider offers computational services and
work we consider a network service and take the
ome of the methods presented in this paper were
different problem domain, the planning of a pro-
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Strategies

 Deviation from the minimal costs
ive deviation from the optimal costs are depicted in Figure 6:
The robustness was evaluated based on the worst case performance of the strat-
ies. The RER strategies show the best worst-case behavior, followed by SCC
d DSU0.2. The RER and SCC strategies are more robust concerning the varia-
n of their parametersα respectivelyc than DSU.
DED and DSU with lower or higher surplus perform very badly, as does DWC
d CC. Those strategies cannot be considered robust, this is important for the
C strategy which is based on the worst case demands and thus never leads to

nalty costs. But its basic plan is still much more expensive than the combina-
n of penalty and the planned costs of the other strategies. Only when the pen-
ty costs are set higher than 100 times the variable costs the DWC strategy
rforms acceptably. Thus the DWC strategy cannot be recommended for a wide
nge of parameter sets of the bandwidth allocation problem.
DED and DSU with low surplus factor are also not robust. Only if the surplus
ctor of DSU is set correctly its performance is acceptable; it can thus not really
 considered robust.
SCC and RER can be considered robust. SCC bases its calculations on quan-
es of the demand distribution and thus uses more information from the demand
stribution than the surplus strategies DSU which explains the better perfor-
ance. RER performs very good, obviously the fine-grained control over the risk
akes it more robust than the deterministic strategies.
Next, the general performance is evaluated based on the average performance
er a number of simulation runs with higher uncertainty. The ranking in perfor-
ance is quite similar to the ranking regarding robustness above. The RER and

C strategies perform best and can be recommended.
DSU again only performs well if the surplus factor is set correctly. DED and

C as well as CC perform relatively badly and cannot be recommended.
The conclusions from the experiments are that the RER strategy should be
ed. The recourse costs should be set similar to the estimated (calculatory) pen-
ty costs of unsatisfied demand for best performance. However, the strategy is
bust against a wrong setting of the recourse costs, it still performs very good as
ng as the recourse costs are in the same order of magnitude as the estimated
nalty costs.
If the computational complexity of RER is too high, SCC can alternatively be
ed, it performs a little worse but still better than all other strategies and is easy
 compute.
The experiments allocating resources once per week without renegotiation lead
about 3 times higher costs than those yielded by RER or SCC. This shows
ain that renegotiation can save a considerable amount of costs. We have

explained why reservation in
enough bandwidth in peak pe
advance can be better than sh
typically be priced higher beca
planning uncertainty and the
show that if short-term allocati
term reservations the latter co
the optimal short-term allocatio

4.2.4 Related Work.In [72], ser
networks with uncertain data is
presented that account for se
solution algorithms are presen
related work is [15], here a se
tries to maximize profits. In our
perspective of the customer. S
also successfully applied to a
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al admission control is only invoked whenever
edge device runs out of resources in its capacity
mission control on an edge device tries to obtain

al admission control represented by the BB. This
ource efficiency for a more stable and long-term
 the BB.

different timescales is the MPRASE problem
milar to the SPP M2 but acts under total uncer-
resent a flexible, self-learning, and powerful heu-

under total uncertainty we propose the use of
to learn the statistical properties of the system in an
we propose is highly useful in an environment
but rather long-term fluctuations in the demand for
ation to behavior that would have been “good” in
technique can do under complete uncertainty.
behavior can be assessed by comparing the out-
th the optimal solution of the SPP that results by
.

aptive algorithm framework and next a heuristic

BB

RSVP/IntServ
Access Networks

fServ Domain

Control

ocal and global admission control.

Incoming
Flows
ction program [29].

3 Decoupling of Time-Scales
While the last problem was an example for a problem with (discrete) stochastic
certainty we now discuss one with total uncertainty. We present a framework

 solve such problems that is useful beyond MPRASE.

3.1 Problem Formulation.Different time scales of QoS systems may arise
e to different QoS architectures like RSVP/IntServ (Resource reSerVation Pro-

col/ Integrated Services) [6], DiffServ (Differentiated Services) [3], or ATM
synchronous transfer Mode) [4] being used but may also be due to different
oS strategies followed by providers even if they employ the same QoS architec-
re. Choosing different QoS architectures as well as different strategies results
m serving different needs, e.g., for an access and backbone provider. An
cess provider that has a comparatively moderate load and directly connects to
d-systems may favor a fast time scale system responding immediately to the
d-systems requests. A backbone provider that connects access providers
spectively offers transit services is generally faced with a drastically higher
ad of individual transmissions, so that reaction on the time scale of individual
quests is usually not possible and a slower time scale system needs to be
forced.
When different time scales are in operation in heterogeneous network QoS sys-
ms, it is simply not possible to query the underlying QoS system each time an
erlaid system is altering its state. Here, the system operating on a faster time
ale needs to be smoothed when overlaying it onto a system that operates only
 slow time scales.
A realistic configuration for access and backbone providers may be, e.g., that
cess providers use RSVP/IntServ to suit their customers’ needs while a back-
ne provider uses DiffServ with a Bandwidth Broker (DiffServ/BB) to allow for
me dynamics but on a slower time scale. This scenario is shown in Figure 7.
Here it is also very obvious why a BB is generally not able to react to individ-
l RSVP requests that are arriving at edge devices between access and backbone
ovider. Because if it did, the BB would need to operate at a throughput of
quests that is proportional to the square of the number of access providers it
rves - that is not scalable. Here a decoupling of the different time scales is nec-
sary. The decoupling can be achieved by building “depots” of capacity which

abilize the fluctuations of the “nervous” demand curve for backbone capacity
individual requests. From another perspective, the decoupling technique can

so be viewed as introducing a combined local and global admission control for

the DiffServ/BB network. Glob
local admission control at an
depot. In such a case, local ad
more resources from the glob
scheme allows to trade off res
capacity demand presented to

This problem of decoupling
incarnation1|1|1|FV|*|DD, it is si
tainty. In the next section we p
ristic scheme.

4.3.2 Solution Strategies.Acting
an adaptive heuristic as a way
on-line fashion. The scheme
where there are unpredictable,
capacity. In general, the adapt
the past is the best a heuristic 

The question what is “good”
come of an on-line heuristic wi
looking back at the pastn periods

We now first present the ad

Dif
IntServ/DiffServ
Edge Device

Invokation of BB
for global admission control

Figure 7: Combined l
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w integrate TDE into the ODAH framework so
automatically. We call the resulting heuristic

re two modes of adaptation in the ODAH scheme:
ce and in action space. In principle, both kinds of
AH-TDE. The adaptation in performance space
’s parameterα such that the difference in costs

al solution of the SPP (see Section 3.2) is mini-
ne by a simple recursive grid search [19] through
r as there is no simple relationship betweenα
rch to exploit. See [61] for details.
space, it was decided to use the number of reallo-
ity relation between covers, so that in this case the
llocations is to be minimized.We can use an inter-
n have a simple relationship: is mono-
is, of course, much more efficient than the
aptation in performance space mode. See [61] for

(described in detail in [61]) we experimented
oth modes performed very similar but adaptation
nt due to the less compute-intensive adaptation

that ODAH-TDE generally achieves a good and
es of requests. In particular we experimented with
here ODAH-TDE was able to achieve over 90%
of a hypothetical optimal scheme which operates

 SPP exactly.
bust scheme for heuristically dealing with the
under total uncertainty. In particular, it should

ristics as the lifetime of requests change since it
ll types of requests in the simulations.

ith a two-tier model which consists of an intra-
agement. BBs are representing each administrative
source management. Based on measurements, a
vices is used to trigger inter-domain signalling. In
ers are based on traffic measurements instead of

nTDE α,
θ) that fits into this framework. The combination of both is then evaluated by
eans of simulation.

3.2.1 The Adaptive Framework.Let us assume that we have a parametrized
uristich(θ) for the on-line decoupling problem and that we use an exact algo-

hm for the off-line decoupling problem, which is the SPP with the now deter-
inistically known demands of the lastn periods. There are essentially two
fferent modes of adaptation that can be directed by good behavior as achieved
 the cost-minimal cover of the past CDC:

aptation in Action Space. In this mode, the heuristic’s parameter (vector)θ
adapted such that the behavior of the CDC cover produced by applying the
uristic deviates as little as possible from the optimal cover with respect to some
aracteristic as, e.g., the number of reallocations.

aptation in Performance Space. In this mode the heuristics parameter
ector)θ is adapted such that the cost of the solution produced by applying the
uristich(θ) deviates as little as possible from the optimal cost obtained for the
P.

Both adaptation modes have three parameters:
The frequency of adaptationdetermines how often the adaptation of the heu-
ristics parameter is carried out.
The time window of adaptationdetermines the length of the past period that is
taken into account for the adaptation.
Theaccuracy of adaptationdetermines how thoroughly the parameter space is
searched during the optimization problem for the adaptation.
We call this adaptation scheme ODAH (Optimum-Directed Adaptive Heuris-
).

3.2.2 An On-line Heuristic.Now, a very simple, yet reasonable heuristic is
troduced that deals with the problem under total uncertainty at each period. It is
lled thresholded depot excess (TDE) as it ensures that the capacity depot held
r decoupling is never above a certain threshold. It is applied in each period:
If the demand level rises above the current allocated capacity the change is
ways followed (assuming that there is enough capacity at the underlying QoS
stem). Whenever demand decreases, TDE checks whether the step is smaller
an a certain fraction of the old allocation level and if that is the case,
E follows this step.

Of course, the value of parameterα is crucial for the success of TDE. Ifα is set
o high, then TDE is too “nervous”, and will produce too many changes in the
vel of the depot and if it is set too low, TDE is too “lazy”, and will waste a lot

of capacity.

4.3.2.3 Combining Both.We no
that the parameterα is adapted
ODAH-TDE.

As discussed above, there a
adaptation in performance spa
adaptation are possible for OD
works by simply adjusting TDE
between TDE(α) and the optim
mized. This minimization is do
the interval [0,1] for parameteα
andc for a more intelligent sea

For the adaptation in action
cations as basis for the similar
difference in the number of rea
polation search [19] sinceα and
tonically increasing inα. This
recursive grid search for the ad
details.

4.3.3 Evaluation.In simulations
with both adaptation modes. B
in action space is more efficie
step.

The simulation results show
robust performance over all typ
different lifetimes of requests, w
of the cost saving performance
under certainty, i.e., solves the

ODAH thus represents a ro
sequential decoupling problem
work well even if flow characte
shows good performance for a

4.3.4 Related Work.[70] deals w
and interdomain resource man
domain in the interdomain re
watermark heuristic at edge de
contrast to our work, the trigg

α 0 1[ , ]∈
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ction Problem - PSP

ted capacity in intervalt from providerj.

for providerj is made at the beginning of
erwise.

providerj drops to 0 in intervalt and 0

city in intervalt = 1, ...,T. Demand must
in each period.

cost for an allocation in periodt from pro-
e .

costs, i.e., costs per capacity unit per pe-
 provider and period).

efore the beginning of the first planning

(23)

(24)

, (25)

, (26)

, (27)

, (28)

, (29)

, (30)

, (31)

f jt 0>

sjt d jt– ) cjt
r r jt

t 1=

T

∑
j 1=

J

∑+

t 1 ..., T,=

j 1 ..., J,= t∀ 1 ..., T,=

j 1 ..., J,= t∀ 1 ..., T,=

j 1 ..., J,= t∀ 1 ..., T,=

j 1 ..., J,= t∀ 1 ..., T,=

j 1 ..., J,= t∀ 1 ..., T,=

j 1 ..., J,= t∀ 1 ..., T,=

j 1 ..., J,= t∀ 1 ..., T,=

ax bt{ })
1 min bt bt 0>{ }( )⁄=
ntrol path events. Furthermore, the introduction of the watermark technique is
ther ad hoc, and resembles the TDE algorithm without any adaptation.
One piece of work that explicitly deals with different time scales of access and
ckbone networks on the control paths is [51]. Here a backbone QoS signalling
proposed which integrates mechanisms in order to dampen the faster time
ales of access networks. This mechanism is based on hysteresis and quantiza-
n for traffic aggregates which are based on sink trees towards destinations. The
plied algorithm is to always reserve capacity in multiples of a certain quantity

. Whenever the reserved capacity level of is no more sufficient, it is
creased to and the new quantum is only relinquished when the
served capacity falls below . This is very comparable to the simple
rategy of the TDE algorithm, and uses no adaptation.

4 Admission Control Problems
Admission control is a widely recognized problem at system edges. The basic
mission control problem isN|1Cap|1|P|*|D or with ann-dimensional resource

odel (e.g., token buckets)N|1Cap|N|P|*|Dand consists of maximizing the profit
om the accepted customers) from a provider’s point of view or the total utility
m a user’s point of view. Admission control is discussed broadly in literature,

g., [7, 16, 42, 43, 45, 55, 60].

  Selected Deterministic MPRASE Problems
In this section we discuss several selected deterministic MPRASE problems.

1 Provider Selection
The basic provider selection problem1|N|1|FV|*|* and1|NCap|1|FV|*|* could
regarded as the dual problem of the basic admission control problem (Section

4). Unlike the latter it is not treated broadly in literature. Because of this, we
at it here in more detail than the admission control problems.

1.1 Problem Formulation.Let us assume that there are a number of providers
fering capacity to a single customer. The customer has to decide which or
hich combination of providers to select and if and when to change the provid-
s.
We assign indexj = 1, ...,J to the different providers. We can model this prob-
m with M5. This model mainly differs from the SPP M2 in the additional index
Furthermore, we now have to model the case that in a certain period no capac-

is allocated at a certain provider. This is captured by the introduction of
mand defect variables,djt, and the constraints (27) and (28). Here, needs to

be chosen small, e.g.,
large, e.g.,  and

k Q×
k 1+( ) Q×

k 1–( ) Q×

ε

M5 Provider Sele

Variables:

rjt Amount of alloca

sjt 1 if an allocation
periodt and 0 oth

djt 1 if allocation for
otherwise.

Parameters:

bt Demanded capa
be fully satisfied 

Setup costs, i.e.,
vider j, we assum

Variable capacity
riod (specific per

rj0 Allocation level b
period.

Minimize

subject to

cjt
s

cjt
r

cjt
s (

t 1=

T

∑
j 1=

J

∑

r jt

j 1=

J

∑ bt≥ ∀

r jt r j t 1–( )– M sjt⋅≤ ∀

r j t 1–( ) r jt– M sjt⋅≤ ∀

djt εr jt+ 1≤ ∀

L r jt r j t 1–( )+( ) djt≥ ∀

djt 0 1,{ }∈ ∀

sjt 0 1,{ }∈ ∀

r jt 0≥ ∀

ε 1 m(⁄=
M max bt{ }= L
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Figure 8: Provider usage of the
different algorithms for the PSP.

P1
P2
P3

SCPH

DCPH

Optimal Solution

Figure 9: Provider usage of the
different algorithms for the cPSP.
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In the next step we use additional parameters,kjt, to model by (32) that each
oviderj can offer only a limited amount of resourceskjt in periodt. This leads
 model M6, the capacitated PSP (cPSP).

1.2 Solution Algorithms.The uncapacitated PSP represents a situation where
customer’s demand is relatively small compared to the provider’s supply such
at the resulting problem consists mainly in the selection of the cheapest pro-
der. The capacitated PSP (cPSP), on the other hand, rather deals with a good
ixing of providers to achieve low total costs.
Note that the problem complexity of PSP is much higher than that of SPP (see
ction 3.2). First, the demand of each period can be satisfied by different
mbinations of providers and second, if two or more providers are selected to
tisfy the demand of one period there is a high number of sensible shares
tween these. This higher complexity is also illustrated by the execution times
applying the standard branch and bound solver to model M5. A small PSP

ith T=20 andJ=4 already took 1920.8 seconds to solve while the corresponding
P withT=20 only took 1.2 seconds. For any larger PSPs execution times were
longer reasonable. With this complexity in mind we go directly for heuristics

d try to exploit our knowledge about the SPP.

1.2.1 Static Cheapest Provider Heuristic (SCPH).A rather straightforward
proach to tackle the uncapacitated PSP is to transform it intoJ SPPs, one for
ch provider and each with the full demand. The SPPs can then be solved by any
the SPP algorithms discussed in Section 3.2. After solving theJ SPPs we
lect the provider of the SPP with the least costs. That means we obtain a solu-
n where one provider is used for all periods.

1.2.2 Dynamic Cheapest Provider Heuristic (DCPH).One drawback of
PH is that it does not allow provider changes. Using a technique similar to the

P algorithm from Section 3.2.2.2 we can eliminate this characteristic of the
PH. The resulting algorithm is called dynamic cheapest provider heuristic

CPH). This is also illustrated in Figure 8.

We use the DP algorith
Section 3.2.2.2, but the minim
C(t1, t2) for satisfying the
between two periodst1 and
obtained by solvingJ independe
for the interval [t1, t2] and choo
cheapest provider. Unlike the
rithm from Section 3.2.2.2, t
rithm does not necessarily le
optimal result as it does not a
constellation as depicted for th
solution in Figure 8. Again, we
freedom of selecting any of
algorithms for solving the sub-

5.1.2.3 Adaptation of the Heur
If the capacity of one provid

enough to satisfy the whole de
can no longer simply select a s
vider in SCPH and DCPH but
combine several providers. W
by first cropping the demands
SPP to the capacity of the a
provider. We then solve the SP
J providers and select the pro
has the minimum costs per
demand. The overall demand
reduced by the capacity serve
selected provider and the pro
repeated until no more deman
unsatisfied. Example allocat
shown in Figure 9.

Please note that the non-zer
assumption in Section 3.2 can
the heuristics of Section 3.2
demand.

M6 Capacitated Provider Selection Problem - cPSP

Minimize (23)

subject to (24)-(31) and

, (32)xjt k jt≤ j∀ 1 ..., J,= t∀ 1 ..., T,=

2J 1–
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 well here again.

er selection problem is discussed in more detail
are not many works about the provider selection
ic provisioning in a multi-provider environment
hts into the global behavior of such a system by

ioning
any kind of QoS guarantees traffic has to be

policers are common elements in both IntServ [6]
s are the most popular traffic regulating mecha-
sy to implement, see, e.g., [34, 30, 31, 67, 59] for
iffServ environment. A token bucket is specified

and the bucket depth B. The sender accumulates
of r. Unused tokens are stored in the bucket, there

ns in the bucket, surplus tokens are lost. In order to
.g. per byte or per packet). The bucket starts with
sume that this parameter  is fixed.
m: A single token bucket (r, B) has to be dimen-
hich is known in advance as when streaming a
er towards a client. We assume that the allocation
l or fictive) costsCr andCB, the relation between
es the trade-off between rater and bufferB. Our
 bucket (ropt, Bopt).
le token bucket dimensioning problem (STBD), it

TB|F V|*|* of the MPRASE framework. To
already been discussed in literature:
ork to efficiently calculate the minimal bucket
iven token rate - and that is a subproblem of the
and Garrett in 1994 [52]; their algorithm Send-
n algorithm for the same problem which is more
full bucket in the first period is also derived in
calculating the minimal bucket depth for a given

dded before the token bucket in which the stream

u

δ

∞

1.2.4 Other Heuristics for the PSP.Of course, we can again use the results of
e LP relaxation for M5 and M6 to obtain a solution for PSP/cPSP.
We also adapted the merge heuristic to the multi-provider case and to the
pacity constraints and combined it with DCPH and LP in order to investigate

hether it can improve their solutions.

1.3 Evaluation.In order to evaluate the PSP heuristics described above we ran
simulation over 50 PSP instances similar to the simulations in Section 3.2 with
0 periods. We used 10 providers and different levels of capacity. The average

fferent costs the used strategies yielded are depicted in Figure 10 for an unca-
citated and a capacitated PSP. In the latter problem, 2.58 providers were used
average at the same time. We use the DP algorithm from Section 3.2.2.2 for

e SPP subproblems.

The results for the uncapacitated PSP show that DCPH is expectedly signifi-
ntly better than SCPH. This, however, comes at a drastically increased execu-
n time (243 s contra 0.4 s per instance). While the LP heuristic alone does not
rform good, it performs well if combined with the merge heuristic (roughly 2.3

execution time). Please note that running merge on the solution of DCPH was
effective because within its range (i.e., only one provider at a time) the DCPH
lution is already optimal.
In the capacitated case the results are similar but SCPH comes closer to the
sults yielded by DCPH. This can be explained by the fact that now because of
e limited capacities also the modified SCPH can and has to use more than one

provider.
Summarizing, DCPH leads t

ter, otherwise SCPH and the c
The results from the SPP cam
could be adapted and perform

5.1.4 Related Work.The provid
in [27]. As we mentioned, there
problem. [65] analyses dynam
and gives very interesting insig
game-theoretic observations.

5.2 Token Bucket Dimens
5.2.1 Problem Formulation.For
regulated. Traffic shapers and
and DiffServ [3]. Token bucket
nism, especially as they are ea
the role of token buckets in a D
by two parameters, the rate r
tokens in the bucket with a rate
can never be more than B toke
send data tokens are spent (e

 tokens ( ). We as
Consider the following proble

sioned for a flowxt (t = 1, ..., T)w
pre-recorded video from a serv
of r andB imposes certain (rea
those two coefficients express
aim is to find the optimal token

We call the problem the sing
is the problem incarnation1|1|N
some extent this problem has 

According to [68] the first w
depth of a token bucket for a g
STBD - was done by Partridge
Now is also described in [68]. A
flexible as it does not rely on a
[68]. Both papers also deal with
rate when a certain queue is a
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smission rate of the video andB to the number of
o avoid packet drop. This work does not consider
ndB but shows some realistic values for video

y derive from the empirical envelope the optimal
nsiders the trade-off betweenr andB and tries to
n IntServ guaranteed service flow given a delay
en as a subproblem of the STBD problem in this

ich minimizesR.
function for token bucket dimensioning with min-
e of a single user. They, however, assume an ATM
is not known in advance. They solve the result-

blem with the Lagrangean method.
bucket dimensioning for aggregate VoIP sources
arding service class. Their LBAP is an aggrega-
sources. They analyze the effect of token bucket
ance probability. They, however, do not use a cost

nd do not present an algorithm to derive the opti-
eters.
n [44] the sizing ofK token buckets with admis-
ization in mind. They also formulate and solve
n explicit optimization problem but their perspec-

to ours. While we consider minimizing the costs
e customer to choose his/her token bucket parame-
ut try minimizing the sum of the rates ofK cus-
me time, taking the network’s point of view.
] the influence of long range dependence in traffic
buckets. They use two cost models, one of them
ork, to derive an analytical model for estimating

This model explicitly takes into account the long
eopt(r) curve is obtained for traffic modeled as a
ocess. As a result they can quite well estimate
for Internet traffic. They, however, show no algo-
l parameters for a given trace as we did.
ficient algorithm for calculating the optimal cell
M generic cell rate algorithm (GCRA). As the
s a continuous-state leaky bucket this is equivalent
r a given bucket depth.
r is used for TCP streams and the effect of the
n be hold while it is waiting for enough tokens to be accumulated.
However, these works look at the optimalB for a givenr but do not calculate
e optimalr.
Keshav [40] proposes as a heuristic for token bucket dimensioning to choose
e “knee area” that theBopt(r) curve shows, outside which small changes inr
sp.B can only be compensated by greater changes in the other parameter. How-
er, Keshav does not propose a trade-off function with which the preference ofr
dB can be weighted and influenced and he proposes no algorithm to find the
ea. Also other works [54] show that the “knee area” is not straightforward to
d for long range dependent traffic.

2.2 Exact Algorithm.The optimal token bucket (ropt, Bopt) for a given stream
n be calculated as follows:
The optimalB for a given rater and  is:

(33)

(34)

(35)

The proof is given in [25].
Next, the optimalr has to be found. We use a cost function to describe the
de-off between rate and bucket depth. With a linear cost function the bucket
sts are a function
Popt (r) = + . (36)

We can find the minimal costs of this piecewise linear function using a search
gorithm similar to regula falsi which is described in [25].

2.3 Related Work.On the first view the static token bucket dimensioning
oblem resembles lot sizing, lot scheduling and related problems [34]. Unfortu-
tely, the nature of the resources involved is fundamentally different and the

athematical structure is different enough that the algorithms and methods do
t fit.
Apart from the works mentioned above in 5.2.1 there are some works in the
ea of Quality of Service (QoS) dealing with1|1|NTB|F V|*|DS and
1|NTB|F V|*|*. Glasmann et.al. present in [20] a simple heuristic for guess-
g the token bucket parameters for video conferencing flows. The heuristic con-

sists of settingr to the mean tran
tokens that are then required t
the potential trade-off betweenr a
streams.

Dovrolis et.al. [13] analyticall
token bucket parameters. It co
minimize the reserved rateR of a
bound. This problem can be se
paper with a fixed trade-off wh

Falkner et. al. [16] use a cost
imum costs from the perspectiv
network and on-off traffic which
ing non-linear optimization pro

Bruno et. al. [8] study token
for the DiffServ Expedited Forw
tion of independent fluid on-off
parameters on the non-conform
function or something similar a
mal pair of token bucket param

Kulkarni and Gautam study i
sion control resp. network util
token bucket dimensioning as a
tive is fundamentally different
of one customer and expect th
ters they do not look at costs b
tomer’s token buckets at the sa

Procissi et. al. analyse in [54
on the dimensioning of token
similar to the one used in this w
the token bucket parameters.
range dependency of traffic, thB
Fractional Brownian Motion pr
good token bucket parameters
rithm for calculating the optima

Naudts [50] describes an ef
rate r*(τ) for a givenτ for the AT
GCRA can also be described a
to calculating the bucket rate fo

In [59] a token bucket marke

δ 0≠
Bopt max Bopt1 Bopt2,( )=

δBopt1
max

1 v T≤ ≤
xi rv–

i 1=

v

∑ 
 
 

=

Bopt2
max

2 u v T≤ ≤ ≤
xi r v u– 1+( )–

i u=

v

∑ 
 
 

=

cr r⋅ cB Bopt r( )⋅

∞
∞
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ensioning (DTBD)

T.

et at the beginning of the periodt = 1,...,T.

token bucket parameters (rt, Bt) were changed at the
,Tand 0 otherwise. This variable is necessary to ac-

 to send data.

t depthBt.

n in the bucket at the beginning of a new allocation pe-

nsioning.

).

ble infinity numerically,e.g.

(37)

for all t = 1,...,T (38)

for all t = 1,...,T (39)

for all t = 2,...,T (40)

for all t = 1,...,T (41)

for all t = 1,...,T (42)

for all t = 1,...,T (43)

for all t = 1,...,T (44)

for all t = 1,...,T (45)

for all t = 1,...,T (46)

1]
M xt

t 1=

T

∑=

Bt

1=

T

cδδ ztBt( )
t 1=

T

∑+

stM+
ken bucket parameters on the achieved sending rate are analysed. That paper
erates with different assumptions (TCP instead of real-time traffic) and is thus
mplementary to the algorithms in Section 5.2.2.

3 Renegotiable Services
3.1 Problem Formulation.In Section 5.2 we have shown how to calculate the
timal token bucket (ropt, Bopt) for a given flow of lengthT. Video streams often
ve longer scenes with a relatively high or low transmission rate. Fitting a single
ken bucket usually leads to a high resource waste during the times with a rather
w transmission rate. For example, the cost minimal single token bucket for the
terix movie of [58] withcr=1, cB=0.1 leads to a solution where the bucket is
ly used in 89 of 40000 periods6!
For a longer video stream it thus makes sense to allocate a series of token buck-
s instead of a single token bucket. But we have to assume that there is a certain
servation overhead involved for the setup of each new token bucket and we
nt to avoid that a token bucket is used for a too short time period. We account

r this again by introducing setup costs which are applied whenever a new token
cket is used. Another possibility would have been to allow a new token bucket
ly every n periods. The latter, however, is less flexible and can usually be
hieved by choosing setup costs adequately, as our results show.
Please note again that we do not necessarily mean real costs, they can also be
tive / calculatory:
For each allocation, independent of its duration, fixed setup costscs are
incurred.
The token rater induces costs proportional to height and duration:
pr (r, τi) = .
The costs per bucket depthB are similar:pB(B, τi) = .
The tokens in the bucket at the beginning of an allocation induce the
following costs:pd ( ) = .

The DTBD can be formulated as a quadratic optimization problem (see M7)
d is thus generally extremely hard to solve exactly with standard optimization

chniques [32].
Target function (37) of M7 minimizes all costs consisting of the setup costs,
e costs for the rate, the bucket depth and the tokens the bucket is filled with

or higherCB the number of periods increases but still remains on a very low level. ForCB=Cr the

umber of periods only increases to 203 periods.

cr r τi⋅ ⋅
cB B τi⋅ ⋅

δ B⋅
δ B⋅ cδ δ B⋅ ⋅

M7 Dynamic Token Bucket Dim

Variables:

rt rate in periodt = 1,...,T.

Bt bucket depth in periodt = 1,...,

yt number of tokens in the buck

st binary variable, set to 1 if the
beginning of the periodt = 1,...
count for the setup costsF.

Parameters:

tokens used in periodt = 1,...,T

cost coefficient for the ratert.

cost coefficient for the bucke

cost coefficient for each toke
riod.

fixed setup costs per redime

bucket starting factor (

M big enough constant to resem

Minimize

subject to

xt

cr

cB

cδ

cs

δ δ 0,[∈

cs st

t 1=

T

∑ cr r t

t 1=

T

∑ cB

t

∑+ +

r t yt+ xt≥

yt 1 st–( )B
t

stδBt+≤

yt 1 zt–( ) yt 1– r t 1– xt 1––+( )≤

Bt Bt 1–– Mst≤

Bt 1– Bt– Mst≤

r t r t 1–– Mst≤

r t 1– r t– Mst≤

r t bt yt, , 0≥

st 0 1,{ }∈
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.). One period represents one group of pictures (12
riods equal little more than 15 minutes of a movie.
vies is 0.536 Mbps, the average peak rate of the
ost coefficients are and
ctor is set toδ = 0.5.9

ferent values ofT ranging between 50 and 2000.
DP and the heuristic DPH, MH, SH and CH. We
t (STB) instead of a token bucket series using an
measured the CPU time, the numbers of alloca-
between the calculated cost and the optimal costs

)

(47)

3 are based on the average over the results from

on times in Figure 11 one first notices that the
r the longest time to solve as can be expected as it
complexity. The DPH heuristic is much faster than
little better. This indicates that in practice it can
cause it can extend the previous token bucket by
cases. The fastest way is of course to solve the

7. T
8. T

P

1

d no significant influence on the basic results, see [25].
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ter redimensioning.
Constraint (38) makes sure there are enough tokens available each period. (39)
akes sure there are no more tokens in the bucket than the bucket depth (if no
dimensioning was performed that period - indicated byst=0) rsp. the bucket
arting factor (after redimenioning). Similarly, (40) accounts for the new and
ed tokens ifst=0, that is no redimensioning was performed in that period. After
dimensioning (40) imposes no additional limit toyt.
(41) to (44) forcest to one if the bucket was redimensioned. Redimensioning
uals a change inBt and/orrt.
(45) and (46) are the non-negativity and binary constraints for the variables.

3.2 Solution Algorithms.The MPRASE algorithms from Section 3.2 can
ain be adapted to also solve this problem. The solution is a series of token
ckets which are themselves again the result of a STBD process. The different
ckets are decoupled. We can solve the single token bucket dimensioning STBD
oblems (see Section 5.2 and [25]) between each couple of periodsu,v with

and store the optimal TB parameters (r, B) and related costs of
eseT(T+1)/2problems. We then have to find the optimal combination of those
ken buckets with a modified DP algorithm (Section 3.2.2.2), the algorithm is
scribed in more detail in [25].
Because of the relatively high complexity of the modified DP algorithm we
so strive for heuristics. A possible heuristic is to use the exact algorithm above
d change it so that before we solve the STBD between periodsu andv, we have

look at the previous solution found foru andv-1:
If the rater(u, v-1), the token bucket sizeB(u, v-1)and the number of tokens
remaining at the end of the period yv-1(u, v-1)are high enough to satisfy
the demand of the new periodv, then we extend the previous solution by one
period to includev. This way the parameters are not always optimal but we do
not have to solve the STBD for each sub-problem.
Only if the previous parameters and tokens left are not sufficient we solve the
STBD for (u, v).

We call this heuristic the dynamic programming heuristic DPH. We also
apted MH, SH and CH[SH+MH]7 from Section 3.2.3 to this problem.

3.3 Evaluation.Our basic simulation8 uses the video traces patterns of [58].
ese 21 traces are from MPEG versions of different types of video sequences

(movies, cartoons, TV, sport, ..
frames, 0.5 seconds), 2000 pe
The average bit rate of the mo
movies is 3.54 Mbps. The c

= 105, the bucket starting fa
The DTBD was solved for dif

We tested the exact algorithm
also fitted a single token bucke
exact algorithm from [25]. We
tions and the relative difference
(yielded by the exact algorithm

.

The following figures 11 to 1
each of the 21 traces.

By looking at the computati
exact DP algorithm takes by fa
has the highest computational
the DP algorithm and scales a
avoid solving a lot of STBDs be
just one period in most of the

est experiments showed that starting with SH yielded slightly better results.

he simulation was done with Java as programming language on a PC with a 700MHz Pentium III
rocessor and a 256 MB RAM.

u v T≤ ≤ ≤

v 1–

9. Variation of these parameters showe
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tor of 2 and more.
her hand is always extremely close to the optimal
.25% higher costs. SH performs quite bad, MH is
H is better than SH and MH and roughly 2% away

costs by a factor of 10 the number of allocations
ly 3 to 5 as can be seen in Figure 14 which shows
ctive way of influencing the number of used token
igher setup costs, using a series of token buckets
al costs can still be reduced by a factor of 2, the
omputation time and performance remains the
].

aces we now use randomly generated traffic using
, 64] generating three patterns following a frac-
. The first pattern is a pure brownian motion pat-
e second a fractional brownian motion pattern
e values (Hurst parameterH=0.7) and the third is
on of the values (Hurst parameterH=0.9).
DPH is depicted in Figure 15 and 16. First of all,
ce of the algorithms degrades the lower the Hurst
drop is higher for DPH than for MH, if there is no

=0.5) CH even yields better results than the DPH
d as follows: DPH extends the token bucket of a

r of allocations for different setup costs
(logarithmic)
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TBD without renegotiation as a STBD. MH, SH and CH are slower than DPH
r small T but scale better and are thus faster than DPH for higherT. CH can
ver be faster than SH as the first step of CH is to execute SH. MH always takes

nger than SH and most of the times even than CH.
Presumably more important than the execution time is the quality of the results
easured by the relative difference in costs compared to the optimal costs
turned by the exact algorithm as depicted in Figure 12 and 13. For a single
ken bucket the additional costs are far higher than for a series of token buckets.
e difference increases with the number of periodsT which is obvious as the
tential benefit of being able to change token bucket parameters increases with
This also clearly shows that it generally makes sense to use a series of buckets
d to look at the token bucket redimensioning problem DTBD as it can very sig-

nificantly reduce costs by a fac
The DPH algorithm on the ot

solution, resulting in less than 0
better but as can be expected C
from the optimal solution.

When increasing the setup
goes down by a factor of rough
that the setup cost are an effe
buckets. Even with 10 times h
instead of a single one the tot
ranking of the algorithms in c
same, for more details see [25

Instead of using the MPEG tr
the fft_fgn traffic generator [53
tional brownian motion process
tern (Hurst parameterH=0.5), th
with a low autocorrelation of th
one with a strong autocorrelati

The performance of CH and
one notices that the performan
parameter is. The performance
autocorrelation in the traffic (H
heuristic. This can be explaine

Figure 12.  Relative cost difference
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so popular in literature. The1|1|NTB|FV|*|* prob-
].
5], [71], and [66], that consider optimal smoothing
s. These works are different from this work in that
n stream to fit into a token bucket by adding a
rs while this work tries to fit a single rsp. multiple
 stream.
a series of token buckets to a given stream [56]
cket (multiple token buckets starting at the same

orks on renegotiable services [23, 74, 43]. Gross-
enegotiable constant bit rate service and show how
l network utilization. Knightly and Zhang [74, 43]
tiable variable bit rate service (RED-VBR). They
G movie known in advance. They show that with-
PEG streams only an average utilization of 25%

a heuristic called off-line algorithm to calculate a
ATM VBR service that achieve a far higher aver-
eds an input parameter that controls how often to

meter is difficult to set. Our work presents an exact
se yet much faster heuristic instead. Knightly and
heuristic (on-line algorithm) that does not require
ce and they propose an admission control scheme

framework and taxonomy for a class of optimiza-
rce allocation at system edges over multiple time
my consists of six submodels describing the indi-

oblem incarnations: customer, provider, resource,
ach submodel can be described by a short abbrevi-
 then identifies the problem incarnation exactly.
ract MPRASE problems including the single pro-
llest non-trivial MPRASE problem.
uncertain and three deterministic MPRASE prob-
hat MPRASE problems occur often - although yet
ch we showed in a lot of related work for the indi-
ed that it makes sense to look at these problems in
evious calculation by one periodt+1 if the bucket is big enough. This extension
the better the more the traffic oft+1 depends on the valuest, t-1, ... that is the
gher the autocorrelation is.

In summary, DPH has the most attractive trade-off between computation time
d the quality of the solution. As it is extremely close to the optimum for long-
nge dependent traffic and orders of magnitudes faster than the exact algorithm
can be used instead of the exact algorithm.
For very highT CH might be attractive, too, as it scales better than DPH. For
ort-range dependent traffic it is better than DPH, too.

5.3.4 Related Work.
Renegotiable services are al

lem is discussed broadly in [25
There are some works, e.g. [

for guaranteed service stream
in principle they smooth a give
playback delay and using buffe
serial token buckets to a given

While this section tries to fit
tries to fit a multi-level token bu
moment) to a video stream.

There are also a number of w
glauer et. al. [23] propose the r
it can be used to increase tota
extend this work to the renego
also consider sending an MPE
out renegotiation for certain M
can be achieved. They propose
series of token buckets for the
age utilization. This heuristic ne
segment the stream. This para
algorithm and an extremely clo
Zhang also present a second
the traffic to be known in advan
for renegotiable VBR services.

6.  Conclusion & Outlook
This paper has described a

tion problems related to resou
periods (MPRASE). The taxono
vidual facets of the different pr
cost, edge and intermediary. E
ation, the combination of them

We have presented two abst
vider problem (SPP) - the sma

After that we presented two
lem incarnations and showed t
unrecognized - in literature whi
vidual problems. We also show

Figure 15.  Performance of CH
for different Hurst parameters
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Figure 16.  Performance of DPH
for different Hurst parameters
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