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Abstract cuss later on.
The Internet consists of a variety of interconnected heterogeneous networks At first we present an overview of the MPRASE problem framework and a tax-
managed by independent providers. At the edges between two networks resourcesonomy for the MPRASE problems that can be used to efficiently identify, clas-

are allocated. In this paper, we present a framework and taxonomy for problems ity and mathematically describe a resource allocation problem at a provider’s
at these edges like admission control and provider selection; we call them multi- edge

eriod resource allocation problems at system edges (MPRASE). We look at sev- . . o
oral problem incarnations 5 this framewiork and sghow( that many)/ of those prob- ~ The MPRASE problems include problems in the area of admission control,
lems - including well-known problems in the are of networking - are sub- or dual  reservation in advance, renegotiable services, token bucket fitting, provider selec-
problems of each other and that it is useful to treat them in an integrated fash- tion and RSVP/IntServ [6] over DiffServ/Bandwidth-Broker [3, 2] problems. We
1on. present a number of these problems in varying detail and show that it is very use-
1. Introduction ful to treat them in an integratedl manner as algorithms can be reused and com-

plex problems relaxed towards simpler problems of the framework.

The Internet consists of a variety of interconnected heterogeneous networks | section 2 we present the MPRASE framework and its taxonomy. In section 3
(autonomous systems, AS), managed by multiple independent providers. Both \ye present two selected abstract problem incarnations from the framework, the
the number of ASes as well as the average number of ASes a given AS is peering fjrst is very complex and basically encompasses all the problems discussed later
with is increasing at a fairly high rate. The number of ASes rose from 909 in 9/95 i, this paper. The second is the smallest non-trivial MPRASE problem incarna-
to 4427 in 12/98 and 7563 in 10/00 [17, 18]. Similarly, the average peering tjon which is discussed in detail as it is the basis for many of the other problems
degree, i.e., the number of providers a certain provider has peering agreements giscussed in this paper. Section 4 then presents some uncertain MPRASE prob-
with, rose from 2.99 in 9/95 to 4.12 in 12/98. Itis also very notable that a single  |em jncarnations while in section 5 several deterministic ones are presented. We

provider may peer with up to 1000 other providers [17]. conclude with a summary and an outlook in section 6.
The highest cost factors of ISPs are peering costs and line costs [33]. For the

increasing number of peering agreements resources have to be provisioned. In2. The MPRASE Framework and Taxonomy
particular, an optimization of resource allocations becomes a competitive factor
for Internet providers. In this paper, we deal with a general problem class called
multi-period resource allocation at system edges (MPRASE) for which the peer-
ing providers have been the motivating scenario, although some other network
Quiality of Service (QoS) problems also fit into this problem class as we will dis- 2.1 Generalized Problem Structure Model

Figure 1 shows the overall structural model of the general class of MPRASE

L This work has been partly sponsored by the DFN (german research network provider, pmblems' On one side, there anestomershat have a ‘?e"a'” demand for ,net_ .
www.dfn.de) as part of the LETSQOS project (www.letsgos.de). work resources. These network resources are provided by the opposite side,

In this section, we introduce a general structural model which tries to capture
all the different facets of MPRASE problems. This model allows us to derive a
taxonomy along its components.
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Figure 1: MPRASE problem structure.

which we call theproviders Note that the customers can be end-users or them-
selves providers for other customers (at another edge). There is a third party
involved, theintermediaryinstance that is located at the edge. The intermediary
tries to mediate between the two by selecting providers on the one hand and
enforcing admission control of the customers on the other hand. Note that the
logical separation of the intermediary instance from customer and provider does
not necessarily imply that it may not belong to either customer or provider pre-
mises, in fact, this will usually be the case. If the intermediary is, e.g., imposing
admission control, he will usually belong to the provider’'s premises.

Allocating the resources to satisfy the customers demand incurs cedsiis
which need to be accounted for by the customers. These costs can be real (mone
tary) costs, computational costs, purely fictive / calculatory costs or a mix of
those.

The demand changes over tfirme so that resources might be reallocated. Let
us now look at the different components / submodels of the structural model for
MPRASE.

2.2 The 6 Submodels

2.2.1 CustomerThe customer model of the MPRASE model captures the num-
ber of customers, i.e., whether a single or multiple customers are considered, and
the flexibility of the demand, i.e., whether demand may be dissatisfied or be
served with a degraded quality. In the case that multiple customers exist the total
demandD is the sum of the individual customers’ demand thabis: §7"_ , d;

With an admission control mechanism the number of served customess
becoming variable while with degraded quality the amount of the derdanita

customeii that is satisfied by the provider becomes flexible itself.

Parameter Value AbbreV.

Number of Customelrs single Customer

multiple Customet

7]

I inflexible
Flexibility of Demand (satisfied 100%4) -

dissatisfied/admission contyol

(satisfied 0 or 100%) AC

degraded quality

(satisfied between 0 and 100%) DQ

Table 1: Customer Model

The taxonomy for the customer model is displayed in Table 1. We describe the
customer submodel by specifying both parameters of Table 1. The abbreviation
“-"in that table means that this value does not need to be specified, it is the
default. A simple customer model consisting of a single customer with inflexible
demand would therefore be expressed by “1” while a model containing multiple
customers that accept degraded quality are identified wigy"Nr “N, DQ”.

2.2.2 Provider.The provider model encompasses the number of providers and
whether they are modelled as having limited or unlimited capacity. While the lat-
ter is unrealistic it can be a simplifying, yet valid assumption for the case where
supply exceeds demand with very high probability.

Parameter Value Abbrev.
Number of Providers single Provider 1
multiple Providers N
Capacity unlimited -
limited Cap

Table 2: Provider Model



The taxonomy for the provider model is displayed in Table 2. A simple pro-
vider model with a single provider that has unlimited capacity would therefore be
expressed by “1” while a model containing multiple customers with limited
resources are identified with @y’ or “N, Cap”.

2.2.3 ResourceThis component models the resources, i.e., whether they are
one- or multidimensional or whether they are provided on a deterministic or sta-
tistical basis.

Parameter Value AbbreV]
Dimensions$ one-dimensional Resource 1
multi-dimensional Resource ~ NTYPE
Stochastic Behaviouir deterministic -
statistical Stat

Table 3: Resource Model

A one-dimensional deterministic resource like guaranteed bandwidth is
expressed by “1”, a token bucket would be described biP“NThe taxonomy is
summarized in Table 3, we specify abbreviations for some well-known multi-
dimensional resource models in Table 4.

Parameter Value Abbrey
Buffer + Rate Token Bucket TB
n-Level Token-Bucket n-TB
(n=2 equals a TSPEC)
Leaky Bucket LB

Table 4: Some Multi-Dimensional Resource Models

2.2.4 Cost.The cost model seizes the cost structure for allocation requests, i.e.,
whether these incur certain setup or transactional costs or whether the number of
requests is bounded and how variable costs for resource allocations are modelled,
e.g., linearly or non-linearly. Please note that costs do not have to be monetary
costs, they can also reflect imputed or fictive/ calculatory costs. Please note, too,
that profit is in effect negative costs and is thus included in the cost model. The
term “cost” is also used if we refer to purely technical constraints.

Table 5 specifies the different types of costs that can be used, Table 6 specifies
the properties of those cost types. A budget constraint means the following: for

2 This is because if we model the problem mathematically we need the same kind of variable to
measure the number of reallocations independent of whether we use it for calculating real fixed
costs or as a technical constraint; see e.g. M1.

Parameter Value Abbre}.
Fixed Costs peallocation / .
reallocation (= Setup Costs) Non-Existent I
Existen R
Infinite Setup Costs  Fowo
Variable Costs per amount aflocated .
: Non-Existent -
resources per time
Existen \
Variable Costs per amount oéedresources .
. Non-Existent s
per time
Existen U
Variable Costs per amount tgquested byt .
e : Non-Existent -
not satisfiedresources per time
Existen R
Variable Costs par i
Non-Existent -
servedcustome?
Existen R

Table 5: Cost Model Elements

a. Finite fixed costs for the first period and infinite fixed costs for all other periods. This effec-
tively prohibits reallocations and thus simplifies the resulting problem. We introduce this special
notation because this simplification will be used quite often in the MPRASE problems below.
b. This will in many problems be a negative term modelling the profit per served customer.

Parameter

Value

Addition

Linearity

Linear

Non-Linear and Convex

Non-Linear and Conca

e

Otherwise Non-Linear

Time dependent costs

Costs can vary betwe

n

2
-
5

different period

Costs remain equal for all perio

ds

Cost-Constraint

Costs are unconstrained

Budget constraint

bud

Time constraint

tim

Table 6: Cost Model Additions



the related cost term that only a limited budget is available which can not be Parameter Value Abbrev.
exceeded. This can also be used in a plain technical context: If all setup costs are Parametet Al A
1 and the budget is N we only allow a maximum of N reallocations/allocations. Cost Term FVURLC
With a time constraint we describe that - again using the setup costs as example - et
there has to be a certain time interval between two reallocations. i Demgnc 0
To specify the cost model in the taxonomy we list all existent cost terms plus Budget / Technical Constraint(s) Budg / Tech
the necessary additions for each cost term. Linear fixed and variable allocation Provider’s capacity Cap
costs are described by “FV” while ¥ " would denote linear fixed setup costs
that are equal for all periods and non-linear changing variable costs. Uncertainty Deterministic _
2.2.5 Intermediary. Note that the intermediary is the component where solution Stochasti¢ 5
techniques towards MPRASE problems are conceptually located. Mathemati- Discrete Stochastic D
cally speaking, it captures the target function of the optimization problem that is Total Uncertainty T
described by the taxonomy. Table 8: Edge Model
Parameter Value Abbrev. . ]
- the six components as follows:
Part of the Target Functign All Cost Terms * Customer | Provider | Resource | Cost | Intermediary | Edge
Individual Cost Terms of the -\, \; o ¢ 1|1]1|FV[*|* thus describes the MPRASE problem incarnation with one cus-
CostMode] """ ™" tomer, one provider, a one-dimensional resource, linear fixed setup and variable
Table 7: Intermediary Model costs that are to be minimized under deterministic knowledge.

If all cost terms of the cost model are to be optimized (minimized) this is indi- 3. Selected Abstract MPRASE Problems
cated by “”". A combination of the cost model yfjyV" with intermediary '

model “V” means that only the variable costs are to be minimized, the fixed setup ~ We now present two abstract problem incarnations from the MPRASE frame-
costs only have to remain below their budget constraint. work. The first is very complex and encompasses all problems discussed later in

this paper while the second is the smallest non-trivial problem of the framework.
2.2.6 Edge.The edge model encompasses the nature of knowledge about the \ye concentrate on the discussion of the second problem as the results come in
problem parameters at the system edge. Deterministic knowledge means that we handy later for the other MPRASE problems.

know the exact values of the parameter for all periods. If the knowledge is sto-
chastic, we do not know the exact value of the parameter for the future periods 3.1 General Model: Maximizing Social Welfare at the Edge
but have some knowledge of statistical nature about it, e.g., the probability distri-
bution. Discrete stochastic means that the parameter set is chosen from a number
of known scenarios. And we speak of total uncertainty if no assumptions about
the parameter can be made.

For the taxonomy we specify the parameters that are not deterministic and
describe their uncertainty with a small index (S, D or T). So if every parameters
is deterministic instead of the future demand which is totally uncertain we would
write “D+”. If all parameters are deterministic we write “*”.

3.1.1 Problem Formulation.The overall goal at an edge between a humber of
customers and providers is to maximize social welfare. Thus we first look at a
very general but rather complex MPRASE problem incarnation which models an
edge between a number of customers and a number of providers where the inter-
mediary’s goal is to maximize social welfare.

We assume that there is a considerable number of customers, the intermediary
performs admission control on them. Additionally the providers are allowed to
dissatisfy a part of the customers’ demand (degraded quality), although doing

2.3 The Complete Taxonomy this imposes costs on thgm. Thu_s the customer T“OdﬁkiémQ"_- _
We can now describe each MPRASE problem incarnation by describing all of There are multiple providers with limited capacity; the provider model is there-



fore N cqap. We use a token bucket as resource modn'® «. There are fixed prove the generality of the MPRASE framework and show that it is sensible to
setup costs for each (re)allocation. As a technical limit for the reallocations there look at these problems at systems edges in an integrated fashion.

is a minimum time that has to pass between to reallocations at the same provider.
There are variable costs imposed for the token bucket parameters, degraded qual-
ity leads to costs as well as rejecting customers leads to lost profit. The cost
model is thus FFyipeVRC" . The intermediary tries to maximize social welfare

and thus embraces all cost“() and for ease of description we look at the deter-
ministic version of the problem, leading,t0 as edge model.

In terms of our taxonomy the problem is described by

Nac,0q | Neap | N™® | FRipmeVRC | * | *.

It is formulated in MIP (Mixed Integer Programming, [32]) form as M1. The
social welfare is the total utility of the providers and the customers, it is maxi-
mized in (1) and consists of the profit for accepting customanus the costs for
the resource allocation, consisting of the fixed setup costs and the variable costs
for the token bucket rate and depth, minus the costs for degraded quality.

For M1 we assume that all the cost terms are non-negative and that thepprofit
of customeri is lower thanzi ztcﬂbit so that there is an incentive to impose 3.2 The Single Provider Problem (SPP)
admission control.

In M1 the constraints (3) to (6) forcg; to 1 whenever a reallocation is made,
indicated by a change in; and/ordy;. Constraints (7) and (17) set the variable
Uy to the unsatisfied demand but not smaller than zero. (8) uptiatése tokens
in the bucket at the end of peridcre the ones left from last period plus the cur-
rent rate minus the tokens used to satisfy demand as expressgd (8) makes
sure that there are never more tokens in the bucket than the bucket depth at the
end of the period. The provider's maximum rate and bucket depth is accounted
for by (10) and (11). (12) is the technical constraint that makes sure that realloca-
tions can only occur once eveNT periods. (13) to (19) are the non-negativity
and binary constraints for the variables.

3.1.3 Modelling SubproblemsTo change the customer model to ,1" parameter
| in M1 has to be set to 1. Dropping th&¢* (admission control) in the customer
model is reflected by forcing all; @0 1 in (19). Dropping the DQ" (degraded
quality) is reflected by setting adi“t to infinity. Changing the provider model to
providers with unlimited capacity is done by setting @ﬁlt a(D?;j to infinity.
To change the provider model to ,d'has to be set to 1.

If the one-dimensional resource model ,1* shall be used instead of a token
bucket model aIIC?t have to be set to zero. To drégye‘ from the cost model
AT has to be set to zero. If we only allow one allocation in the first period and for-
bid all reallocations E* in the cost model has to be replaced witlh, . This is
done by setting the setup cosfg to infinity for all but the first period.

Many of the possible subproblems of M1 are modeled and solved in the fol-
lowing parts of the paper.

3.2.1 Problem Formulation.While M1 is the most complex and comprehensive
MPRASE problem discussed here, the single provider problem is the most sim-
ple non-trivial MPRASE problem. In terms of the MPRASE taxonomy it is
1|1|2|FV|*|* There is one customer that has one-dimensional capacity demands
by that must be fully satisfied at every discrete time intetwal,....T. The edge is
deterministic. Capacity is requested from a single provider who is charging a
fixed setup costc; for each allocation and variable allocation costs per
reserved capacity unit and period. A new allocation is constituted by a change in
the allocated capacity. Allocated capacity is available in the period the allocation
is made and in all subsequent periods until the next allocation is made. Note that
the allocated and not the actually used capacity causes the costs.
3.1.2 Solution.As M1 is a MIP problem it can be solved with standard MIP solv-
ing techniques like branch and bound with LP relaxation [32]. This is however
not necessary. A huge system edge between customers and providers as assume
in M1 cannot be solved centrally in the Internet because of the scalability issues 3.2.2.1 Branch and Bound with Linear Programming (LP) Relaxation.
involved. There is no central intermediary in the Internet that could ever manage A standard approach to solve the single provider problem SPP is to use a mixed
all requests from the customers. Proposals like [46] that rely on a central interme- integer problem solver in order to solve M2. A typical algorithm for solving a
diary (there called broker) are generally regarded as unrealistic approaches. mixed integer LP model is a branch and bound algorithm that uses the LP relaxed
The goal of M1 must be aimed at with distributed algorithms. Therefore we do  problem M3 of M2:
not intend to look for algorithms that solve M1, instead we use M1 to show that a The resulting problem can be easily solved with the simplex algorithm. The
number of problems in the literature are actually subproblems of M1. Thus we solution of M2’ is a lower bound to the optimal solution of M2. Branching can be

3.2.2 Exact Solution Algorithm.At first we want to look at techniques that
8uarantee to produce an optimal solution for the SPP.



M1 Basic MPRASE Model
(Variables and Parameters)
Indices:
i Index for customers=1, ...,
j  Index for providerg =1, ...,J
t Index for periodé =1, ....T
Variables:
riji Allocated token bucket rate for custonday providerj in periodt.
diit Allocated token bucket depth for custorméy providerj in periodt.

Iijt Amount of buckets left in token bucket of customeit providerj at the end of pe-
riod t.

Sjt Auxiliary binary variable for accounting the setup costs. Set to 1 if custonesd-
locates resources (bucket rate and/or depth) at proyidgperiodt and to 0 other-
wise.

g; Binary variable, set to O if customgis rejected by the admission control and to
otherwise.

Vit Amount of demand by customiein periodt that is satisfied by provider
Ui Amount of unsatisfied demand of custorpér period t.
Parameters:
by Demand of customerin period t.
c?t Setup costs of providéiin period t.
C&t Costs per allocated rate of providén period t.
CLt Costs per allocated bucket depth of providerperiodt.
Cit Costs per unsatisfied demand (degraded quality) of cusidmeeriodt.
CE} Maximum total rate available at providen periodt.
CJ-t Maximum total bucket depth available at provigar periodt.
p;  Profit for accepting customeér
rijp = 0. Rate allocated for custormieat providerj before the first period.
dijp = 0. Bucket depth allocated for customet providefj before the first period.
lijo = 0. Tokens in the bucket of customert provideyj before the first period.
M  Mis a sufficiently high numbemgax{ b; ‘ ai, t} ).
AT Time interval that must pass between two (re)allocations.

M1 Basic MPRASE Model
Maximize Z pa — Z Z Z CiiSjt — Z Z Z Citlij
- Z Z chjjtdijt - Z ZCiL;Uit

subject to
Fije = Tije—1= M L5 0i, Oj, Ot
Fije 1~ Tije < M Loy 0i, 0j, Ot
dije —diji -1 = M Ly, 0i, Oj, Ot
dije - 1—dije < M sy 0i, Oj, Ot
Uit 2 & bit_z Vijt Oi, Ot
]

lije < lije -2 Fije — Vije 0i, Ot

lije < dije 0i, Oj, Ot
Zrijt <Cj, dj, Ot

|

d .

zdijtscjt dj, Ot

|

t+AT

> st Oi, Oj, Ot = 1, ..
T=t

rjp 20 Oi, Oj, Ot
dij; 20 Oi, Oj, Ot
s U{0, 1} Oi, Oj, Ot
lijr =0 0i, Oj, Ot
Uiy 20 Oi, Ot

Vi1 20 Oi, Oj, Ot

a, 0{0, 1} Oi

, TAT
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2

®)
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®)
(6)
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©)
©)
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M2

Variables:
r.  Amount of reserved capacity in peribd 1,...,T.

s Binary variable, 1 if a allocation setup is made at beginning
of periodt = 1,...T and 0 otherwise.

Parameters:
by Demanded capacity in period= 1,....T. Demand is as-
sumed to be greater than 0.
cf’ Setup costs in period t.
C{ Costs per allocated rate in period t.
ro Allocation level before the beginning of the first period
M M is a sufficiently high number (e.g., mab}).

Single Provider Problem - SPP

T T
Minimize § cs, + § cir 1
tzl St IZI 1t (1)
subject to
ro=b oo=1,..,T (2
ri—ri_,<MG5 oe=1..,T (3)
r_1—rsM@G ot=1,..,T 4)
s 0{0, 1} oo=1,..,T (5)
M3  LP Relaxation of M1 (SPP)

The binary condition (5) is dropped from M1 and replaced hy
O<s <1 ot =1,..,T (6)

done by fixing the highest not yet fixeglto 1 in the first and to 0 in the second
subproblem.

Even for this very simple MPRASE problem incarnation an example with only
50 periods took already 33 minutes to be sofvérroblems with more than 100
periods could not be solved within several days. The reason for this is that the
structure of the problem does not make it very amenable to branch and bound
algorithms sinces; are often set to very low values greater O resulting in a vast

3. All experiments have been performed on a 400 MHz Pentium Il processor using the
commercial MIP Solver CPLEX [11].

underestimation of fixed costs which leads to very loose bounds. Therefore, we
strived for more efficient, yet still exact algorithms for the SPP.

3.2.2.2 Dynamic Programming (DP).
Let (14, t,) be the edge from vertex to vertext,. The costs (or length) of edge
(tq, tp) are defined as
t

Cltpty) = ¢ + Z ¢ tmax( Rt O{ty, .. t5}).
1=t
With this, the problem can be solved efficiently with the following algorithm
which uses the dynamic programming paradigm [1] and has a complexity of
O(T?) (see Figure 2).
Preparation:

Prepare an empty arrain and an empty arragred each
with T entries.

()

Start:
cMin(1) = C(ty, t1)
predl) =1

Iterationt = 2, ...,T:
cMin(t) = min{C(i, t) + cMin(i-1) |i =1, ...,t}
predt) = argmin{C(i, t) + cMin(i-1) |i = 1, ...,t}
Result:

cMin(T+1) contains the minimal costs while arrgyed
stores the hops towards that solution.

Figure 2: Basic Dynamic Programming (DP) Algorithm.

3.2.2.3 Assessment of Execution TimeEable 9 shows the execution times for
all of the exact algorithms for two differently sized problem instances.

Algorithm B&B DP
T=50 1920.7 0.0026
T=1000 n.a 9.0

Table 9: Execution times for exact SPP algorithms (in sec).

3.2.3 Heuristic Solution Algorithms.The last section introduced exact solu-
tions for the SPP, which while they provided fairly good performance still
required a certain computational effort that might be prohibitive in scenarios
where there is either a large number of periods to be planned for or where there is
only an extremely limited amount of time available for computation as, e.g., if
the resource allocation is done in response to signalling messages and thus affects



setup latencies. Therefore, we now want to investigate heuristic techniques which

do not guarantee an optimal solution but allow very fast allocation decisions. A

further reason for investigating heuristics becomes obvious when we extend the ple
SPP techniques towards other MPRASE problems later in this paper when we from several users) with their interarZ |

sometimes end up having to solve huge numbers of SPPs.

3.2.3.1 LP Heuristic (LH). The LP heuristic is solving the LP relaxation M3 of
Section 3.2.2.1 to determine the amount of allocated capacity. After solving M3
(using the simplex algorithm), anggZ0  is set to 1 wherever necessary (that is,
wherer; andr_, differ). This leads to a relative high number of allocations since
fixed costs are systematically underestimated by allowing contirguous

3.2.3.2 Merge Heuristic (MH).The

merge heuristic starts with a sepa cap:/sec - T :gﬁ::g n
allocation for each period and tr _

tries to merge two successive allc allocation 1

tions into one if the saved fixed co allocation 2

of the allocation are less than waste

waste of variable costs (see Figut

for an illustration of this).

3.2.3.3 Split Heuristic (SH).The e

split heuristic starts with a single al
cation and then tries for all periods
split existing allocations if the fixed costs for the new allocation are less than the
saved waste of variable costs.

Figure 3: Waste of variable costs.

3.2.3.4 Combined Heuristics (CHI[x,y]).The merge and split heuristics can also
be used to further improve the results of other heuristics. In our simulations we
therefore iterated through merge and split in sequence until no further improve-
ment could be achieved (CH[MH, SH]). Moreover, we also tried the combination
of merge and split based on the result of the LP heuristic (CH[LP,MH,SH]).

3.2.4 Evaluation.In order to evaluate the performance of the heuristics we ran a
simulation over 100 random problem instances, each W#th000, fixed costs

cf‘ [0[200,800] drawn from a uniform random distribution once and then set
equal for allT periods. Variable costs[ are drawn from [3,5] and remain equal
for p periods;p is drawn from [10,20].

The demand is calculated by super-
posing a number of requests (for exam-
representing individual requests 29

rival time modelled by a Poisson distri-&
bution (\ = 4) and their duration © 1
modelled by an exponential distribution .,
(= 20)4. For calculating the requests’
capacity demand we draw from a uni- % 00 L. 600
form random_dlst_nbutlon from one out Figure 4: Sample capacity demand

of three possible intervals [2,8], [10,20]

and [35,50] representing small, medium and high capacity requests. The interval
itself is selected for each request with a probability of 40%, 30% and 30%. Fig-
ure 4 shows a sample problem generated in this way.

Table 10 shows the results generated by the simulations. Here, allocation
length denotes the average duration of a single allocation and waste is the total
waste of variable costs for a single SPP instance (as illustrated in Figure 3).

As a very simple alternative heuristic and to have a reference value we also
used what we called the peak heuristic (PH) which makes a single allocation with
the highest capacity demand over all periods. Expectedly, PH performed very
poorly compared to the other techniques. A much better performance at very low
execution time is achieved by the merge heuristic (MH): on average it imposes
less than 5% additional costs relative to the optimum and reduces execution time
by a factor of 4500. The conceptually very similar split heuristic (SH) is consid-
erably less effective. Looking at the allocation length shows the reason: it over-
does its job by splitting too often, resulting in too short allocation lengths and
thus incurring fixed costs more often although waste of variable costs is roughly
equal to MH.

The LP heuristic performs only marginally better than SH, although it con-
sumes considerably more time. This is due to its characteristic of underestimating
fixed costs which is also expressed in a very low waste and small allocation
lengths.

Next, let us see how these results may be improved by the combination of heu-
ristics as described in Section 3.2.3.4. The combination of MH and SH leads
expectedly to better results than the techniques in isolation. Yet, even better

200 4 800 1000

4-We have to admit that parameter choice is rather arbitrary (albeit sensible) due to lack of
empirical data. However, we have experimented with other values without changing the
results in a significant manner.



results can be achieved by integrating LP with MH and SH. 4.1.2 Modeling Uncertainty.If there is no uncertainty with regard to a parame-

In conclusion, the best results are achieved by CH[LP,MH,SH], yet the most ter the value of that parameter is known at the time the decision is made. We then
attractive trade-off between cost performance and execution time is probably call that parameteteterministic M2 was an example for a model which has only
achieved by MH or CH[MH,SH]. deterministic parameters.

3.2.5 Related Work.The deterministic single provider problem is treated in 4.1.2.1 Types of UncertaintyParameters like future bandwidth demand which
more detail in [27] and [26]. The algorithms for the single provider problem are  form the basis for a decision or optimization process can be and in practice often
extremely useful for many other MPRASE problems and are reused several times are uncertain. Several degrees of uncertainty can be distinguished for a parame-
in the following chapters. ter:

. » Total uncertainty Nothing is known about which values the parameter will
4. Selected Uncertain MPRASE Problems take. The best thing one can do in this case is to try to react flexibly and learn

4.1 Background on Uncertain Optimization Models from past values the parameter took. Section 4.3 gives an example for an
MPRASE problem under total uncertainty and presents an efficient and flexi-

Many decisions and optimizations in the areas of network design, traffic engi- ble self-learning algorithm
neering and other resource allocation problems are based on uncertain data due to, ;) hastic uncertaintyThe éxact value the parameter will take is not known
the relatively long timescales on which these mechanisms operate. In this section but the decision maker knows the probability distribution of the parameter

we derive several fairly general strategies for dealing with uncertain problems of and can thus make some predictions about the parameter. [16] and [54] are
the MPRASE framework. typical works that deal with stochastic uncertainty for bandwidth allocation
4.1.1 Stochastic ProgrammingWe will use methods from stochastic program- problems from a provider’s point of view by assuming sources with on-off
ming in this section. Stochastic programming deals with optimization under traffic.
uncertainty and was introduced in 1955 by Dantzig [12]. Good overviews on sto- ¢ Discrete stochastic uncertaintyhe parameter is drawn from a discrete set of
chastic programming are given in [38, 63, 73, 24]. Many economical problems values, each value has a certain probability. The set is typically modelled as a
are solved using stochastic programming; e.g., a case study that uses stochastic number of scenarios. This approach is discussed below in more detail as it is
programming for capacity planning in the semiconductor industry can be found the approach taken in Section 4.2.
in [39].
. Costs Relative deviation from optimum costs Allocation Waste | Time (sec
Algorithm length
av a stdde min m v \% av
Optimum (DP) 452304 n.a. n.a. n.a. n.a. 943 36515 9.000
PH 1010199 123.81% 32.96% 58.97% 221.713% 1000.00 645804 <0.001
MH 474027 4.79% 1.07% 2.05% 7.15% 10.65 64257 0.002
SH 568759 25.93% 10.43% 12.96% 73.65% 3.72 63295 0.010
LP 554317 22.34% 8.37% 6.12% 39.07% 2.62 424 0.452
CH[MH, SH] 469723 3.85% 0.74% 1.80% 5.34% 9.81 56064 0.005
CHILP, MH, SH] 460404 1.77% 0.70% 0.39% 3.75% 8.93 41918 0.452

Table 10: SPP simulation results.



4.1.2.2 Modeling Uncertainty with ScenariosThe idea of modeling uncer- IETF working group ppvpn, [9, 21]), potentially in support of business-critical
tainty with scenarios has its roots in scenario analysis [49, 47]. Scenario analysis applications. The demand fluctuates heavily over the course of a day with peaks
is a method for long-range planning under uncertainty. Conformant and plausible in the late morning and afternoon hours and far lower demand in the night hours
combinations of the realizations of all uncertain parameters yield a number of as well as over the course of the week with ups on the weekdays and downs on
scenarios. These scenarios form the basis for the following decision process (e.g., the weekend.
a production plan is based on the assumption that one of the three scenarios will  Previous research work [23, 43, 74, 25] has shown that it is generally favorable
occur: “prices and demand go up”, “prices fall slightly and demand remains for both customer and provider to allow renegotiation of bandwidth allocations.
equal”, “demand goes back and prices fall heavily”). An application example and The customer saves costs during phases of low demand and the provider can
literature overview is given in [39]. make better use of the capacity of the network. Among other findings, the simula-
However, describing uncertainty with a range of scenarios also makes sense for tions in this section confirm that without renegotiation the costs increase consid-
short- and mid-range planning and is often used for stochastic programming [38, erably (at least by a factor of 3 in our settings). A lot of research in the area of
12, 63] as it has some crucial advantages over using a parametrized probability virtual private networks is done to increase the flexibility of VPNs [14, 41, 36,

distribution: 35, 48], a trend which will make renegotiations easy and common.

» It is easy and intuitive for the decision maker to create the scenarios, they  On the downside, for business critical applications renegotiation can be a dan-
could also be created automatically [22]. gerous mechanism because customers are given no guarantees that they obtain

» Scenarios are easy to analyze, their plausibility can be approved easier than by the higher amount of bandwidth they need for their peak demands as the provider
creating a mathematical probability distribution. could run out of resources in such times leading to a rejection of the request.

» Scenarios are flexible, every kind and number of possible events can be easily This problem can be avoided if renegotiation is combined with reservation in
accounted for in the scenarios. advance. Customers can now request their increased bandwidth ahead of time.

» Finally, scenarios can be used as a discretization of probability distributions They can thus avoid the risk of running out of bandwidth for business critical
for numerical algorithms. applications. We show in this section that they will usually still save costs. So

there are strong arguments for customers to use reservation in advance.

On the other hand with reservation in advance the provider has a better progno-
sis of the utilization of the network in advance which may allow him in turn to
potentially allocate bandwidth more efficiently at further providers, yet the latter

4.1.3 RobustnessThe notion of robust plans stems from decision theory [63].
Decision makers are typically evaluated ex post by how good their proposed plan
performed in reality (i.e., in the scenario that actually occurred). As they can

loose their job and career when their plan performs badly in the occurring sce- recursion is not in the scope of this paper. We assume that if there is not enough

narl_o_and this typlcally outweighs the praise if the plan per_forms well, clever bandwidth for a reservation in advance that either the provider allocates the miss-
decision makers are risk-averse to a certain degree and biased towards robust.

plans. A robust plan is a plan that is judged positive in most of the scenarios and ing bandwidth at a_npth_er provider or the custome_r Changes providers.
does not perform too badly in any of the scenarios. In the VPN provisioning problem we take the viewpoint of a (e.g., VPN) cus-

tomer that reserves bandwidth (e.g., for one of the trunks of his VPN) in advance
4.1.4 Strategies for Dealing with Uncertainty. at a provider (e.g., offering a bandwidth-assured VPN service). The problem for
In the following two sections we examine two MPRASE problems that act the customer is that its demand forecast is necessarily uncertain.
under varying degree of uncertainty to demonstrate various strategies that deal The VPN provisioning problem is the MPRASE problem incarnation
with uncertainty. 1|1]1|FV|*|Dy as it deals with an uncertain edge (discrete stochastic demand)
L between one customer and one provider, uses a one-dimensional resource model

4.2 VPN Provisioning and a linear cost model with fixed and variable costs. Our prior discussion of the
4.2.1 Problem Formulation.In this section, we look at a customer that needsa  SPP M2 comes in handy now, as the VPN provisioning problem is quite similar
considerable, varying amount of network resources (e.g., bandwidth) over long to it. The difference is the uncertain paramesgfor periodt =1,...;T. Using the
timescales, for example for a provider provisioned virtual private network (see scenario model from Section 4.1.2 we assume that we have a n@ubscenar-



ios with the demand forecabfs for periodt and scenari®, each scenario has a
probability pg with

S
> po= 1.
s=1

4.2.2 Strategies for Dealing with UncertaintyBecause the demarig is now
uncertain, we can no longer use the algorithms of the SPP. We now derive strate-
gies that can deal with the uncertain parametigrand evaluate their robustness
later in simulations.

In general, uncertain parameters can occur in the objective function and the
constraints of an optimization problem. If the objective function is affected the
decision maker runs the risk of not achieving optimal results because of the
uncertainty. If, however, the constraints are affected the decision maker risks cre-
ating plans that are not valid or realizable in reality. Dealing with uncertainty in
the constraints is usually harder and more complex, yet more important than
dealing with uncertainty in the objective function [63]. In our problem constraint
(2) of M2 is affected by the uncertain parametlgs We now present some gen-
eral strategies how to deal with problems that have uncertain constraints.

8)

4.2.2.1 Deterministic Substitution Strategied-or the deterministic substitution
strategies we substitute the uncertain (scenario dependent) pardxgetih a
deterministic (scenario independent) paraméter  and then solve the resulting
deterministic problem M2 with the algorithm presented in Section 3.2.2.2.
Several substitutions can be used. An obvious one is to use the expected value

S
r 1
by = éz psbts
s=1

as substitute, we call this strategy DED (deterministic with expected demand).
To avoid underestimating the demand a surchargan be added to the substi-
tute. We call this strategy surcharge strategy (B5U

S
b= (1+a) Y pabs
s=1
For the deterministic worst-case strategy DWC we use the highest value of all
scenarios as substitute:
bt = max h|Os} (11)
A plan based on the worst case values yields a solution that satisfies all con-

9)

(10)

straints for all scenarios, this is why such a strategy is also called fat solution
strategy [38, 63].

4.2.2.2 Chance Constrained Strategie$he deterministic strategies have no
real control over the chance that their plan violates the uncertain constraints with
the exception of DWC which makes sure that the plan is valid for 100% of the
scenarios. The chance constrained strategy CC allows finer control over the
chance that a plan is valid by introducing a factoend forcing the uncertain
constraint to be satisfied in at leagpercent of the scenarios.

The chance constrained strategy is much harder to implement than the deter-
ministic substitution strategies. The MIP model and an efficient algorithm to
implement the chance constrained strategy CC are presented in [28], there also a
simplified version of the CC strategy is presented, the so called separated chance
constrained strategy SCC.

4.2.2.3 Recourse Strategie$he CC strategy controls the risk that a solution is
invalid to some extent. Recourse strategies control the risk in a different way. In
M4 a recourse strategy with expected recourse (RER) is given.

M4  Bandwidth Allocation with
Expected Recourses (RER)
Variables see M2 and
fis Recourse for scenario s = 1,...,S for petiedL,...T.
Parameters see M2 and
ctf Recourse costs for scenario s = 1,...,S for petriod, ... T.

by Demanded capacity in scenario s = 1,...,.S
for periodt = 1,...T.

ps Probability of scenarios = 1,...,.S
Minimize thsst + Zc{rt + Z z e fre (12)
S
subject to (3), (4), (5) and
ro+ fie=byg 0t, Os (13)
fis20 tt, Os (14)

In constraint (13) the new variabfg measures by which amount the demand
remains unsatisfied in scenasdor the resulting planned allocation in perigd
r. The CC strategy only takes into account that demand is unsatisfied or not, the
recourse strategy also takes into account how much demand is unsatisfied in a



given scenario.
The recourséis has to be penalized in the objective function. The RER does
this by weightingf;s with ctf and adding the expected value over all scenarios to
the objective function(12).
In order to implement the recourse strategy the algorithm of Section 3.2.2.2
can be reapplied with some modifications. It uses as new cost function
t2

t; S
_ S r f
C(ripty, ty) = ¢ + Z Cilpp Z Py fidrioty ty),

> (15)
t=t, t=t;s=1
the optimal ratep, (that leads to minimal costs
Copi(ts, t2) = C(ropty, to), ty, t;) betweert; andty)
Foptlty t2) = r|C(r,ty, ty) = (16)
mln{ C( r, tl! tZ)‘Dr O [Ou max{ b‘t U [t1! tZ]}]}
and the recoursé(r,t,,t,)  which is defined as
fts(rv tl! tz) = max{ 0, bts_ I’} (17)

As ¢ is fixed, the minimum cost€(r,, t;,t,) from (15) can also be written

as
t; t, s
~ f
C(r,ty, ty) = z C{I’ + Z z psC; max 0, by —r} (18)
t=t, t=t;s=1
which can be rewritten as
th 0 t, s
C(r,tyty) = 0 o - p.Ci Min{ 0, r —b,} (19)
qzztl O t:ztlszl
C(rtyt) = C;-C, (20)
02 .0
FunctionC, = OS cO (21)
1 Z 0
-t
is a linear strictly monotonic increasing functiorr of
t, S
FunctionC, =}y P.Ci Min{ 0, r —b,} (22)

t=t;s=1

is a wide-sense increasing piecewise linear function that starts with negative

values. Its slope is decreasing and becomes zero for all
r >max{b|s=1,...,.S;t O[ty, t,] }. For alocal minimum the slope of the differ-

ence of these two functior®  has to be Zefs the slope oC s the difference
between the constant positive slope©f and the_decreasing slopg of
zero only for a single poingor a single interval [ t,]. C therefore only has one
local minimum which is then at the same time the global minimum. If there is
only a single minimum it can be easily found with a binary search over all
r =_b, with t O [ty, t,] ands=1,...,SThis results in a worst-case complexity of
O(Tog(TS))

4.2.3 Evaluation.A simulative comparison is used in [28] to assess the merits of
the different strategies. Realistic demand patterns for 20 scenarios with peaks in
the late morning and afternoon and downs during the night in accordance with
[57] and [37] are used to describe empirically found traffic patterns. The exact
method is described in [28]. The possible demand of one scenario is depicted in
Figure 5 together with the allocation made by the RER strategy. As can be seen,
it is possible that a plan does not allocate sufficient bandwidth for the demand of
some periods for a given scenario. To account for such failures of the bandwidth
allocation strategies the unsatisfied demand is penalized with penalty costs that
are 10 times as high as the variable costs.

In [28] the robustness and general performance of the strategies are evaluated
in detail, we summarize the results here, the minimal, average and maximum rel-

it is
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Figure 5: Real demand for one week and the allocations
made by the RER strategy

5The slope in a local minimum or maximum is zero. The difference function here obvi-
ously has no maximum.
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ative deviation from the optimal costs are depicted in Figure 6: T

The robustness was evaluated based on the worst case performance of the stratS |
egies. The RER strategies show the best worst-case behavior, followed by SCC ‘?\5 &l
and DS ». The RER and SCC strategies are more robust concerning the varia-
tion of their parameters respectivelyc than DSU.

DED and DSU with lower or higher surplus perform very badly, as does DWC
and CC. Those strategies cannot be considered robust, this is important for the 2
DWC strategy which is based on the worst case demands and thus never leads to$ .
penalty costs. But its basic plan is still much more expensive than the combina-
tion of penalty and the planned costs of the other strategies. Only when the pen- = 55t I
alty costs are set higher than 100 times the variable costs the DWC strategy
performs acceptably. Thus the DWC strategy cannot be recommended for a wide
range of parameter sets of the bandwidth allocation problem. 20}

DED and DSU with low surplus factor are also not robust. Only if the surplus L
factor of DSU is set correctly its performance is acceptable; it can thus not really 51 —
be considered robust. 1o}

SCC and RER can be considered robust. SCC bases its calculations on quan-
tiles of the demand distribution and thus uses more information from the demand 5
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o

Deviat

251 [

50
75 L

o . . . 2 8 2 8 8 0 &8 8 8 &£ 8 8 p¢
distribution than the surplus strategies DSU which explains the better perfor- 4 2 3 8 8 8 2 8 8 8 8 8 8 & I I
i ine- i i ] Q Q -
mance._RER performs very good, obw_ogs!y the flne_ grained control over the risk 2 g 8 ©  Stategies
makes it more robust than the deterministic strategies. @

Next, the general performance is evaluated based on the average performance Figure 6: Relative Deviation from the minimal costs
over a number of simulation runs with higher uncertainty. The ranking in perfor-
mance is quite similar to the ranking regarding robustness above. The RER and
SCC strategies perform best and can be recommended.

DSU again only performs well if the surplus factor is set correctly. DED and
DWC as well as CC perform relatively badly and cannot be recommended.

The conclusions from the experiments are that the RER strategy should be
used. The recourse costs should be set similar to the estimated (calculatory) pen-
alty costs of unsatisfied demand for best performance. However, the strategy is
robust against a wrong setting of the recourse costs, it still performs very good as
long as the recourse costs are in the same order of magnitude as the estimated4.2.4 Related Work.In [72], service provisioning for distributed communication
penalty costs. networks with uncertain data is studied. Several service provisioning models are

If the computational complexity of RER is too high, SCC can alternatively be  presented that account for several types of uncertainty. However, no efficient
used, it performs a little worse but still better than all other strategies and is easy solution algorithms are presented and no simulations are carried out. Another
to compute. related work is [15], here a service provider offers computational services and

The experiments allocating resources once per week without renegotiation lead tries to maximize profits. In our work we consider a network service and take the
to about 3 times higher costs than those yielded by RER or SCC. This shows perspective of the customer. Some of the methods presented in this paper were
again that renegotiation can save a considerable amount of costs. We have also successfully applied to a different problem domain, the planning of a pro-

explained why reservation in advance is vital to avoid the risk of not getting
enough bandwidth in peak periods. Even if that is not the case reservation in
advance can be better than short-term reservations: short term reservations will
typically be priced higher because they leave the provider with a much higher
planning uncertainty and the risk of underutilizing his resources. The results
show that if short-term allocations are priced only 15 to 20% higher than long-
term reservations the latter combined with a robust algorithm are cheaper than
the optimal short-term allocations.



duction program [29].

Invokation of BB

43 Decoupling Of Time-ScaleS for global admission control -

While the last problem was an example for a problem with (discrete) stochastic \ ’
uncertainty we now discuss one with total uncertainty. We present a framework
to solve such problems that is useful beyond MPRASE.

\‘ RSVP/IntServ
Access Networks

4.3.1 Problem Formulation.Different time scales of QoS systems may arise
due to different QoS architectures like RSVP/IntServ (Resource reSerVation Pro-
tocol/ Integrated Services) [6], DiffServ (Differentiated Services) [3], or ATM
(Asynchronous transfer Mode) [4] being used but may also be due to different
QoS strategies followed by providers even if they employ the same QoS architec-
ture. Choosing different QoS architectures as well as different strategies results
from serving different needs, e.g., for an access and backbone provider. An
access provider that has a comparatively moderate load and directly connects to
end-systems may favor a fast time scale system responding immediately to the
end-systems requests. A backbone provider that connects access providers
respectively offers transit services is generally faced with a drastically higher Figure 7: Combined local and global admission control.
load of individual transmissions, so that reaction on the time scale of individual
requests is usually not possible and a slower time scale system needs to be the DiffServ/BB network. Global admission control is only invoked whenever
enforced. local admission control at an edge device runs out of resources in its capacity
When different time scales are in operation in heterogeneous network QoS sys- depot. In such a case, local admission control on an edge device tries to obtain
tems, it is simply not possible to query the underlying QoS system each time an more resources from the global admission control represented by the BB. This
overlaid system is altering its state. Here, the system operating on a faster time scheme allows to trade off resource efficiency for a more stable and long-term
scale needs to be smoothed when overlaying it onto a system that operates only capacity demand presented to the BB.
on slow time scales. This problem of decoupling different timescales is the MPRASE problem
A realistic configuration for access and backbone providers may be, e.g., that incarnationl|1|1|FV|*|Dy, it is similar to the SPP M2 but acts under total uncer-
access providers use RSVP/IntServ to suit their customers’ needs while a back- tainty. In the next section we present a flexible, self-learning, and powerful heu-
bone provider uses DiffServ with a Bandwidth Broker (DiffServ/BB) to allow for ristic scheme.

some dynamics but on a slower time scale. This scenario is shown in Figure 7. 4.3.2 Solution StrategiesActing under total uncertainty we propose the use of

Here it is also very obvious why a BB is generally not able to react to individ- an adaptive heuristic as a way to learn the statistical properties of the system in an
ual RSVP requests that are arriving at edge devices between access and backbone P y prop Y

provider. Because if it did, the BB would need to operate at a throughput of on-line fashion. The S(;heme we propose is highly usefL_JI n an environment
: ) . .. where there are unpredictable, but rather long-term fluctuations in the demand for
requests that is proportional to the square of the number of access providers it

serves - that is not scalable. Here a decoupling of the different time scales is nec- capacity. In general, the adaptation to behavior that would have been “good” in

. . T » . : the past is the best a heuristic technique can do under complete uncertainty.
essary. The decoupling can be achieved by building “depots” of capacity which . . i ! .
. . N " ) The question what is “good” behavior can be assessed by comparing the out-
stabilize the fluctuations of the “nervous” demand curve for backbone capacity . ST . i
S . . : come of an on-line heuristic with the optimal solution of the SPP that results by
by individual requests. From another perspective, the decoupling technique can

: i . h L looking back at the pastperiods.
also be viewed as introducing a combined local and global admission control for ! . . -
We now first present the adaptive algorithm framework and next a heuristic

IntServ/DiffServ ( |
Edge Device

, | Incoming
Flows



h(B) that fits into this framework. The combination of both is then evaluated by
means of simulation.

4.3.2.1 The Adaptive FrameworkLet us assume that we have a parametrized
heuristich(B) for the on-line decoupling problem and that we use an exact algo-
rithm for the off-line decoupling problem, which is the SPP with the now deter-
ministically known demands of the last periods. There are essentially two
different modes of adaptation that can be directed by good behavior as achieved
by the cost-minimal cover of the past CDC:

Adaptation in Action Space. In this mode, the heuristic’'s parameter (vectbr)

is adapted such that the behavior of the CDC cover produced by applying the
heuristic deviates as little as possible from the optimal cover with respect to some
characteristic as, e.g., the number of reallocations.

Adaptation in Performance Space. In this mode the heuristics parameter
(vector)0 is adapted such that the cost of the solution produced by applying the
heuristich(B) deviates as little as possible from the optimal cost obtained for the
SPP.
Both adaptation modes have three parameters:
« Thefrequency of adaptatiodetermines how often the adaptation of the heu-
ristics parameter is carried out.
e Thetime window of adaptatiodetermines the length of the past period that is
taken into account for the adaptation.
e Theaccuracy of adaptatiodetermines how thoroughly the parameter space is
searched during the optimization problem for the adaptation.
We call this adaptation scheme ODAH (Optimum-Directed Adaptive Heuris-
tic).

4.3.2.2 An On-line Heuristic.Now, a very simple, yet reasonable heuristic is
introduced that deals with the problem under total uncertainty at each period. It is
called thresholded depot excess (TDE) as it ensures that the capacity depot hel
for decoupling is never above a certain threshold. It is applied in each period:

If the demand level rises above the current allocated capacity the change is
always followed (assuming that there is enough capacity at the underlying QoS

system). Whenever demand decreases, TDE checks whether the step is smalle

than a certain fractio 0 [0,1] of the old allocation level and if that is the case,
TDE follows this step.

Of course, the value of parameters crucial for the success of TDE.dfis set
too high, then TDE is too “nervous”, and will produce too many changes in the

level of the depot and if it is set too low, TDE is too “lazy”, and will waste a lot

of capacity.

4.3.2.3 Combining BothWe now integrate TDE into the ODAH framework so
that the parameten is adapted automatically. We call the resulting heuristic
ODAH-TDE.

As discussed above, there are two modes of adaptation in the ODAH scheme:
adaptation in performance space and in action space. In principle, both kinds of
adaptation are possible for ODAH-TDE. The adaptation in performance space
works by simply adjusting TDE's parametarsuch that the difference in costs
between TDE{) and the optimal solution of the SPP (see Section 3.2) is mini-
mized. This minimization is done by a simple recursive grid search [19] through
the interval [0,1] for parametex as there is no simple relationship between
andc for a more intelligent search to exploit. See [61] for detalils.

For the adaptation in action space, it was decided to use the number of reallo-
cations as basis for the similarity relation between covers, so that in this case the
difference in the number of reallocations is to be minimia&d.can use an inter-
polation search [19] since andn have a simple relationshimTDEa is mono-
tonically increasing ina. This is, of course, much more efficient than the
recursive grid search for the adaptation in performance space mode. See [61] for
details.

4.3.3 Evaluation.In simulations (described in detail in [61]) we experimented
with both adaptation modes. Both modes performed very similar but adaptation
in action space is more efficient due to the less compute-intensive adaptation
step.

The simulation results show that ODAH-TDE generally achieves a good and
robust performance over all types of requests. In particular we experimented with
different lifetimes of requests, where ODAH-TDE was able to achieve over 90%
of the cost saving performance of a hypothetical optimal scheme which operates

gunder certainty, i.e., solves the SPP exactly.

ODAH thus represents a robust scheme for heuristically dealing with the
sequential decoupling problem under total uncertainty. In particular, it should
work well even if flow characteristics as the lifetime of requests change since it

shows good performance for all types of requests in the simulations.

4.3.4 Related Work.[70] deals with a two-tier model which consists of an intra-

and interdomain resource management. BBs are representing each administrative
domain in the interdomain resource management. Based on measurements, a
watermark heuristic at edge devices is used to trigger inter-domain signalling. In
contrast to our work, the triggers are based on traffic measurements instead of



control path events. Furthermore, the introduction of the watermark technique is
rather ad hoc, and resembles the TDE algorithm without any adaptation.

One piece of work that explicitly deals with different time scales of access and
backbone networks on the control paths is [51]. Here a backbone QoS signalling
is proposed which integrates mechanisms in order to dampen the faster time
scales of access networks. This mechanism is based on hysteresis and quantiza-
tion for traffic aggregates which are based on sink trees towards destinations. The
applied algorithm is to always reserve capacity in multiples of a certain quantity
Q. Whenever the reserved capacity levelkot Q is no more sufficient, it is
increased to(k+1) xQ and the new quantum is only relinquished when the
reserved capacity falls belogk—1) x Q . This is very comparable to the simple
strategy of the TDE algorithm, and uses no adaptation.

4.4 Admission Control Problems

Admission control is a widely recognized problem at system edges. The basic
admission control problem N|1c,,|1|P[*|D or with ann-dimensional resource
model (e.g., token bucketB)|1c,,-|N[P[*|D and consists of maximizing the profit
(from the accepted customers) from a provider’s point of view or the total utility
from a user’s point of view. Admission control is discussed broadly in literature,
e.g., [7, 16, 42, 43, 45, 55, 60].

5. Selected Deterministic MPRASE Problems

In this section we discuss several selected deterministic MPRASE problems.

5.1 Provider Selection

The basic provider selection problehN|1|FV[*[* and 1|Nc,d 1|FV[*[* could
be regarded as the dual problem of the basic admission control problem (Section
4.4). Unlike the latter it is not treated broadly in literature. Because of this, we
treat it here in more detail than the admission control problems.

5.1.1 Problem Formulation.Let us assume that there are a number of providers
offering capacity to a single customer. The customer has to decide which or
which combination of providers to select and if and when to change the provid-
ers.

We assign index= 1, ...,J to the different providers. We can model this prob-
lem with M5. This model mainly differs from the SPP M2 in the additional index
j. Furthermore, we now have to model the case that in a certain period no capac-
ity is allocated at a certain provider. This is captured by the introduction of
demand defect variabled, and the constraints (27) and (28). Hete, needs to

M5  Provider Selection Problem - PSP

Variables:
rii. Amount of allocated capacity in intervidrom providerj.

st 1ifanallocation for providej is made at the beginning
periodt and 0 otherwise.

di 1if allocation for providey drops to O in intervat and d
otherwise.

Parameters:
b, Demanded capacity in intervak 1, ...,
be fully satisfied in each period.
CJt Setup costs, i.e., cost for an allocation in petiérdm pro-
viderj, we assume >0
CJ Variable capacity costs, i.e., costs per capacity unit pg
riod (specific per provider and period).

T. Demand mug

—

rpe-

rio Allocation level before the beginning of the first plann
peﬂod
Minimize Cit( sjp —djp) + Cy r (23
it It jthjt
,ZuZ JZHZ
subjectto
Zr,t_ ot =1,..,T (24)
j=1
Mt =T S M L5 dj=1,..,30t=1..,T (25
Moy —Tje S M D5y 0j=12.,30t=1,.,T (26
djt+£r]ts1 j=1,.,30t=1,.,T (27
L(rjt+rj(t_l))2djt j=1.,30t=1.,T (28
dth{O, 1} j=1,.,30t=1..,T (29
Sjt 0{o, 1} 0j=12.,30t=1.,T (30
rg=0 0j=12.,30t=1.,T (31

be chosen small, e.ge, = 1/(maxb;})
large, e.g.M = max{b,} and = 1/(min{ bt‘ b,>0)

, wherddsand L need to be chosen



In the next step we use additional parametggsfo model by (32) that each
providerj can offer only a limited amount of resourdesin periodt. This leads
to model M6, the capacitated PSP (cPSP).

M6  Capacitated Provider Selection Problem - cPSP
Minimize (23)

subject to (24)-(31) and

Xjt < Kjq 0j=1..,30t=1..,T (32

5.1.2 Solution Algorithms.The uncapacitated PSP represents a situation where
a customer’s demand is relatively small compared to the provider’'s supply such

that the resulting problem consists mainly in the selection of the cheapest pro- g|gorithms for solving the sub-SPPs.
vider. The capacitated PSP (cPSP), on the other hand, rather deals with a good

mixing of providers to achieve low total costs.

Note that the problem complexity of PSP is much higher than that of SPP (see
Section 3.2). First, the demand of each period can be satisfied by different
combinations of providers and second, if two or more providers are selected to

We use the DP algorithm from SCPH

Section 3.2.2.2, but the minimal costsl
C(t;, ty) for satisfying the demanc’? N
between two periodst; and t, are
obtained by solving) independent SPPs
for the interval {;, t;] and choosing the
cheapest provider. Unlike the DP algd!

rithm from Section 3.2.2.2, this aIgo-Pg -._
rithm does not necessarily lead to the -
optimal result as it does not allow for a
constellation as depicted for the optimah
solution in Figure 8. Again, we have the2
freedom of selecting any of the SPP3

-

DCPH

Optimal Solution

o
Figure 8: Provider usage of the

different algorithms for the PSP.

5.1.2.3 Adaptation of the Heuristics for the Capacitated PSP.
If the capacity of one provider is not SCPH

satisfy the demand of one period there is a high number of sensible shares enough to satisfy the whole demand wep1

between these. This higher complexity is also illustrated by the execution times
of applying the standard branch and bound solver to model M5. A small PSP
with T=20 andJ=4 already took 1920.8 seconds to solve while the corresponding
SPP withT=20 only took 1.2 seconds. For any larger PSPs execution times were
no longer reasonable. With this complexity in mind we go directly for heuristics
and try to exploit our knowledge about the SPP.

5.1.2.1 Static Cheapest Provider Heuristic (SCPHA rather straightforward
approach to tackle the uncapacitated PSP is to transform itJigePs, one for

each provider and each with the full demand. The SPPs can then be solved by any requced by the capacity served by the

of the SPP algorithms discussed in Section 3.2. After solvingJts#Ps we

tion where one provider is used for all periods.

5.1.2.2 Dynamic Cheapest Provider Heuristic (DCPHOne drawback of
SCPH is that it does not allow provider changes. Using a technique similar to the
DP algorithm from Section 3.2.2.2 we can eliminate this characteristic of the
SCPH. The resulting algorithm is called dynamic cheapest provider heuristic
(DCPH). This is also illustrated in Figure 8.

can no longer simply select a single pro+2
vider in SCPH and DCPH but have toP3
combine several providers. We do this™*

by first cropping the demands in each DCPH >
SPP to the capacity of the according’: ]

provider. We then solve the SPPs for all,, = —
J providers and select the provider thaip, I
has the minimum costs per satisfied -

demand. The overall demand is the Optimal Solution

b1
! %2
selected provider and the procedure i3

v|I

unsatisfied. Example allocations are
shown in Figure 9.

Please note that the non-zero demand
assumption in Section 3.2 can now no longer be held and model M2 as well as
the heuristics of Section 3.2 had to be adapted to cope with periods of no
demand.

Figure 9: Provider usage of the
different algorithms for the cPSP.



5.1.2.4 Other Heuristics for the PSPOf course, we can again use the results of
the LP relaxation for M5 and M6 to obtain a solution for PSP/cPSP.

We also adapted the merge heuristic to the multi-provider case and to the
capacity constraints and combined it with DCPH and LP in order to investigate
whether it can improve their solutions.

5.1.3 Evaluation.In order to evaluate the PSP heuristics described above we ran
a simulation over 50 PSP instances similar to the simulations in Section 3.2 with
100 periods. We used 10 providers and different levels of capacity. The average
different costs the used strategies yielded are depicted in Figure 10 for an unca-

provider.

Summarizing, DCPH leads to good results if the execution time does not mat-
ter, otherwise SCPH and the combination of LP and MH can be recommended.
The results from the SPP came in handy and the good heuristics for the SPP
could be adapted and perform well here again.

5.1.4 Related Work.The provider selection problem is discussed in more detail
in [27]. As we mentioned, there are not many works about the provider selection
problem. [65] analyses dynamic provisioning in a multi-provider environment
and gives very interesting insights into the global behavior of such a system by

pacitated and a capacitated PSP. In the latter problem, 2.58 providers were used game-theoretic observations.

on average at the same time. We use the DP algorithm from Section 3.2.2.2 for
the SPP subproblems.

uncapacitated PSP capacitated PSP
45000
@
o
o
4000d
3500(¢
3000(
SCPH DCPH LP  LP+MH SCPH DCPH LP LP+MH
Strategy

Figure 10: Some Results for the PSP

The results for the uncapacitated PSP show that DCPH is expectedly signifi-
cantly better than SCPH. This, however, comes at a drastically increased execu-
tion time (243 s contra 0.4 s per instance). While the LP heuristic alone does not
perform good, it performs well if combined with the merge heuristic (roughly 2.3
S execution time). Please note that running merge on the solution of DCPH was
ineffective because within its range (i.e., only one provider at a time) the DCPH
solution is already optimal.

In the capacitated case the results are similar but SCPH comes closer to the
results yielded by DCPH. This can be explained by the fact that now because of

5.2 Token Bucket Dimensioning

5.2.1 Problem Formulation.For any kind of QoS guarantees traffic has to be
regulated. Traffic shapers and policers are common elements in both IntServ [6]
and DiffServ [3]. Token buckets are the most popular traffic regulating mecha-
nism, especially as they are easy to implement, see, e.g., [34, 30, 31, 67, 59] for
the role of token buckets in a DiffServ environment. A token bucket is specified
by two parameters, the rate r and the bucket depth B. The sender accumulates
tokens in the bucket with a rate of r. Unused tokens are stored in the bucket, there
can never be more than B tokens in the bucket, surplus tokens are lost. In order to
send data tokens are spent (e.g. per byte or per packet). The bucket starts with
0 [B tokens 0<d<1 ). We assume that this paraméter is fixed.

Consider the following problem: A single token buckef) has to be dimen-
sioned for a flow; (t = 1, ..., T)which is known in advance as when streaming a
pre-recorded video from a server towards a client. We assume that the allocation
of r andB imposes certain (real or fictive) costs andCg, the relation between
those two coefficients expresses the trade-off betweerr ratel bufferB. Our
aim is to find the optimal token buckeg, Byy)-

We call the problem the single token bucket dimensioning problem (STBD), it
is the problem incarnatiod|1|Nrg|F e V|*[* of the MPRASE framework. To
some extent this problem has already been discussed in literature:

According to [68] the first work to efficiently calculate the minimal bucket
depth of a token bucket for a given token rate - and that is a subproblem of the
STBD - was done by Partridge and Garrett in 1994 [52]; their algorithm Send-
Now is also described in [68]. An algorithm for the same problem which is more
flexible as it does not rely on a full bucket in the first period is also derived in
[68]. Both papers also deal with calculating the minimal bucket depth for a given

the limited capacities also the modified SCPH can and has to use more than one fate when a certain queue is added before the token bucket in which the stream



can be hold while it is waiting for enough tokens to be accumulated.

However, these works look at the optintfor a givenr but do not calculate
the optimalr.

Keshav [40] proposes as a heuristic for token bucket dimensioning to choose
the “knee area” that thB,(r) curve shows, outside which small changes in
resp.B can only be compensated by greater changes in the other parameter. How-
ever, Keshav does not propose a trade-off function with which the preference of
andB can be weighted and influenced and he proposes no algorithm to find the
area. Also other works [54] show that the “knee area” is not straightforward to
find for long range dependent traffic.

5.2.2 Exact Algorithm. The optimal token bucket {y;, By for a given stream
can be calculated as follows:
The optimalB for a given rate andd# 0 is:

Bopt: ma)< Ebptl' BoptZ) (33)
oY g
OBypn= , Max_0O% x—rvd (34)
1svqu_ 0O
=
B, = max . +1 g (35)
opt2™ 2SUSVSTEZ X =rlv-u )E

=u

The proof is given in [25].

Next, the optimalr has to be found. We use a cost function to describe the
trade-off between rate and bucket depth. With a linear cost function the bucket
costs are a function

Popt (N = ¢, I + cg (Byp(r) - (36)

We can find the minimal costs of this piecewise linear function using a search

algorithm similar to regula falsi which is described in [25].

5.2.3 Related Work.On the first view the static token bucket dimensioning
problem resembles lot sizing, lot scheduling and related problems [34]. Unfortu-
nately, the nature of the resources involved is fundamentally different and the
mathematical structure is different enough that the algorithms and methods do
not fit.

Apart from the works mentioned above in 5.2.1 there are some works in the
area of Quality of Service (QoS) dealing with|1INTB|F, V|*|Ds and
1|1INTB|Fe V[*|*. Glasmann et.al. present in [20] a simple heuristic for guess-
ing the token bucket parameters for video conferencing flows. The heuristic con-

sists of setting to the mean transmission rate of the video Brid the number of
tokens that are then required to avoid packet drop. This work does not consider
the potential trade-off betweerandB but shows some realistic values for video
streams.

Dovrolis et.al. [13] analytically derive from the empirical envelope the optimal
token bucket parameters. It considers the trade-off betweem B and tries to
minimize the reserved rat of an IntServ guaranteed service flow given a delay
bound. This problem can be seen as a subproblem of the STBD problem in this
paper with a fixed trade-off which minimizBs

Falkner et. al. [16] use a cost function for token bucket dimensioning with min-
imum costs from the perspective of a single user. They, however, assume an ATM
network and on-off traffic which is not known in advance. They solve the result-
ing non-linear optimization problem with the Lagrangean method.

Bruno et. al. [8] study token bucket dimensioning for aggregate VolP sources
for the DiffServ Expedited Forwarding service class. Their LBAP is an aggrega-
tion of independent fluid on-off sources. They analyze the effect of token bucket
parameters on the non-conformance probability. They, however, do not use a cost
function or something similar and do not present an algorithm to derive the opti-
mal pair of token bucket parameters.

Kulkarni and Gautam study in [44] the sizing kiftoken buckets with admis-
sion control resp. network utilization in mind. They also formulate and solve
token bucket dimensioning as an explicit optimization problem but their perspec-
tive is fundamentally different to ours. While we consider minimizing the costs
of one customer and expect the customer to choose his/her token bucket parame-
ters they do not look at costs but try minimizing the sum of the ratds ofis-
tomer’s token buckets at the same time, taking the network’s point of view.

Procissi et. al. analyse in [54] the influence of long range dependence in traffic
on the dimensioning of token buckets. They use two cost models, one of them
similar to the one used in this work, to derive an analytical model for estimating
the token bucket parameters. This model explicitly takes into account the long
range dependency of traffic, t3,(r) curve is obtained for traffic modeled as a
Fractional Brownian Motion process. As a result they can quite well estimate
good token bucket parameters for Internet traffic. They, however, show no algo-
rithm for calculating the optimal parameters for a given trace as we did.

Naudts [50] describes an efficient algorithm for calculating the optimal cell
rate r*(t) for a givent for the ATM generic cell rate algorithm (GCRA). As the
GCRA can also be described as a continuous-state leaky bucket this is equivalent
to calculating the bucket rate for a given bucket depth

In [59] a token bucket marker is used for TCP streams and the effect of the



token bucket parameters on the achieved sending rate are analysed. That papec
operates with different assumptions (TCP instead of real-time traffic) and is thus |M7 Dynamic Token Bucket Dimensioning (DTBD)
complementary to the algorithms in Section 5.2.2. Variables:

r, rateinperiod=1,..., T

B; bucket depth in period=1,...,T.

y; nhumber of tokens in the bucket at the beginning of the perdd..., T

5.3 Renegotiable Services

5.3.1 Problem Formulation.In Section 5.2 we have shown how to calculate the

optimal token bucketrgyy, Bypy) for a given flow of lengtil. Video streams often s binary variable, set to 1 if the token bucket parametgrd3() were changed at the

have longer scenes with a relatively high or low transmission rate. Fitting a single beginning of the perioti= 1,..., Tand 0 otherwise. This variable is necessary to fic-
token bucket usually leads to a high resource waste during the times with a rather count for the setup cosis

low transmission rate. For example, the cost minimal single token bucket for the
Asterix movie of [58] withc,=1, cg=0.1 leads to a solution where the bucket is
only used in 89 of 40000 pericﬁ!is

For a longer video stream it thus makes sense to allocate a series of token buck
ets instead of a single token bucket. But we have to assume that there is a certair
reservation overhead involved for the setup of each new token bucket and we
want to avoid that a token bucket is used for a too short time period. We account
for this again by introducing setup costs which are applied whenever a new token

Parameters:
X; tokens used in periad= 1,...,Tto send data.
¢ cost coefficient for the rate.
c® cost coefficient for the bucket defBp

05 cost coefficient for each token in the bucket at the beginning of a new allocation pe-
riod.

c® fixed setup costs per redimensioning.

bucket is used. Another possibility would have been to allow a new token bucket | O bucketstarting factor LI [0, 1] ). _ T
only everyn periods. The latter, however, is less flexible and can usually be | M big enough constant to resemble infinity numerically,dlg.= let
achieved by choosing setup costs adequately, as our results show. T T T T =
_ P_Iease note again that we do not necessarily mean real costs, they can also bEMinimize CSZ s+c Z ry+ c? z B, + 0662 (zBy) (37)
fictive / calculatory: =1 ‘=3 =1 ‘=
« For each allocation, independent of its duration, fixed setup astse
incurred. subject to
. Th(e tol)<en rrage |i:ntduces costs proportional to height and duration: Y =X forallt=1,..T (38)
prnT)=C¢C i _
« The costs per bucket defihare similarpg(B, T;) = ¢° (B ;. Y= (1-5)B, + 598, forallt=1,..T (39)
. ;rrrle 6_[B tokteps iné'?Be b_uclgeétﬁa[t;he beginning of an allocation induce the Vi S (L=Z)(Yi_qg+T_1—%X_1) *SM forallt=2,...T (40)
ollowing costsipg (0[B) = ¢ ' B,—B,_,<Ms forallt=1,..T  (41)
The DTBD can be formulated as a quadratic optimization problem (see M7) Bi_1—BisMs forallt=1,..,T (42)
and is_ thus generally extremely hard to solve exactly with standard optimization =T, <Ms forallt=1..T (43)
techniques [32].
Target function (37) of M7 minimizes all costs consisting of the setup costs, r_1—resMs forallt=1,..T (44)
the costs for the rate, the bucket depth and the tokens the bucket is filled with o by ¥, =0 forallt=1,....T (45)
s 0{0, 1} forallt=1,..,T (46)

6. For higherCg the number of periods increases but still remains on a very low leveCEe€, the
number of periods only increases to 203 periods.




after redimensioning.

(movies, cartoons, TV, sport, ...). One period represents one group of pictures (12

Constraint (38) makes sure there are enough tokens available each period. (39) frames, 0.5 seconds), 2000 periods equal little more than 15 minutes of a movie.
makes sure there are no more tokens in the bucket than the bucket depth (if no The average bit rate of the movies is 0.536 Mbps, the average peak rate of the

redimensioning was performed that period - indicatedsgy) rsp. the bucket
starting factor (after redimenioning). Similarly, (40) accounts for the new and
used tokens i§=0, that is no redimensioning was performed in that period. After
redimensioning (40) imposes no additional limiyto

(41) to (44) forces, to one if the bucket was redimensioned. Redimensioning
equals a change By and/orr;.

(45) and (46) are the non-negativity and binary constraints for the variables.

5.3.2 Solution Algorithms.The MPRASE algorithms from Section 3.2 can
again be adapted to also solve this problem. The solution is a series of token
buckets which are themselves again the result of a STBD process. The different
buckets are decoupled. We can solve the single token bucket dimensioning STBD
problems (see Section 5.2 and [25]) between each couple of parjodeth
1<u<v< T and store the optimal TB parametersE) and related costs of
theseT(T+1)/2 problems. We then have to find the optimal combination of those
token buckets with a modified DP algorithm (Section 3.2.2.2), the algorithm is
described in more detail in [25].

Because of the relatively high complexity of the modified DP algorithm we
also strive for heuristics. A possible heuristic is to use the exact algorithm above
and change it so that before we solve the STBD between pariaddv, we have
a look at the previous solution found foandv-1:

» If the rater(u, v-1), the token bucket sizB(u, v-1)and the number of tokens
remaining at the end of the periad- 1 y,,_4(u, v-1)are high enough to satisfy
the demand of the new periagithen we extend the previous solution by one
period to includer. This way the parameters are not always optimal but we do
not have to solve the STBD for each sub-problem.

» Only if the previous parameters and tokens left are not sufficient we solve the
STBD for (u, V).

We call this heuristic the dynamic programming heuristic DPH. We also
adapted MH, SH and CH[SH+MFIIrom Section 3.2.3 to this problem.

5.3.3 Evaluation.Our basic simulatichuses the video traces patterns of [58].
These 21 traces are from MPEG versions of different types of video sequences

7-Test experiments showed that starting with SH yielded slightly better results.

8-The simulation was done with Java as programming language on a PC with a 700MHz Pentium 111
Processor and a 256 MB RAM.

movies is 3.54 Mbps. The cost coefficients are= PC=1 =01 and
¢ = 105, the bucket starting factor is setde 0.5°

The DTBD was solved for different values dfranging between 50 and 2000.
We tested the exact algorithm DP and the heuristic DPH, MH, SH and CH. We
also fitted a single token bucket (STB) instead of a token bucket series using an
exact algorithm from [25]. We measured the CPU time, the numbers of alloca-
tions and the relative difference between the calculated cost and the optimal costs

(vielded by the exact algorithm)
_ P =Pyt
Popt

The following figures 11 to 13 are based on the average over the results from
each of the 21 traces.
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Figure 11. Computation times (logarithmic)

By looking at the computation times in Figure 11 one first notices that the
exact DP algorithm takes by far the longest time to solve as can be expected as it
has the highest computational complexity. The DPH heuristic is much faster than
the DP algorithm and scales a little better. This indicates that in practice it can
avoid solving a lot of STBDs because it can extend the previous token bucket by
just one period in most of the cases. The fastest way is of course to solve the

9-Variation of these parameters showed no significant influence on the basic results, see [25].



Additional Costs compared to optimal solution
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Figure 12. Relative cost difference

nificantly reduce costs by a factor of 2 and more.

The DPH algorithm on the other hand is always extremely close to the optimal
solution, resulting in less than 0.25% higher costs. SH performs quite bad, MH is
better but as can be expected CH is better than SH and MH and roughly 2% away
from the optimal solution.

When increasing the setup costs by a factor of 10 the number of allocations
goes down by a factor of roughly 3 to 5 as can be seen in Figure 14 which shows
that the setup cost are an effective way of influencing the number of used token
buckets. Even with 10 times higher setup costs, using a series of token buckets
instead of a single one the total costs can still be reduced by a factor of 2, the
ranking of the algorithms in computation time and performance remains the
same, for more details see [25].
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Figure 13. Relative cost difference (logarithmic)
DTBD without renegotiation as a STBD. MH, SH and CH are slower than DPH
for small T but scale better and are thus faster than DPH for high€H can
never be faster than SH as the first step of CH is to execute SH. MH always takes
longer than SH and most of the times even than CH.

Presumably more important than the execution time is the quality of the results
measured by the relative difference in costs compared to the optimal costs
returned by the exact algorithm as depicted in Figure 12 and 13. For a single
token bucket the additional costs are far higher than for a series of token buckets.
The difference increases with the number of periddshich is obvious as the

Figure 14. Number of allocations for different setup £ost
(logarithmic)

Instead of using the MPEG traces we now use randomly generated traffic using
the fft_fgn traffic generator [53, 64] generating three patterns following a frac-
tional brownian motion process. The first pattern is a pure brownian motion pat-
tern (Hurst parametdd=0.5), the second a fractional brownian motion pattern
with a low autocorrelation of the values (Hurst paramétef.7) and the third is
one with a strong autocorrelation of the values (Hurst parafde@g).

The performance of CH and DPH is depicted in Figure 15 and 16. First of all,
one notices that the performance of the algorithms degrades the lower the Hurst
parameter is. The performance drop is higher for DPH than for MH, if there is no

potential benefit of being able to change token bucket parameters increases with gutocorrelation in the traffic (H=0.5) CH even yields better results than the DPH
T. This also clearly shows that it generally makes sense to use a series of buckets peyristic. This can be explained as follows: DPH extends the token bucket of a

and to look at the token bucket redimensioning problem DTBD as it can very sig-



previous calculation by one peri¢#ll if the bucket is big enough. This extension
is the better the more the traffic tf1 depends on the valugg-1, ... that is the
higher the autocorrelation is.
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Figure 15. Performance of CH
for different Hurst parameters
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Figure 16. Performance of DPH
for different Hurst parameters

In summary, DPH has the most attractive trade-off between computation time
and the quality of the solution. As it is extremely close to the optimum for long-
range dependent traffic and orders of magnitudes faster than the exact algorithm
it can be used instead of the exact algorithm.

For very highT CH might be attractive, too, as it scales better than DPH. For
short-range dependent traffic it is better than DPH, too.

5.3.4 Related Work.

Renegotiable services are also popular in literature. IhfNrg |FV|*|* prob-
lem is discussed broadly in [25].

There are some works, e.qg. [5], [71], and [66], that consider optimal smoothing
for guaranteed service streams. These works are different from this work in that
in principle they smooth a given stream to fit into a token bucket by adding a
playback delay and using buffers while this work tries to fit a single rsp. multiple
serial token buckets to a given stream.

While this section tries to fit a series of token buckets to a given stream [56]
tries to fit a multi-level token bucket (multiple token buckets starting at the same
moment) to a video stream.

There are also a number of works on renegotiable services [23, 74, 43]. Gross-
glauer et. al. [23] propose the renegotiable constant bit rate service and show how
it can be used to increase total network utilization. Knightly and Zhang [74, 43]
extend this work to the renegotiable variable bit rate service (RED-VBR). They
also consider sending an MPEG movie known in advance. They show that with-
out renegotiation for certain MPEG streams only an average utilization of 25%
can be achieved. They propose a heuristic called off-line algorithm to calculate a
series of token buckets for the ATM VBR service that achieve a far higher aver-
age utilization. This heuristic needs an input parameter that controls how often to
segment the stream. This parameter is difficult to set. Our work presents an exact
algorithm and an extremely close yet much faster heuristic instead. Knightly and
Zhang also present a second heuristic (on-line algorithm) that does not require
the traffic to be known in advance and they propose an admission control scheme
for renegotiable VBR services.

6. Conclusion & Outlook

This paper has described a framework and taxonomy for a class of optimiza-
tion problems related to resource allocation at system edges over multiple time
periods (MPRASE). The taxonomy consists of six submodels describing the indi-
vidual facets of the different problem incarnations: customer, provider, resource,
cost, edge and intermediary. Each submodel can be described by a short abbrevi-
ation, the combination of them then identifies the problem incarnation exactly.

We have presented two abstract MPRASE problems including the single pro-
vider problem (SPP) - the smallest non-trivial MPRASE problem.

After that we presented two uncertain and three deterministic MPRASE prob-
lem incarnations and showed that MPRASE problems occur often - although yet
unrecognized - in literature which we showed in a lot of related work for the indi-
vidual problems. We also showed that it makes sense to look at these problems in



an integrated manner as they have many similarities, allow the reuse of algo-
rithms and the simplification towards easier already solved MPRASE problems.

We encourage readers to make use of the framework and taxonomy and plan to
further investigate interesting MPRASE problems.
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