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Abstract. Computing tight performance bounds in feed-forward net-
works under general assumptions about arrival and server models has
turned out to be a challenging problem. Recently it was even shown to
be NP-hard [1]. We now address this problem in a heuristic fashion, build-
ing on a procedure for computing provably tight bounds under simple
traffic and server models. We use a decomposition of a complex problem
with more general traffic and server models into a set of simpler problems
with simple traffic and server models. This set of problems can become
prohibitively large, and we therefore resort to heuristic methods such
as Monte Carlo. This shows interesting tradeoffs between performance
bound quality and computational effort.

1 Motivation and Related Work

When designing or analyzing a network, one of the most important aspects is its
performance under various load conditions. A number of methods for that kind
of analysis have been devised, among them network calculus, which describes
methods for calculating performance bounds, i.e., describing worst-case behavior.

Network calculus is a (min,+) system theory for deterministic queuing sys-
tems which builds on the calculus for network delay in [2, 3]. The important
service curve concept was introduced in [4–8] to perform efficient analysis of
tandem queues. Scaling properties in the number of traversed network nodes are
linear, as is shown in [9], a phenomenon also known as pay bursts only once
phenomenon [10]. Detailed descriptions of the (min,+) algebra and of network
calculus can be found in [11] and [10, 12].

Network calculus has found numerous applications, most prominently in the
Internet’s Quality of Service (QoS) proposals IntServ and DiffServ [13, 14], but
it has also become a valuable method in other fields, such as wireless sensor
networks [15, 16], switched Ethernets [17], Systems-on-Chip (SoC) [18], or even
to speed-up simulations [19].

However, as a relatively young theory, compared to, e.g., traditional queueing
theory, there is also a number of challenges network calculus still has to mas-
ter. A very tough challenge is found in the treatment of non-tandem topologies
with aggregate multiplexing of multiple flows. While this has been addressed
from the beginning [3], there are still many open issues. For aggregate multi-
plexing in general network topologies there is a very fundamental issue about



the circumstances under which a finite delay bound exists at all [20, 21]. In [22]
a sufficient condition for stability in general network topologies and an explicit
delay bound are given. Extensions of this approach are provided in [23, 24]. Yet,
for larger networks this severely limits the utilization of the network since the
maximum allowable utilization is inversely proportional to the network diameter.
The problems in the analysis of general topologies arise from cyclic dependencies
between flows and the resulting difficulties in bounding their network-internal
burstiness. A special class of topologies which avoids those problems are feed-
forward networks, which are known to be stable for all utilizations ≤ 1 [3]. In this
paper, we focus on this class of networks. While many networks are obviously not
feed-forward, many important instances like switched networks, wireless sensor
networks, or MPLS networks with multipoint-to-point label switched paths are,
or can be made, feed-forward by using, e.g., the turn-prohibition algorithm [25].

In feed-forward networks, there has been some work on aggregate multiplex-
ing recently: [26] treats the case of feed-forward networks under FIFO multiplex-
ing for token-bucket constrained flows and rate-latency servers, showing that the
derived left-over service curve for a flow of interest is again of the rate-latency
type with minimally possible latency. [27] shows that this does not result in a
tight delay bound, and derives tight delay bounds under knowledge about the
arrival curve of the flow of interest for the special case of sink-trees and, again,
under token bucket constrained flows and rate-latency servers. Another work
[28] also investigates sink-tree networks, but now under dual token-bucket con-
strained flows and constant rate servers, for which delay bounds are derived by
summing per-node bounds, which unsurprisingly does not yield tight bounds but
is still reported as being close under practical conditions.

Besides being very specific with respect to traffic and server models, all of
the above work assumes FIFO aggregate multiplexing. However in practice, as
argued in [29], many devices cannot be accurately described by FIFO because
packets arriving at the output queue from different input ports may experi-
ence different delays when traversing a node. This is due to the fact that many
networking devices like routers are implemented using input-output buffered
crossbars and/or multistage interconnections between input and output ports.
Hence, packet reordering on the aggregate level is a frequent event (unlike on the
flow level) and should not be neglected in modelling. Therefore, in this work we
drop the FIFO multiplexing assumption and make essentially no assumptions
on the way aggregates are multiplexed at servers, i.e. we assume arbitrary mul-
tiplexing also known as general or blind multiplexing [2, 10]. On the level of a
single flow, however, we still assume FIFO. This assumption is sometimes called
FIFO-per-microflow [30] or locally FCFS multiplexing [2].

Work on bounds for networks with arbitrary multiplexing has become fre-
quent only recently, but there are already several important results. Some older
results are reported in [10] (see Section 2), and there is some work on the bursti-
ness increase due to arbitrary multiplexing at a single node [31]. Adversarial
queueing theory [32] provides results for general networks, however it is more
concerned with network stability than with the determination of performance



bounds. In previous work related to network calculus tool support, we have
proposed and implemented a number of network calculus analysis methods for
arbitrary multiplexing in feed-forward networks [33], but as will be demonstrated
here, they were not the ultimate solution. A similar approach has been taken in
[34], regarding a wider class of traffic and service specifications.

The goal of our work is to search for tight delay bounds in feed-forward
networks of arbitrary multiplexers. With respect to traffic and server models
we address a more general case than previous work on FIFO multiplexing, in
particular we assume piecewise linear concave arrival curves and convex service
curves, which encompass the majority of practical traffic and server models.
Compared to our previous work in [35], we now try to solve an issue that arises
from the algebra used in network calculus, which, while allowing for an easy
analysis, hides certain properties, and may lead to pessimistic bounds.

After a short introduction to network calculus, we present an approach to
network analysis based on an optimization problem, and show how a solution to
that problem can be approximated by heuristics. We show how the quality of
the performance bounds obtained by that new method compares with traditional
results.

2 Network Calculus Background

As network calculus is built around the notion of cumulative functions for input
and output flows of data, the set of real-valued, non-negative, and wide-sense
increasing functions passing through the origin plays a major role:

F = {f : R+ → R
+ |∀t ≥ s : f (t) ≥ f (s) , f (0) = 0}

In particular, the input function F (t) and the output function F ′(t), which
cumulatively count the number of bits that are input to, respectively output
from, a system S, are in F . Throughout the paper, we assume in- and output
functions to be continuous in time and space. Note that this is not a general
limitation as there exist transformations between discrete and continuous time
models [10].

Definition 1. (Min-plus Convolution and Deconvolution) The min-plus convo-
lution ⊗ and deconvolution ⊘ of two functions f, g ∈ F are defined as

(f ⊗ g) (t) = inf
0≤s≤t

{f(t− s) + g(s)}

(f ⊘ g) (t) = sup
u≥0

{f(t+ u)− g(u)}

It can be shown that the triple (F ,∧,⊗), where ∧ denotes the pointwise mini-
mum operator, constitutes a dioid [10]. Also, the min-plus convolution is a linear
operator on the dioid (R ∪ {+∞},∧,+), whereas the min-plus deconvolution is
not. These algebraic characteristics result in a number of rules that apply to
those operators, many of which can be found in [10, 12]. Let us now turn to the
performance characteristics of flows which can be bounded by network calculus
means:



Definition 2. (Backlog and Delay) Assume a flow with input function F that
traverses a system S resulting in the output function F ′. The backlog of the flow
at time t is defined as

x(t) = F (t)− F ′(t)

Assuming FIFO delivery, the virtual delay for a bit input at time t is defined as

d(t) = inf {τ ≥ 0 : F (t) ≤ F ′(t+ τ)}

Next, the arrival and departure processes specified by input and output functions
are bounded based on the central network calculus concepts of arrival and service
curves:

Definition 3. (Arrival Curve) Given a flow with input function F a function
α ∈ F is an arrival curve for F iff

∀t, s ≥ 0, s ≤ t : F (t)− F (t− s) ≤ α(s) ⇔ F ≤ F ⊗ α

A typical example of an arrival curve is given by an affine arrival curve γr,b (t) =
b + rt, t > 0 and γr,b (t) = 0, t ≤ 0 which corresponds to token-bucket traffic
regulation.

Definition 4. (Service Curve) If the service provided by a system S for a given
input function F results in an output function F ′ we say that S offers a service
curve β iff

F ′ ≥ F ⊗ β

A typical example of a service curve is given by a so-called rate-latency function
βR,T (t) = R [t− T ]

+
, where [x]

+
:= x∨0, and ∨ denotes the maximum operator.

A number of systems fulfill, however, a stricter definition of the service curve
[10], which is particularly useful as it permits certain derivations that are not
feasible under the more general minimum service curve model.

Definition 5. (Strict Service Curve) Let β ∈ F . System S offers a strict service
curve β to a flow if during any backlogged period of duration u, the output of the
flow is at least equal to β(u).

Note that any strict service curve is also a service curve, but not the other way
around. Many schedulers offer strict service curves, for example most of the
generalized processor sharing-emulating schedulers offer a strict service curve
of the rate-latency type. Strict service curves will play a crucial role in this
paper, since they, in contrast to service curves, allow to bound the maximum
backlogged period of a system. More specifically, that bound d̄ is given as the
non-zero intersection point between arrival and service curve, i.e. α

(

d̄
)

= β
(

d̄
)

.
Using those concepts it is possible to derive tight performance bounds on

backlog, (virtual) delay and output:

Theorem 1. (Performance Bounds) Consider a system S that offers a service
curve β. Assume a flow F traversing the system has an arrival curve α. Then
we obtain the following performance bounds:



Fig. 1. General network topology. Arrival processes and service characteristics are la-
beled as described in Section 2. Flows are specified as Fi,j , where i and j denote the
ingress and egress nodes. The analysis covers all nodes that the flow of interest Fint

passes through.

Backlog: ∀t : x(t) ≤ (α⊘ β) (0) =: v(α, β)
Delay: ∀t : d(t) ≤ inf {t ≥ 0 : (α⊘ β) (−t) ≤ 0} =: h (α, β)
Output (arrival curve α′ for F ′): α′ =α⊘ β

One of the strongest results of network calculus (albeit being a simple conse-
quence of the associativity of ⊗) is the concatenation theorem that enables us
to investigate tandems of systems as if they were single systems:

Theorem 2. (Concatenation Theorem for Tandem Systems) Consider a flow
that traverses a tandem of systems S1 and S2. Assume that Si offers a service
curve βi, i = 1, 2 to the flow. Then the concatenation of the two systems offers
a service curve β1 ⊗ β2 to the flow.

Using the concatenation theorem, it is ensured that an end-to-end analysis of a
tandem of servers still achieves tight performance bounds, which in general is
not the case for an iterative per-node application of Theorem 1.

So far we have only covered the single flow case, the next result factors in the
existence of other interfering flows. In particular, it states the minimum service
curve available to a flow at a single node under cross-traffic from other flows at
that node.

Theorem 3. (Left-over Service Curve under Arbitrary Multiplexing) Consider
a node multiplexing two flows 1 and 2 in arbitrary order. Assume that the node
guarantees a strict minimum service curve β to the aggregate of the two flows.
Assume that flow 2 has α2 as an arrival curve. Then

β1 = [β − α2]
+

is a service curve for flow 1 if β1 ∈ F , often also called the left-over service
curve for the flow of interest. Note that we require the service curve to be strict.
In [10], an example is given showing that the theorem otherwise would not hold.

3 Optimization-Based Approach

To analyze a network as shown in Figure 1, conventional methods are the Sep-
arated Flow Analysis (SFA) and the Pay Multiplexing Only Once analysis, ab-
breviated PMOO-SFA since it is an extension of the SFA. A detailed discussion
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Fig. 2. Bound quality comparison. Results are taken from a feed-forward network at
50% utilization. “TIGHT” shows results of the method presented in [36].

Fig. 3. Sample topology that exposes the weakness of the PMOO-SFA. Also shown are
the slack variables s

(n)
i,j that are used by the optimization-based approach. The indices

i, j denote the ingress and egress servers of a flow, and (n) denotes the hop.

of those methods can be found in [33]. Those methods, as mentioned, offer rela-
tively simple algebraic means to calculate delay bounds for a given feed-forward
network, but as shown in [36, 37], those bounds can be made arbitrarily pes-
simistic by choosing an antagonistic network topology. An example of numerical
results comparing different analysis methods is shown in Figure 2. It is obvious
that the delay bounds obtained by the SFA are exceedingly pessimistic, while
PMOO results at least expose a saner growth behavior. In a similar manner, it
can be shown that for some traffic characteristics, the PMOO yields arbitrarily
worse results than the SFA, even for very simple topologies like the one shown
in Figure 3.

We now introduce an approach based on the transformation of the problem
to a system of linear programs that was first presented in [36]. The motivation for
this new approach becomes obvious when exploring a weakness of the PMOO-
SFA. While that analysis looks like a perfect application of network calculus
principles, it can be shown that applying the convolution to obtain an end-to-
end service curve for the flow of interest destroys information about the sequence
of servers. While the commutativity of the convolution is algebraically nice, it
also means that the burstiness of the traffic is always paid for at the rate of
the slowest server, even if the structure of the network and the cross-traffic do
not require it. While that is not a serious shortcoming in rather homogeneous



networks, it becomes more of an issue in networks where servers are successively
faster towards the sink.

To work around that shortcoming, we need to find a way to distribute the
burst to the servers where it has to be paid, as opposed to the slowest server.
To allow for that, slack variables are introduced to represent the accumulated

burstiness up to a given server. Those variables are shown as s
(n)
i,j in Figure 3.

From those slack variables and with constraints resulting from the traffic and
service specifications, it is possible to construct a linear program that finds the
left-over service curve for the flow of interest. A thorough discussion of generating
the linear programs for a given network, as well as an example can be found in
[37]. We will present the core result for analyzing networks with traffic adhering
to arrival curves composed from a number of token-buckets, and service curves
composed from a number of rate-latency curves, the decomposition theorem,
along with a method to use it, as well as numerical results in the following
sections.

4 Heuristic Search

When looking at the results so far, we are facing a dilemma: we can either
choose to use computationally cheap algorithms at the expense of potentially
highly pessimistic bounds, or we can achieve tight bounds at the cost of possibly
prohibitively high costs.

As is often the case in such a situation, a heuristic approach seems promising,
so we propose a new approach to search for tight bounds based on the following
decomposition theorem (see [36] for the proof):

Theorem 4. (Decomposition theorem) Let
∧

C and
∨

C denote the minimum
and maximum over a set C of curves. Then given piecewise linear concave arrival
curves αi =

∧ni

ki=1 γrki ,bki for each interfering flow i = 1, . . . , n and piecewise

linear convex service curves βj =
∨mj

lj=1 βRlj
,Tlj

for each node j = 1, . . . ,m on

the path of the flow of interest, the left-over service curve for the flow of interest
is given by

βl.o. ≥

n
∨

i=1

m
∨

j=1

ni
∨

ki=1

mj
∨

lj=1

βl.o.
{ki},{li}

(1)

where βl.o.
{ki},{lj}

are end-to-end left-over service curves for a specific combina-

tion of a single token bucket per interfering flow and a single rate-latency curve
per node.

This leads to a set of linear programs that have to be solved, since each combi-
nation of arrival and service segment generates one. For piecewise linear curves,
we get systems of

∏n

i=1

∏m

j=1 nimj programs. So if we assume for example ar-
rivals adhering to a T-Spec curve (i.e., two segments), and mj-segment service

curves for two flows (n = 2) over m servers, we get (2m)
2mj linear programs, so

the problem size is polynomial in the number of nodes, but exponential in the



number of segments in the arrival and service curves. This means a large number
of linear programs with a discrete search space.

Since a complete coverage of such a huge search space would mean an extreme
expense of computational resources, we decided on a heuristic approach.

4.1 Monte Carlo Search

For reference, we implemented a pure Monte Carlo search. That method does
not make any assumptions about the structure of the search space, and is rel-
atively easy to implement. The search space consists of the token-bucket and
rate-latency segments the arrival and service curves are composed of, and one
iteration of the Monte Carlo method just picks a random segment of each arrival
curve and service curve, and calculates a delay for the resulting left-over service
curve.

While that approach may lead to some intermediate infinite delay values
when the arrival curve segments have a higher rate than the service curve seg-
ments, those results will be discarded as soon as a feasible combination is en-
countered.

4.2 Hooke and Jeeves “Direct Search”

For our heuristic search, we combined the Monte Carlo search with a local search
algorithm, the “Direct Search” by Hooke and Jeeves [38] (H-J). This search
minimizes a function S (φ) of several arguments φ = (φ1, . . . , φk) that can be
interpreted as a k-dimensional space. The strategy is to vary the arguments of
φ until a minimum of S (φ) is found. Here, we are minimizing the delay bound.

The algorithm is separated into two important phases. The first phase is to
acquire knowledge of the behaviour of S (φ). Therefore, the neighbourhood of
a point is explored to establish a pattern of movement for which it is likely to
find a lesser value. Each exploratory move is expected to be simple, that means
each move varies only a single argument φi at a time by first increasing and
afterwards decreasing it by the current step size ∆.

The second phase applies the resulting pattern to the point with the lowest
value of S (φ) found up to that point. If that pattern move is successful, i.e.,
the corresponding functional value is lower, then the new point is the base point
for the next exploration. Otherwise, the exploration starts from the point with
the minimal functional value so far. The regularly performed exploration revises
the pattern continually. If the exploration is a failure, the current step size ∆ is
reduced by a reduction factor ρ < 1 until the minimum step size δ is reached.

Figure 4 illustrates the process. Starting at an arbitrarily chosen base point,
both the increase of the first and second dimension φ1 and φ2 are successful.
The acquired pattern is used for the following pattern move to get to the next
base point. At each base point, the exploration phase starts again to revise the
pattern and, in this example, leads to a changed direction and a new base point.
The revised pattern is applied, but the move is a failure, so the next base point is
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Fig. 4. Illustration of the moves taken by the Hooke and Jeeves optimization method.
Exploratory moves to the top/right are steps of size +∆, and −∆ towards the bot-
tom/left. The first two exploratory moves e1 and e2 establish the pattern p1 which is
then used for the first pattern move.

set to the last successful move, and the exploration phase continues from there.
The search now stops because no successful move can be made.

To apply the H-J algorithm to our workspace, we need to map the arrival and
service curves to the k dimensions φi and define how to increase and decrease it
by the step size ∆. Each dimension will contain a list composed of segments of
individual curves. If, for example, a dimension consists of two arrival curves, α1

with 2 token-bucket components and α2 with 3 token-bucket components, then
the dimension is made up from lists [i1, i2] with i1 ∈ {0, 1} and i2 ∈ {0, 1, 2} as
the zero-based indices of the token-bucket components of the individual curves.
Stepping through such a dimension is implemented through an appropriate enu-
meration scheme.

We analyze the Optimization-Based Approach (OBA) with two mappings of
curves to dimensions:

– A two-dimensional mapping (OBA-HJTwo), using one dimension to repre-
sent all arrival curves, and the other for the services.

– A multi-dimensional mapping (OBA-HJMulti) with still only one dimension
for the services, but the arrivals are handled as one dimension for each ingress
node.

5 Results

For the numerical experiments, our network calculus tool, the DISCO Network
Calculator [39, 40] was extended significantly to perform the decomposition and
generation of the linear programs. The generated programs were handed off



to lp solve [41], but other linear solvers can also be used by implementing an
interface. The implementation involved major refactoring, and we are planning
to make that implementation publicly available with an upcoming new release.

The hardware used for the calculations was similar to commonly available
desktop computers, running on Intel’s Core 2 architecture Xeons. An optimiza-
tion run with 15 nodes used only up to 1.1GB of RAM. Since the implemen-
tations of the DNC and lp solve are single-threaded, a single instance of the
problem would run comparably on common off-the-shelf hardware.

5.1 Experimental Design

For our experiments, we used the general network topology as shown in Figure 1.
This is a simplified view of the network from the flow of interest’s perspective and
implies that all flows that share the same ingress and egress node are seen as only
one flow. We assumed a fully occupied network – so for each pair of nodes (i, j)
with i ≤ j there was a flow Fi,j – and realistic data flow characteristics for our
workload. Hence, to generate arrival curves for the cross-traffic, we have chosen
the following setup. At first arbitrary T-SPECs [42] (M,p, r, b) are generated
to simulate realistic envelopes. Each T-SPEC is constrained by the following
constant parameters burst size b = 1Mb, maximum packet size M = 1500bit,
and sustained rate r = 1Mbps. The peak rate p is arbitrarily chosen amongst 18
fixed values between pmax = 10Mbps and pmin = 1.5Mbps. For each flow Fi,j ,
32 random T-SPECs are added up.

Each node offers a strict rate-latency service curve with a latency of 0.1ms

and a service rate dimensioned so that a target utilization of 50% is achieved. The
flow of interest is constrained by a token-bucket with a burstiness of b = 8Mb

and a rate of r = 1Mbps.

In the experiment we compare, under a varying number of server nodes, the
SFA as a representative of the traditional methods, and the heuristic methods
OBA-MC (Monte Carlo), OBA-HJTwo, and OBA-HJMulti as described in Sec-
tion 4.

For the runtime, there is a tradeoff to be made between the search space
and the number of points sampled by the heuristics. Regardless of the maximum
number of combinations, MC samples always 5000 points, even in topologies
with less than three nodes (in those cases, we achieve a maximum coverage of
over 100%). Since the “intelligent” optimization methods can stop early if they
get trapped in a local minimum, there would be a disparity if we had strict
limits for the number of starting points and the maximum number of steps. We
decided to let the H-J methods run for the same number of points as the MC
search with a maximum of 50 steps from a given starting point, and repeat this
until it did 5000 steps, so those methods sample upwards of 100 starting points.

All experiments were repeated 20 times with new randomly generated traffic
and service characteristics.
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5.2 Evaluation

The delay bounds for different methods over number of nodes are shown in Fig-
ure 5, connecting the mean values for visual reference. Overall, the results of the
heuristic methods look very promising, and expose similar growth properties for
the delay bound as the delay bounds obtained by complete coverage in Figure 2,
even though they only cover a small part of the search space.

When comparing the results of the Direct Search methods with the pure
Monte Carlo search, we see two trends:

It can be said with 95% confidence, that from 12 nodes on, the HJMulti
method does significantly better than Monte Carlo. For 8 to 11 nodes the mean
differs, but we cannot make a clear statement with 95% confidence. The fig-
ure also shows, that there is a difference between H-J with two and multiple
dimensions, which is significant with 95% confidence for 4 nodes and up.

However, the two-dimensional direct search has a tendency to yield worse re-
sults than Monte Carlo. This can be explained by taking a look at the different
structure or the search spaces. Because in our setting, each service curve has
only one rate-latency component, that dimension will not change during explo-
ration. Grouping all arrival curves in only one dimension in the two-dimensional
approach will then severely restrict the exploration steps.

The figure also shows another metric: coverage of the search space. For each
number of nodes, the mean coverage of the corresponding replications is drawn.
It becomes obvious that with an increasing number of nodes, only a minis-
cule portion of all possible combinations can be examined; the runtime savings
compared to a thorough search for the best bound can be estimated from that
fraction when looking at the runtime behavior.
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analysis mean delay bound [s] median runtime [min]

SFA 81.360 0.162

OBA-HJTwo 7.443 36.950

OBA-MC 6.140 36.784

OBA-HJMulti 5.386 36.389

Table 1. delay bound and runtime comparison for 15 nodes

Figure 6 shows a comparison between the median values of the computation
time of the analysis methods over the number of nodes: since the calculations are
very much the same for the optimization-based methods, the runtime only varies
slightly. Overall, SFA has an advantage in that regard, since it does not suffer
from combinatorial explosion like the other methods do. Although the runtime
scales quadratically, the increase is irrelevant for the networks examined here.
The important question is how much of an advantage the intelligent methods can
draw from the increased amount of runtime. The comparison of the mean delay
bound with 15 nodes in Table 1 shows, that we can achieve an about 76 seconds
better delay bound with HJMulti, but for about 36 minutes longer runtime.

When judging that trade-off, it has to be considered that such a network
analysis will likely be performed offline to help in the dimensioning of a network.
In such a case, the quality of the results will be more important than a quick
calculation, since a pessimistic bound would have to be countered with over-
provisioning of the infrastructure. That would mean deploying more expensive
hardware, or just hardware with a higher energy consumption, making projects
more expensive to deploy and to maintain.

In that light, the proposed heuristics all appear very capable of providing
good-quality bounds in an acceptable timeframe. The multi-dimensional Hooke



and Jeeves direct search yields the best results of the methods we examined, at
no runtime overhead.

6 Conclusion

We have presented a novel method for finding performance bounds in feed-
forward networks that does not make overly restrictive assumptions about arrival
and server models. While tight bounds still remain elusive, this new approach
shows far better behavior for the performance bounds as network size increases.
Furthermore, only very general assumptions are made about the characteristics
of data arrivals and server models, keeping it compatible with previous appli-
cations of network calculus. In the course of the work, our DISCO Network
Calculator tool was extended to allow integration of new analysis methods more
easily.

Numerical experiments show a good scaling behavior with respect to the
delay bounds and calculation time in relation to the network size. Even though
the computational complexity increases exponentially if the traffic and service
specifications become complex, it remains polynomial with the network diameter.
The heuristics used for finding the best bounds hold up favorably while only
searching a diminuitive portion of the search space, and fairly simple methods
such as Monte Carlo can be used to achieve good results.

An interesting point that came up during experimentation was a highly ir-
regular structure of the search space of the optimization problem that does not
lend itself very well to local optimization schemes. More work towards an opti-
mization scheme that suits the search space better, or a way to restructure it,
would thus be advised to reach global optimization and thus better bounds.

Another area of interest is to find ways to simplify traffic curves as much
as possible by culling completely irrelevant segments, or without impacting the
resulting bounds too much. Since the overall complexity is exponential in the
number of curve segments, such a reduction could massively speed up compu-
tation, but would require a careful error analysis when relevant segments are
removed.
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