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Abstract—Messages traversing a network commonly experi-
ence waiting times due to sharing the forwarding resources.
During those times, the crossed systems must provide sufficient
buffer space for queueing messages. Network Calculus (NC)
is a mathematical methodology for bounding flow delays and
system buffer requirements. The accuracy of these performance
bounds depends mainly on two factors: the principles manifesting
in the NC flow equation and the functions describing the
system. We focus on the latter aspect. Common implementations
of NC overapproximate these functions in order to keep the
analysis computationally feasible. However, overapproximation
often results in a loss of accuracy of the performance bounds.
In this paper, we make such compromising tradeoffs between
model accuracy and computational effort obsolete. We limit the
accurate system description to functions of a compact domain,
such that the accuracy of the NC analysis is preserved. Tying the
domain bound to the algebraic operators of NC instead of the
operational semantics of components, allows us to directly apply
our solution to algebraic NC analyses that implement principles
such as pay burst only once and pay multiplexing only once.

I. INTRODUCTION
A. Motivation

Verifying timing correctness is a key issue for distributed
real-time systems. Ensuring impeccable runtime behaviour is
attained with precise analysis in the design phase of such a
real-time system. For safety-critical systems, formal verifica-
tion of delay requirements is even a certification prerequisite.

In addition to mathematical correctness, real-time analysis
methods need to be efficient and accurate, because:

1) The analysis is often part of an automated design space
exploration where a large set of system configurations is
evaluated. Analysing alternatives must often be done in
at most a few seconds in order to keep the computational
effort of design space exploration feasible.

2) The computed performance measures should be suffi-
ciently accurate to prevent an expensive overprovision-
ing of hardware. Furthermore, inaccuracies may also
lead to wrong assessment of different design alternatives
as these may be affected non-uniformly.

Throughout the past decades different analysis methodologies
have been developed. These methodologies vary in expressive-
ness, objective and in their computational costs.

Analytic methodologies like Network Calculus (NC) are
based on sound mathematical theories and have the potential
to scale well to the size and complexity of modern distributed
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real-time systems. Correctness and accuracy of the NC perfor-
mance bounds depend (a) on the sound and accurate derivation
of the flow equations of NC and (b) on the precision of the
bounding functions provided as input to the analysis.

Soundness and accuracy of flow equations. To achieve
soundness, flow equations of NC have to subsume the op-
erational behaviour of the modelled network entities. E. g., a
complex server element can be modelled by flow equations
which do not make any assumptions about the processing order
of packets. We call this arbitrary multiplexing. It constitutes a
conservative model that guarantees for invariably valid bounds
for delay and backlog for any scheduling behaviour.

The closer the derivations of NC capture the worst-case be-
haviour occurring during system operation, the more accurate
NC performance bounds are. Principles that enable accurately
capturing system behaviour are Pay Burst Only Once (PBOO)
and Pay Multiplexing Only Once (PMOO). PBOO eliminates
repeatedly considering the analysed flow’s burst term and
PMOO extends this feature to cross-flows. These principles
allow to outperform a component-wise analysis where the local
worst-case delays at each server are summed up.

Precision of input functions. As long as input functions
provide upper bounds on the assumed workload and lower
bounds on the available service, conservativeness of delay and
backlog bounds is guaranteed. In consequence, functions with
complex shapes can be replaced by piecewise linear functions
with a moderate number of segments. This comes with the
benefit of simplifying the mathematical operations of NC, but
it increases delay and backlog bounds, i. e., it is compromising
on the accuracy of NC-based system analysis.

This paper addresses both of the above issues by proposing
to use NC with so-called compact domains, i.e., restricting
functions to a bounded domain [0, K] instead of [0, +00).

o The restriction to compact domains significantly improves

the computational efficiency of implementations of NC.
It enables to use complex functions to accurately de-
scribe system behaviour in the time scale relevant to
the analysis. The improved precision of input functions
on their relevant parts eventually yields more accurate
performance bounds while the suppression of the tail of
the domain results in reduced computational effort.

o We relate the use of compact domains directly to the

operators of the (min,+)- and (max,+)-algebra. Thereby,
compact domains can be directly exploited in known
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Fig. 1. Curve representation (within the MPA-toolbox)

flow equations of NC: the prevalent PBOO and PMOO

principles as well as very recent improvements [1], [2].
These advantages are key for universal improvements in the
computational efficiency of NC without sacrificing the accu-
racy of the system model or flow equations.

B. Technical Problem

NC is based on the evaluation of flow equations. These
are formulae of (min,+)- and (max,+)-algebra applied to func-
tions bounding data arrivals and forwarding service. Piecewise
linear, pseudo-periodic functions are commonly used for this
purpose. An example is illustrated in Fig. 1. In the following,
we call the arrival and service functions of NC curves to
emphasize their restriction to this shape.

Applying basic operations of NC on pseudo-periodic input
curves yields output curves whose periods equal the hyper-
period of the input curves. The exact shape of the result
must be computed on the least common multiple of the
input curves’ periods [3]. A network analysis spreads over
multiple nodes, each requiring a sequence of (min,+)- and
(max,+)-based curve transformations. Solving the resulting
flow equation can quickly become computationally expensive.
It is possible to avoid the above scaling problem by simplifying
the tail descriptions of the curves, i.e., restricting the precise
description of curves to a compact domain. However, this
requires to determine the parts of the functions which are rele-
vant for computing the delay and backlog bounds beforehand,
such that their inclusion within chosen compact domains is
guaranteed. L.e., on the one hand, compact domains need to
be sufficiently large such that performance bounds are not
negatively affected. On the other hand, computational effort
decreases with reduction of the compact domains of curves.
We achieve balance of both aspects by analysing the NC flow
equation of a system with the following scheme: We derive a
bound on the domain length ensuring that delay and backlog
bounds are enclosed. This initial domain bound is then used
to derive the required domain lengths of all curves.

The remainder of the paper is structured as follows: Sec-
tion II presents the related work and Section III provides the
required NC background. The detailed mathematical treatment
of sufficiently large compact domains is given in Section IV
before we conclude the paper in Section Section V.

II. RELATED WORK

Network calculus has found application in different areas;
not only in networking [4], [5], but also in the domain of em-
bedded real-time systems [6], [7]. Most NC tools implement
bounding curves as piecewise linear, pseudo-periodic functions
[31, [71, [8]. Closure of this class is shown in [3], and it is
shown that NC operators suffer from the hyperperiod problem.

Reducing the domain of curves to finite intervals as part of
NC-based system analysis has been introduced and empirically
evaluated in the work of Perathoner et al. [9], [10]. It is,
however, preliminary, as it lacks proofs for the preservation of
accuracy of performance bounds. Guan and Wang [11] derived
conditions for the lengths of these intervals and proved that
these lengths preserve accuracy of the performance bounds.
Yet, these proofs only hold for the input/output relation (oper-
ational semantics) of the greedy-processing component (GPC)
commonly used in Real-Time Calculus (RTC). Although NC
and RTC are based on the same dioid algebra, the component-
level of abstraction in the proofs imposes crucial limitations for
application in NC. As we depict below (Fig. 2(A) to Fig. 2(C)),
NC analyses implementing the PBOO and PMOO principles
do not preserve the component-structure of the network. The
only analysis that does so and therefore can apply the work
of [11] is the TFA (Total Flow Analysis), but TFA is known
to derive inferior delay bounds (e. g., see Fig. 2(D)(ii)).

In this paper, we explicitly depart from the component-wise
view. Instead, we focus on the (min,+)- and (max,+)-operators
of the flow equations. This idea allows compact domains in
analyses exploiting prevailing principles PBOO, PMOO, or
[12], and future principles based on the standard operators.

III. THEORETICAL BACKGROUND
A. The Network Calculus System Description

Network calculus is built around the following system de-
scription [13]. Flows are characterised by curves cumulatively
counting their data. They belong to the set F{ of non-negative,
wide-sense increasing functions:

Fo={f:RL = RL | f(0)=0,Vs<t: f(s)<[f(t)},
R3, := [0, +00) U {+0o0}.

We are particularly interested in A(t) and A’(t) that cumu-
latively count a flow’s data put into a server s and put out
from s, both up until time t.

Definition 1: (Backlog and Delay) Assume a flow with input
A which crosses a server s, resulting in the output A’. The
backlog of the flow at time ¢ is defined as B(t) = A(t)—A’(¢).
The (virtual) delay at time ¢ is defined as D(t) =
inf{r >0|A{t) <A(t+71)}

NC bounds these arrivals in the interval time domain:
Definition 2: (Arrival Curve) Given a flow with input
function A, a function v € Fy is an arrival curve for A iff

VO<d<t: A(t)— At —d) < a(d).

Flow transformations leading to the output function A’(%)
depend on a server’s forwarding capabilities:



Definition 3: (Service Curve) If the service provided by a
server s for a given input function A results in an output
function A’, we say that s offers a service curve § € Fy iff

A0 = inf {A(t=d) +B(d)}

A number of servers fulfill a stricter definition of service
curves that guarantees a higher output during periods of
queued data, the so-called backlogged periods of a server.

Definition 4: (Strict Service Curve) Let § € Fy. Server
s offers a strict service curve 3 to a flow iff, during any
backlogged period of duration d, the output of the flow is
at least equal to 5(d).

B. Algebraic Network Calculus Operations

NC was cast in a (min,+)/(max,+)-algebraic framework in
[4], [14]. The following operations allow to manipulate arrival
and service curves in flow equations.

Definition 5: ((min,+)- and (max,+)-Operations) The alge-
braic NC operations to derive an output curve from two given
input curves f,g € F are:

(
separation: (f — g)(t) = f(t) — g(t),
(min,+)-convolution: (f ® g)(t) = 02f<f, {f(t—35)+g(s)},
(max,+)-convolution: (f ® g)(t) = sup {f(t —s)+ g(s)},
(min,+)-deconvolution: (f @ g)(t) = (;lgi%g{f(t +u)—g(u)}

Applied to pseudo-periodic functions f,g € Fo with periods
py and p,; where p =L is rational, the operations +, —, ®, ® as
well as min and max result in a curve with p equal to their
hyperperiod lem(py, py).
Theorem 1: (Performance Bounds) Consider a server s that
offers a service curve $ and a flow with arrival curve «
traversing the server. Then we obtain the following bounds:

delay: Vt € R : D(t) < sup{inf{s>0: a(u) <B(u+s)}},
u>0
backlog: Vt € RY : B(t) < s;ug{a(r) —B(r},
a(d)= (a @ B)(d),

where the delay and backlog bounds are abbreviated by D
and B, respectively, as they hold independent of ¢ and o is
an arrival curve for A’.

Analysing an entire flow and considering cross-traffic on its
path warrants the following theorems.

Theorem 2: (Concatenation of Servers) Consider a flow that
traverses a tandem of servers s;, ¢ = 1,...,n. Each s; offers
a service curve , to the flow. Then the concatenation of the
n systems offers a service curve ®?:1 Bs, to the flow.

output: Vd € RE:

Theorem 3: (Left-Over Service Curve) Consider a server s
that offers a strict service curve 5. Let s be crossed by two
flows fo and f; with arrival curves o/ and af1, respectively.
f1’s left-over service curve under arbitrary multiplexing is

B = Broal = (B, —aP) B, Mo(t) =

C. NC Analysis: Accuracy of Flow Equations

The main task of a NC analysis is to derive a flow equation
from the system description. A flow equation is compiled to
either derive the delay bound of a flow (flow of interest, foi) or
the backlog bound of a component, i. e., its buffer requirement.
Current NC alternatives to derive this flow equations are:

Total Flow Analysis (TFA) [13]: This analysis derives
delay and backlog bounds that are valid for the totality of
flows at a component. A foi’s end-to-end delay is derived by
summing up the component delay bounds on its path. TFA thus
assumes the foi experiences the worst case at every component.

Overcoming this assumption has seen much treatment in
the literature. The component-wise analysis was superseded
by tandem analyses to bound the foi’s end-to-end delay.
This approach improves the ability to capture scheduling and
multiplexing effects and derives more accurate delay bounds.
Tandem analyses derive an end-to-end left-over service curve
for the foi. Two basic principles have been established:

PBOO principle (Separate Flow Analysis, SFA) [4]: SFA
applies Theorem 3 and 2: At every component, subtract cross-
traffic arrivals, then concatenate the resulting left-over service
curves. Computing the delay bound with this single tandem
left-over service curve considers the foi’s burst only once.

PMOO principle [15]: While the SFA does not suffer
from the foi’s burst multiple times, it does so w.r.t. to cross-
traffic. Computing the left-over service curve component-by-
component inhibits an improvement. The key for not paying
multiplexing with cross-traffic more than once is to reverse
the SFA’s operations — a tandem of servers is convolved before
subtracting cross-traffic [5], [16]-[18]. In this paper, we use
the sink-tree PMOO analysis presented in [16] as it only uses
the operators presented above.

Fig. 2(B) and Fig. 2(C) illustrate the flow equations for TFA
and sink-tree PMOO analysis. Note that the latter does not
preserve the network’s component structure in its derivation.

D. Precision of Input Curves

Modelling should feature non-determinism in the arrival
and service processes, since the exact points in time when
a specific packet arrives or is processed are often unknown.
Addressing this issue, different models have been proposed
in the real-time systems literature. These range from strictly
periodic arrivals, over sporadic arrivals with minimum inter-
arrival distance up to periodic arrivals with jitter and minimal
release distance (pjd-model), where the latter allows bursts
in the packet arrivals. In particular, the pjd-model is often
found in the literature [10], [19]. Such models can be directly
reflected within NC, curve a provides an upper bound on the
assumed data arrivals and curve /3 provides a lower bound on
the available forwarding service. E. g., how to translate a pjd
arrival model into a curve of the NC is shown in [20].

The precision in bounding data arrival and forwarding
service constitutes the first step towards accurate performance
bounds. Striving for precision often results in complex curves,
such as staircase functions with an aperiodic prefix and a
periodic tail as depicted in Fig. 1. Although these curves
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have already been discussed in [4], analyses implementing the
PMOO principle oftentimes cannot be applied to those curves.
For instance, [5], [17], [18] rely on

(a) service curves that can be decomposed into a maximum
over rate latencies Sp r(t) = max{0,R- (t —T)} and

(b) arrival curves that can be decomposed into a minimum over
token buckets av,.;(t) = r-t+bif t > 0, a5 (¢) = 0 otherwise,
(c) each decomposition results in finitely many curves.
Fulfilling this analysis prerequisite requires to compromise on
the input curve precision early on.

The sink-tree PMOO [16] does not share these constraints
on the curves. It can be applied to any curves from F;. We use
the sink-tree PMOO to illustrate the loss in performance bound
accuracy caused by imprecise modelling. Fig. 2(A) depicts
a sample network with homogeneous service 3(t) = ¢. The
bound on flow arrivals is assumed to be precisely modelled
with pjd = (7,12, 0), where we approximate this arrival curve
with a single linear segment, i.e., a%A(t) = 1-t+4. This is
the tightest possible linear overapproximation of the sample
staircase function due to cutting each step’s starting point.
Already in this simple example, a ~10% difference in end-
to-end delay bounds between the second and third column in
Fig. 2(D)(ii) is solely caused by the modelling inaccuracy of
the arrivals that, in turn, carries over to an inaccurate ,Bl'o'f 3,

IV. NC oN COMPACT DOMAINS
A. Preliminaries

As has been discussed, our approach is based on the idea
to reduce the domain of each curve to a closed interval.

Definition 6: Let CD := [0, K] be a closed interval. If a
curve «y provides a mapping of the kind v : [0, K] — R} we
denote CD as its compact domain.

In this setting, we define the following notation.

o A primed Greek character, €. g., 7/ refers to some curve
employed in the NC analysis which provides an unre-
stricted mapping R, — RY.

o A corresponding (restricted) curve refers to a curve which
we obtain by restricting to a compact domain, i.e., 7y :
0,K,] = RL.

For unrestricted curves o’ and ', we define the following
approximations:

(C) PMOO Delay Bounding (D) Input curves and computed delay bounds

e A curve |’ is an overapproximation of an unrestricted
arrival curve o/ if Vt € RT : a/(t) < ]o/(1).
e A curve 14 is an overapproximation of an unrestricted
service curve ' if V¢t € RY : §/(t) > 15(¢).
With arrival curve Ja’, more workload than originally specified
with o is allowed. In case of a service curve 73’, the assumed
service available to a flow is decreased when compared to the
original service curve 8’. Underapproximations ta’ and |3’
for more optimistic behaviour are defined analogously.

In the following, the concrete form of approximations is
irrelevant as long as the above conditions are met, e. g., one
could use specific traffic patterns as proposed in [19], [20],
approximations based on single linear segments [10], or
minimum-composed sets of linear segments [21].

As we are emphasizing abstract network modelling, we do
not rely on any assumptions about the processing order of
packets, e. g., first-in-first-out. We solely demand that there is
enough service available to process al/l inputs,/ i.e., we require
that 3. V¢’ >¢. a(t’) < B(t') and % < % This way we
restrict ourselves to resource consuming components where,
in the longterm, input buffers become and remain empty.

B. Enclosure of Backlog and Delay Bounds

Deriving a performance bound, backlog or delay, constitutes
the eventual step of any NC analysis; see Fig. 2(B) and
Fig. 2(C). Working on compact domains, we need to guarantee
that these are large enough to enclose the bounds. Otherwise,
the bounds derived on the compact domain are not valid. The
following corollary is a direct consequence of Theorem 1,
ensuring its enclosure of the delay and backlog bound.

Corollary 1: Backlog and Delay Bound Enclosure Assume
the delay and backlog bound for an unrestricted arrival curve
o’ and an unrestricted service curve 3’ to be known. Le., we
already solved these derivations and know the values of u, s
and r for which the suprema in Theorem 1 are attained. Then
we derive the domains of the restricted curves « and /3 by

K, =max(u, ), Kg=max(u+s, r).

Corollary 1’s prerequisite to know the performance bounds
for o’ and /3 a priori is crucial. In an analysis, both are only
known a posteriori, i.e., after we solved the flow equation
with unrestricted curves. Yet, the analysis with unrestricted



arrival and service curves imposes a high analysis effort, when
being performed with accurate modelled curves, e. g., piece-
wise linear, pseudo-periodic ones (imposing the hyperperiod
problem). Hence, this requirement is thus contradicting our
aim to execute the analysis with less computational effort.

We break this circular dependency by deriving delay and
backlog bounds with linearly underapproximated and overap-
proximated arrival and service curves. Fig. 2(D)(i) provides an
example for such an overapproximation (for the underapprox-
imation, one simply needs to shift the curves horizontally).
From this step, which can be executed very efficiently if the
approximations are simple curves (e. g., curves only consisting
of a single linear segment), we obtain upper and lower bounds
on the delay and backlog. Equipped with these bounds, we can
compute valid compact domains for the o and S.

In conclusion of this idea, we propose to proceed as follows:

1) With the pair T’ and |5’, we compute estimated 1D
and T B for bounding the delay and backlog. As the
involved curves Ta/ and |3’ are underapproximations of
the unrestricted curves o and /', the obtained estimates
are not safe, but they truly provide valid lower bounds
for the delay and backlog.

2) For the lower bounds 1D and 1B, we compute the largest
value of ¢, such that for the function values beyond ¢
solely smaller delay and backlog bounds can be derived.

We formalize this compact domain for delay and backlog
bounds as follows.
Theorem 4: We define the following variables:

o U:=sup{t>0 :lo/(t) >16'(t +1D)} and

e R:=sup{t>0 :la/(t)- 18(t) >1B}.
For K, > max(U, R) and K3 > max(U~+ |D, R) the domain
bounds K, and K are sufficiently large such that accurate
delay and backlog bounds can be computed with « and £.

Proof 1: The above theorem is correct, if K, and Kpg
provide bounds on the input values for which delay and
backlog bounds can be found for o’ and 3’.

We defined the (largest) pseudo-inverse of the lower delay
and backlog bound as follows:

u* :==sup{u>0:1D <
SUP, >y {inf{s >0 : a'(u) < B'(u+ )},
r* ;= sup {r > 0:1B < sup, >, {d/(r) — B’(T)}} .

Sub- and superadditivity of curves « and f3, together with
1D <|D implies that u* < U. Thus U is truly a safe upper
bound for guaranteeing delay bound enclosure in curve a.

Exploiting v* < U together with the inequality D <] D
yields u* + D < U + D < U+ |D. Note that D is a bound
on s in Theorem 1.

This implies that U+ | D is truly an upper bound for
guaranteeing delay bound enclosure w.r.t. curve 3.

With r* being bounded by R we obtain that K, =
max(U, R) and Kg = max(U+ | D, R) guarantee that also
the backlog bound can be found with o and 8’ being restricted
to [0, K], resp. [0, K3]. |

An alternative bound on the domain size is given in [11].
There, the authors propose to use the largest 7" such that V¢ >
T :1a/(t) <16'(t) holds. However, this leads to a significantly
larger domain bound, especially when the utilization is high.

C. Ensuring Accuracy of Computed Curves

We now know how to efficiently derive a bound on the
compact domains for arrival and service involved in bounding
delay and backlog. Next, we want to use this insight to increase
the computational efficiency of the entire analysis. We aim to
derive the compact domain for each arrival and service curve.
The smaller these domains, the faster the flow equation can be
solved in comparison to the unrestricted curves. This is due to
the fact that output curves only need to be precisely computed
on the compact domain, not on the length of the hyperperiod.
On the other hand, compact domains need to be sufficiently
large in order to allow deriving valid performance bounds.

Computing each curve’s domain requires to traverse the
flow equation backwards. This means we start with Theorem 1
whose input curve domains we derived in Theorem 4. Each
of this curve is either

« the output of a preceding (min,+)- or (max,+)-operation
presented in Theorem 5, or

e an original arrival or service curve that models system
behaviour of data arrivals entering it.

The former requires us to recursively continue backtracking
domain requirements through the flow equation; the latter
represents the termination condition for this backtracking. In
the following, we derive the compact domains of input curves
given a target domain required for the result of a NC operation.

1) Notation: Let ® be a binary NC-operator as defined in
Definition 53, i.e., ® € {®,®,®, min, +, —}, and let v(¢) be
the output curve of an operation.

When backtracking we know the bound for the compact
domain of output curve 7, K,. Moreover, from the flow
equation we know (o’ ® £') (t) = v(¥).

In the following, we derive the conditions for (o ® §)(t) =
~v(t), i.e., the domain length K, and Kz such that  remains
defined on its domain K,. This directly implies that V¢ €
0,K,] : (¢ ®B)(t) = (¢/ ® fF')(t) and that for a K, of
sufficient size the obtained performance bounds are derived
inside the compact domain, i.e., the accurate part of the curves.

2) Compact domains with operators of the NC: For ©® €
{®, ®, min, +, —}, the domain sizes K, and Kz for input
curves to operation (o ® 8)(t) = ~v(t) are given by K, =
Kg = K. This is a direct consequence from their definition:
to compute Y(t) = a(t) ® B(t), o and S only need to be be
evaluated for values less or equal to .

Handling of the (min,+)-deconvolution is more involved.
Theorem 5: Domain bounds for (min,+)-deconvolution ©
As before, let K, be the domain size of the output curve.
We define U to be the largest input value for which Ja(U +

K,) >18(U), i.e.,

U := min (0,sup{t € R Ja(t + K,)— 18(t) > 0})



This yields that for

K,=U+K,, Kg=Uand
Vi€ [0,K,]: (a @ B)(1) = (o @ B)(t)

Proof 2: For the output curve, we are only interested in
function values for input values from the compact domain
[0, K,]. By exploiting U as defined above, we obtain that

vVt < K, :sup{a/(t+u) — B (u)} <O0.
u>U

This shows that function values from o’ and 8’ beyond U +
K., resp. U turn irrelevant as o/(t + u) — 3'(u) becomes
negative for these input values. Hence, the positive supremum
of a(t+u)— S (u) can only be found for input values to o and
B from the domain [0, K, := U + K], resp. [0, Kg := U].
As « coincides with o/ for ¢ € [0, K,] and 3 coincides with
B’ for t € [0, K], the above construction yields that

for t <K, : (@ B)t)=(a/ @ B')(¢t). M

As an example, we show how the domain bounding parameter
U can be found when using linear overapproximations with a
single segment. Accordingly, we define an overapproximation
1d/(t) to an input curve o’ as:

max(0, No +p-t) if No+p-t>0

0 else

o/ (t) <ol (t) =

and let 14’(t) be defined analogously such that 3'(t) >15'(t)
holds, which gives that Ng < 0. The slope of 15’ () is denoted
by o in the following.

In this setting, we bound U for a constant K., as follows:

o/(ut+t) = B'(u) 20 (1
with o/ (t) <|a/(t) and §'(t) >15'(t) we have (2
b/ (u+1)— 16" (u) 2 o/ (u+1) — f'(u) 20 (3
With 0 <t < K, we get (4
o K= 18 () 2o (u + 1)~ 18(1) (5

The definitions of the linear bounding functions yield:

T — N —

No+p(u+ Ky) — (Ng+ou) >0 (7)
such that u < W (8)
and for N3 < N, and p < o this is equal to (9)
u < 7N“7ff:K”pand forU = 71\[“7;\’5:[(”’) (10)
we getu < U as condition (11)

Fort < K, and u > U : &'(u+1t) — f'(u) < 0 and the
requested bounds are U + K, < K, and U < Kjg. Beyond
the domain bounds one only gets negative function values with
the (min,+)-deconvolution. Hence, the function value of ~y(¢)
for any t € [0, K] clearly takes its source in the compact
domains of the input curves [0, K] and [0, Kg].

D. Network Calculus Analysis on Compact Domains

After the backtracking through the flow equation terminates,
a finite domain bound for each arrival and service curve
is known. In the final step, we restrict the curves to their
respective compact domains and solve the NC flow equation
again. L.e., we analyze the network with arrival and service

curves that accurately model the system on a domain sufficient
for performance bounding. Fig. 2(D) already depicted the
improved PMOO left-over service curve and the more accurate
bounds it derives.

V. CONCLUSION

We presented the ingredients for implementing NC with
compact domains. On the one hand, this idea fits well into
implementations of NC analyses that are based on piecewise
linear, pseudo-periodic curves. On the other hand, the idea
is known to pay off [11]: NC as well as RTC analysis
on compact domains increases the computational efficiency
considerably. In this paper, we brought this advantage to
advanced NC analysis principles such as PBOO and PMOO
without sacrificing the accuracy of the system model.
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