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Abstract—Stochastic network calculus (SNC) is a versatile
framework to derive probabilistic performance bounds. Recently,
it was proposed in [1] to replace the typical a priori assumptions
on arrival processes with measurement observations and to
incorporate the corresponding statistical uncertainty into calcu-
lation of the bounds. This so-called statistical network calculus
(StatNC) opens the door for many applications with limited traffic
information. However, the important traffic class of self-similar
processes such as fractional Brownian Motion (fBm) was left
open in [1], thus, e.g., depriving the usage of the StatNC for
Internet traffic. In this work, we close this gap by integrating
fBm arrivals into the StatNC. To this end, we analyze the impact
imposed by the uncertainty on the backlog bound and show in
numerical evaluations that the additional inaccuracy is only of
moderate size.

I. INTRODUCTION

The framework of stochastic network calculus [2]-[7] is a
versatile methodology to compute probabilistic performance
bounds. It originated in the work on deterministic bounds by
Cruz [8], [9]. Quickly after this, violation probabilities in order
to benefit from statistical multiplexing were introduced [10]-
[12]. Many different approaches for this stochastic extension
have been proposed since, yet we focus on the seminal work
of Chang’s calculus with moment generating function (MGF)
[2].

Network calculus’ flexibility stems from its abstraction into
arrival and service curves making it simple to incorporate dif-
ferent traffic models and scheduling disciplines. For instance,
it can deal with arrivals as diverse as exponentially bounded
burstiness [4], Markov-modulated processes [4], self-similar
processes such as fractional Brownian motion [13], [14], or
even heavy-tailed traffic [15], just to mention a few.

All of these approaches assume a priori knowledge about
the system, in particular the arrival processes. In contrast, the
framework of StatNC [1] releases these assumptions. Instead,
StatNC provides a methodology to estimate the incoming
arrival process based on measurement observations and to
include the arising measurement uncertainty into the perfor-
mance bounds. In [1], the StatNC framework was demon-
strated to work with several traffic classes, yet, the case of
self-similar and long-range dependent traffic was explicitly

left for future work (see Section IV.D in [1]). Clearly, this
open question in StatNC is very relevant to the application
of the framework in, e.g., an Internet scenario where self-
similarity and long-range dependence have been observed to
be ubiquitous [16]-[20].

In this paper, we aim to fill this important gap in the StatNC.
To that end, we propose an estimator of the arrivals’ MGF with
fractional Brownian motion [21] in the framework of StatNC.
In particular, we estimate the self-similarity parameter, the
so-called Hurst parameter, which characterizes the behavior
of a fractional Brownian motion process. By providing a
confidence interval for the Hurst parameter, we are able to
derive an upper bound on the MGF of fBm arrivals that we
subsequently use to derive a backlog bound. We complement
the theoretical analysis with a simulation-based evaluation.
The empirical results indicate that our StatNC backlog bound
is reasonably close to the traditional SNC bound. This not only
validates our proposed estimator but also highlights the value
of StatNC.

The rest of the paper is structured as follows. First, we
discuss related work in II, followed by a brief collection
of necessary prerequisites in Section III. In Section IV, we
present the estimator for fBM traffic and derive a statistical
backlog bound. We also show how the necessary preconditions
for the application of the StatNC can be met. The estimation
quality is then evaluated in Section V. Section VI concludes
the paper.

II. RELATED WORK

The StatNC in [1] lays the foundation for our work, in which
we aim to integrate the important traffic class of fractional
Brownian motion (fBm) arrivals. The fBm arrival process
has seen some treatment in the general field of network
calculus (though not in the StatNC framework). [13] derives an
effective envelope by making use of effective bandwidth [21].
The work of [14] derives a sample path envelope for the same
traffic class together with end-to-end performance bounds
under fBm cross-traffic. [15] stands out in this context as it
introduces heavy-tailed self-similar arrival in conjunction with



heavy-tailed service to derive sample path bounds for multi-
node networks. Moreover, it estimates the Hurst parameter
of a 24-hour backbone network trace in order to provide a
statistical envelope. Yet, as it was pointed out in [1], the
uncertainty that stems from the parameter estimation is not
incorporated into the stochastic bound, which is exactly what
we target at in this paper.

Another related work can be found in [22], where, in the
same spirit as in [1], it is proposed to accommodate statistical
dependencies between traffic flows using copula analysis based
on measurement observations. Yet, the treatment of the fBm
traffic class is not targeted in [22].

III. BACKGROUND

A. Network Calculus with Moment Generating Functions

We use the moment-generating function (MGF)-based SNC
in order to calculate backlog bounds. To be precise, we
bound the probability that the backlog exceeds a given value,
typically denoted by b. The MGF bound on a probability is
established by applying Chernoff’s bound

P(X >a)< efeaE[eGX] ,

with E[e(’X ] as the MGF of a random variable X and the

free parameter § > 0. Further, we denote ¢x(0,s,t) =
E[GGX(SJ,)] )

Definition 1 (Arrival Process). We define an arrival flow
by the stochastic process A with discrete time space N and
continuous state space Ry as

t

A(s,t) =Y ali), 1)

i1=s+1
with a(¢) as the traffic increment process in time slot i.

Network calculus provides an elegant system-theoretic anal-
ysis by employing min-plus algebra.

The characteristics of the service process are captured by
the notion of a dynamic S-server.

Definition 2 (Dynamic S-Server). Assume a service element
has an arrival flow A as its input and the respective output is
denoted by A’. Let S(s,t), 0 < s < t, be a stochastic process
that is non-negative and increasing in t. The service element
is a dynamic S-server iff for all ¢ > 0 it holds that:

A'(0,t) > Oi<r;f<t {A(0,s) + S(s,t)}.

Throughout this paper, we assume the service element to be a
dynamic S-server that is work-conserving.

Theorem 3 (Backlog Bound). [5], [23] Let q(t) == A(t) —
A'(t) be the backlog at time t, S(s,t) be the service provided
by a dynamic S-server. Then it holds that

q(t) < sup {A(s,t) = S(s, 1)} (2)

0<s<t

B. StatNC — A Framework For Arrival-Estimation

Stochastic network calculus is based on a priori knowledge
of the involved arrival and service processes. In practical
applications, this knowledge may often not be available and
therefore has to be estimated through measurements. Statistical
estimation, however, introduces a new source of uncertainty
that, conventionally, has not been taken into account when
performance bounds are obtained with SNC. In order to obtain
more precise bounds, this systematic uncertainty should be
included in the calculation.

As a first step in this direction, the framework of StatNC
[1] was proposed, which enables the estimation of arrival
processes while incorporating the arising uncertainty into the
backlog bound. In simple terms, StatNC provides a set of
different estimators for various classes of arrival processes (ex-
ponential, On/Off MMAPs, ...). Each estimator has to provide
an upper bound on the arrivals’ MGF with probability at least
1 — .. Taking the upper bound is necessary to guarantee valid
performance bounds, since the backlog bound is increasing in
the arrival processes’ MGF.

Technically, the estimator ¢4(6,-,-) of the MGF
has to be from the set of all functions with
{fIf:R" xNxN—=>R*} = F. We use this

definition to introduce a statistic on a sample of size
lto|, @ = (a—_ty,...,a—1). This sample represents the
measured observations we are given for estimation.

Theorem 4. [1] Let 0* = sup{f : ¢4(0,s,t) < oo} and
@ : R0l — F be a statistic on a = (a_y,, ... ,a_1) such that

sup P U D,(0,s,t) < pa(l,s,t) | <a.
0€(0,0%) s<t

Then for all t € Ny, 0 < 6*

t
P(qlt) > b) S a+ e Y @0, 5,8) B[]
s=0

This means that for the backlog bound, we can replace
the arrivals’ MGF with its estimate if we can ensure that the
estimate is a probabilistic upper bound on the MGF. That is,
the error of underestimation is bounded by probability «.. Note
that the backlog bound given in this theorem is only valid for
a finite time horizon. This is often of disadvantage in general,
yet in this case, it emphasizes the dynamic nature of StatNC.
We only have a finite set of observation data and therefore
cannot predict the entire future but rather make an update on
our information by a new estimation, e.g., based on a sliding
window procedure (see [1] for more details).

IV. INTEGRATING FRACTIONAL BROWNIAN MOTION INTO
STATNC

A. FBM Definition and Confidence Interval for Hurst Param-
eter

In this section, we derive an MGF backlog bound for fBm
arrivals. A statistic on the MGF is provided and is shown to
satisfy the requirements of Theorem 4.



Definition 5 (Fractional Brownian Motion). [24], [25] A
stochastic process Z(t) is called normalized fractional Brow-
nian motion (fBm) with (self-similarity) Hurst parameter H €
(1/2,1), if it can be characterized by the following properties:

e Z(t) has stationary increments,

e Z(0) =0 and E[Z(t)] = 0 for all ¢,

. E Z(t)Q} — [t for all ¢,

e Z(t) has continuous paths,

e Z(t) is Gaussian, i.e., all its finite-dimensional marginal

distributions are Gaussian.

The increments of this process Z(t+ 1) —
fractional Gaussian noise (fGn).

Z(t) are called

The application of StatNC requires a statistic on the MGF
in order to obtain the StatNC backlog bound. As we see in
Subsection IV-B, a confidence interval for the Hurst parameter
H is key to obtain this statistic. A variety of methods to
compute estimators H are known (see for example [26]). Yet,
not all of them enables the calculation of a confidence interval.
In this paper, we opted for a periodogram-based maximum
likelihood estimate that yields confidence intervals [27]. The
book of [28] provides well-tested code in S+.

Theorem 6 (Confidence Interval for Hurst Parameter). [29]
Let f(l,O) be the spectral density of fractional Gaussian noise
Sor a sample of size n, x = (x1, ..., x,), where the parameter
vector of the process © = (01,05) is structured as follows:
©1 is a scale parameter (see [29] for more details) and O,
is the Hurst parameter. A (1 — «)-confidence interval for the
estimate of H can be obtained by

A V11
H+tq-q- ot

where V. = 2Dt matrix D

6@ logf()

and qi—g is the (1 — 7) -quantile of the normal distribution.

The matrix 1/2D is known as the asymptotic Fisher in-
formation matrix [29] guaranteeing asymptotic efficiency for
Gaussian data.

We assume the arrivals to be of the form (as in [13], [25])

Aty =Xt +0Z(1), 3)

where Z(t) is a normalized fractional Brownian motion, A is
the mean arrival rate and o is the variance of A(1). The fBm
Z(t) is governed by the Hurst parameter H that, in turn, is
independent of the other parameters [25]. This arrival process
has been shown to have the following MGF [21]:

E {eeA(t)} =e 4)

Given the continuous nature of fBm, the arrivals (3) are a
continuous-time process

2,2
NOt+ &g ¢2H

t
A(s,t) = / a(z)dz, where 0 < s <t,

that has to be discretized in order to be applicable to our
discrete-time arrival model (cf. Equation (1)). In the follow-
ing, we derive a backlog bound for this arrival model. The
difference to existing network calculus results is that we have
to derive it inside the StatNC framework set up in Theorem 4.
The denotation as SNC backlog bound is just for an easier
comparison to the StatNC bound below and is not meant to
make any pretenses on its tightness in comparison to other
performance bounds for this traffic class. Again, its non-
stationarity is justified by the dynamic nature of StatNC over
a finite-time observation period.

Theorem 7 (SNC Backlog Bound for FBM Traffic). Let q(t)
be the backlog at time t. We assume that the fBm arrivals A
with rate \ and variance o are independent of the service S.
We have a work-conserving server with constant rate C and
the stability condition C' > X holds. Moreover, we assume that
b > At with arbitrary discretization parameter T > 0. Then
we have that

L +1
T _ (b=CrH(C=NkT)?
P(g(t) >b) < > e =20 (5)
k=1
Proof: See Appendix A. ]

B. A Statistic for FBM Arrivals

For the application of StatNC, our statistic has to be an
upper bound on the MGF of the arrival process due to the
monotonic behavior of the backlog bound as mentioned in [1].
To that end, it suffices to provide a probabilistic upper bound
on the estimated Hurst parameter (as it is given in Theorem 6).

In the following, we give a statistic for the fBm arrival
model (cf. Equation (3)) which provides an upper bound on
the MGF with probability 1 — «. This constitutes the basis for
the application of the StatNC framework.

Theorem 8. Let the confidence interval’s upper endpoint of
a given sample set x = (x1,...,2,) be defined as

Hup = H —+ ql—o * E (6)
Then the statistic
2,2 20)P
(I)a(e, S, t) = e)‘g(t_s)“’eT(t—s) 1 (7)

fulfills the condition of Theorem 4.

Note, that we only need the one-sided confidence interval
since we are interested in quantifying the probability of
underestimating the MGF. That is, we can replace the 1 — 5
by 1 — «, which we also call the quantile of H.

Proof: It can easily be shown that the MGF (4) is
increasing in H. Subsequently, in case of flf_pa > H, this
yields

<I>a(9,s,t) > ¢A(9757t) — 6A0(t—s)+%(t—s)21{

Thus, we conclude that
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Fig. 1. Backlog distribution with quantile (blue) and SNC (red) / StatNC
bound (black) for a quantile = 0.998,1 — o = 0.999,\ = 1072, H =
0.7,0 = 1, utilization = A\/c = 2/3, sample paths of length 216, and a time
horizon of t = 200. The dashed green lines represent the 95% quantile of
the StatNC bounds in these 500 iterations. The estimated Hurst parameter is
H = 0.703 with confidence interval (0.695, 711).

1-a=P(A", > H)

< inf
6>0

P () @al0,5,1) > ¢al0,s,t)

s<t

which, in turn, is equivalent to the necessary condition in
Theorem 4:

sup ¢ P U@a(ﬁ,s,t)<¢,4(9,s7t)
6>0 s<t

< .

|

The result of Theorem 8 is crucial for our approach of

embedding the fBm arrival estimation into the framework of

StatNC. It enables us to provide a StatNC backlog bound

with the quantile of H by simply combining Theorem 4 and
Theorem 8.

Corollary 9 (StatNC Backlog Bound for FBM Traffic). As-
sume the same setting as in Theorem 7 except that the Hurst
parameter H is now unknown. Then we have for b > At

L%J +1 p—crtc—2kn)?
BoCri(G-Nkr)”

P(Q(t) > b) <a+ Z e 2020 Tima (8)
k=1

V. EVALUATION

In the following, we evaluate the quality of the StatNC
backlog bound in various scenarios. To that end, we simulate a
single constant rate server with sample paths of the fBm arrival
process (cf. Equation (3)) and repeatedly observe the backlog
of the system. The backlog from the simulations is compared
to the SNC and StatNC backlog bounds. The SNC bound is
simply the computation of Equation (5), whereas the StatNC
bound (provided in Equation (8)) requires the computation
of the estimator H and its confidence interval. As discussed
above, we opted for an approach based on periodograms. We

chose this approach because of its ability to provide confidence
intervals and its tendency to overestimate the Hurst parameter
in our simulation giving us a “safer” backlog bound. The
periodogram is defined as

2

1
I (w”) = %

n
E xkelkwk
k=1

for a given data vector x = (z1,...,x,) with frequency
wi = 27k /n. The basic idea is to plot I (w,,) in a log-log grid
and estimate its slope. This should give an estimate of 1 —2H
[27]. The confidence interval is then obtained via Theorem 6.
As both backlog bounds (Equation (5) and Equation (8))
only yield the backlog’s violation probability, the bound on
the system’s backlog is obtained by numerical inversion of
the probability bound. We conducted the simulations in the
statistical programming language R [30], version 3.5.

First, we consider the tightness of the backlog bound as well
as the additional inaccuracy that is implied by eliminating the
a priori assumptions using StatNC. For each simulation, the
observed cumulative backlog is captured, effectively yielding
an empirical backlog distribution at this point in time. Addi-
tionally, we repeatedly compute the StatNC backlog bound,
since it varies depending on the arrival samples used for
estimation.

The results are shown in Figure 1. It depicts the empirical
backlog distribution with the backlogs on the x-axis and their
respective relative frequencies on the y-axis. The vertical blue
line indicates the distribution’s 0.998-quantile, the red line the
SNC backlog bound and the black one the mean of the StatNC
bound. Both bounds use the same 0.998-quantile; the StatNC
estimates the Hurst parameter with confidence level 1 — a =
0.999. The dashed greed lines indicate the empirical 95%-
quantile of the StatNC bounds.

We observe the gap between the empirical quantile and
the SNC to be of non-negligible size. This confirms previous
observations of additional inaccuracy for traffic with high
correlations when using standard SNC methods such as the
Union bound [31], [32]. On the other hand, the StatNC gap to
the standard SNC is moderate, even for all bounds in the 95%
quantile. Our evaluation also indicates that the Hurst parameter
estimation, and thus the StatNC bound, is very sensitive to path
lengths and the chosen estimation approach. The StatNC’s
quality might be further enhanced by using more advanced
techniques than periodograms.

Beck et al. [1] also analyzed the robustness of StatNC. That
is, for a capped i.i.d. Pareto distributed traffic, both the SNC
and the StatNC backlog bound were computed under the false
assumption of capped i.i.d. exponentially distributed arrivals
(with the same mean, though). It was shown that the standard
SNC bound clearly underestimated the bound due to the
assumption of a very light tail. However, StatNC managed to
provide a valid upper bound using a non-parametric estimator
to derive the MGF based on the observed traffic. We conduct
a similar experiment by applying the two StatNC estimators to
the fBm simulations from above. For one bound, we use the
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Fig. 2. Backlog distribution and StatNC bounds for quantile = 0.998,1—a =
0.999, A\ = 1072, H = 0.7,0 = 1, utilization 2/3, sample paths of length
216 and a time horizon of ¢ = 200 for 500 iterations.

correct assumption as in Figure 1, and for the other, we use the
non-parametric estimator from [1], hence, wrongly assuming
i.i.d. arrivals.

The results are shown in Figure 2. It can be observed
that the non-parametric estimator clearly underestimates the
distribution, since the arrivals are not i.i.d. We conclude
that StatNC’s adaptivity as proposed in [1] is limited to
processes with short-range dependencies as the backlog bound
is significantly violated. Therefore, a dedicated integration of
the fBm arrivals into the StatNC is an important step towards
extending the application scope of the StatNC framework.

The previous discussions focused on a fixed choice of
server and arrival rates, next we investigate the performance at
different utilizations % Figure 3 shows the empirical backlog
as well as the backlog bounds at different utilizations. Again,
the dashed green lines represent the 95% quantile of the
StatNC bounds. The simulated backlog at each utilization
corresponds to the 0.998-quantile of the empirical backlog
distribution.

As observed in the previous experiments, the standard
techniques of SNC do not deliver tight performance bounds
for long-range dependent traffic classes. At the same time,
since StatNC makes less assumptions on the traffic than the
SNC, the additional inaccuracy of StatNC is clearly visible,
yet arguably not contributing too much further conservatism.

VI. CONCLUSION

In this paper we have shown how the StatNC framework
can be extended to arrival processes following a fractional
Brownian motion. This is an important step towards the
applicability of StatNC as fBm arrivals allow to capture the
frequent traffic characteristics of self-similarity and long-range
dependence. Technically, the integration of fBm arrivals into
the StatNC framework was achieved by using a confidence
interval estimator for the Hurst parameter of fBm to derive
a bounding statistic for the arrivals’ moment-generating func-
tion. The estimated MGF bound was then used to derive a
backlog bound in the StatNC framework. Numerical evalua-
tions highlighted the use of this fBm estimator. Additionally,

30

0.70 0.75 0.80 0.85 0.90 0.95
Utilization

Fig. 3. Empirical backlog bound together with SNC and StatNC bounds for
quantile = 0.998,1 —a = 0.999, A = 10~2, H = 0.7, ¢ = 1, sample paths
of length 216 and a time horizon of ¢ = 200 for 5000 iterations.

the calculated bounds exhibit a relatively moderate additional
inaccuracy imposed by the StatNC.

ACKNOWLEDGEMENTS

We gratefully acknowledge the help of Jiirgen Franke who
gave valuable input on estimating the Hurst parameter and its
confidence interval.

REFERENCES

[1] M. A. Beck, S. A. Henningsen, S. B. Birnbach, and J. Schmitt, “Towards
a statistical network calculus - dealing with uncertainty in arrivals,”
in Proc. IEEE International Conference on Computer Communications
(INFOCOM’14), Toronto, Canada, 2014.

[2] C.-S. Chang, Performance guarantees in communication networks.
London: Springer, 2000.

[3] A.Burchard, J. Liebeherr, and S. D. Patek, “A min-plus calculus for end-
to-end statistical service guarantees,” IEEE Transactions on Information
Theory, vol. 52, no. 9, pp. 4105-4114, 2006.

[4] E. Ciucu, A. Burchard, and J. Liebeherr, “Scaling properties of statistical
end-to-end bounds in the network calculus,” IEEE/ACM Transactions on
Networking (ToN), vol. 14, no. SI, pp. 2300-2312, 2006.

[S] M. Fidler, “An end-to-end probabilistic network calculus with moment
generating functions,” in Proc. IEEE IWQo0S’06, Jun. 2006, pp. 261-270.

[6] Y.lJiang and Y. Liu, Stochastic network calculus. Springer, 2008, vol. 1.

[7]1 F. Ciucu and J. Schmitt, “Perspectives on network calculus — no free
lunch, but still good value,” in Proc. ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tions (SIGCOMM’12), New York, NY, USA, Aug. 2012, pp. 311-322.

[8] R. L. Cruz, “A calculus for network delay, part I: Network elements in
isolation,” IEEE Transactions on Information Theory, vol. 37, no. 1, pp.
114-131, 1991.

[9] ——, “A calculus for network delay, part II: Network analysis,” IEEE
Transactions on Information Theory, vol. 37, no. 1, pp. 132-141, 1991.

[10] J. Kurose, “On computing per-session performance bounds in high-speed
multi-hop computer networks,” in Proc. ACM SIGMETRICS ’92. ACM,
1992, pp. 128-139.

[11] O. Yaron and M. Sidi, “Performance and stability of communication
networks via robust exponential bounds,” IEEE/ACM Transactions on
Networking (ToN), vol. 1, no. 3, pp. 372-385, 1993.

[12] C.-S. Chang, “Stability, queue length, and delay of deterministic and
stochastic queueing networks,” IEEE Transactions on Automatic Con-
trol, vol. 39, no. 5, pp. 913-931, 1994.

[13] C.Li, A. Burchard, and J. Liebeherr, “A network calculus with effective
bandwidth,” IEEE/ACM Transactions on Networking, vol. 15, no. 6, pp.
1442-1453, 2007.

[14] A. Rizk and M. Fidler, “Non-asymptotic end-to-end performance bounds
for networks with long range dependent fbm cross traffic,” Elsevier
Computer Networks, vol. 56, no. 1, pp. 127-141, 2012.



[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

[32]

J. Liebeherr, A. Burchard, and F. Ciucu, “Delay bounds in com-
munication networks with heavy-tailed and self-similar traffic,” IEEE
Transactions on Information Theory, vol. 58, no. 2, pp. 1010-1024,
2012.

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On
the self-similar nature of Ethernet traffic,” IEEE/ACM Transactions on
Networking (ToN), vol. 2, no. 1, pp. 1-15, 1994.

V. Paxson and S. Floyd, “Wide area traffic: the failure of Poisson
modeling,” IEEE/ACM Transactions on Networking (ToN), vol. 3, no. 3,
pp. 226-244, 1995.

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-
similarity through high-variability: statistical analysis of Ethernet LAN
traffic at the source level,” IEEE/ACM Transactions on Networking
(ToN), vol. 5, no. 1, pp. 71-86, 1997.

M. E. Crovella and A. Bestavros, “Self-similarity in world wide web
traffic: evidence and possible causes,” IEEE/ACM Transactions on
Networking (ToN), vol. 5, no. 6, pp. 835-846, 1997.

A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger, “Dynamics of
IP traffic: A study of the role of variability and the impact of control,”
in Proc. ACM SIGCOMM’99, vol. 29, no. 4, 1999, pp. 301-313.

F. P. Kelly, “Notes on Effective Bandwidths,” in Stochastic Networks:
Theory and Applications, ser. Royal Statistical Society Lecture Notes
Series, F. P. Kelly, S. Zachary, and 1. Ziedins, Eds. Oxford University
Press: Oxford, 1996, vol. 4, pp. 141-168.

F. Dong, K. Wu, and V. Srinivasan, “Copula analysis for statistical
network calculus,” in Proc. IEEE International Conference on Computer
Communications (INFOCOM’15), 2015, pp. 1535-1543.

M. A. Beck, “Advances in theory and applicability of stochastic network
calculus,” Ph.D. dissertation, TU Kaiserslautern, 2016.

I. Norros, “A storage model with self-similar input,” Springer Queueing
Systems, vol. 16, no. 3, pp. 387-396, 1994.

——, “On the use of fractional Brownian motion in the theory of connec-
tionless networks,” IEEE Journal on selected Areas in Communications,
vol. 13, no. 6, pp. 953-962, 1995.

M. S. Taqqu, V. Teverovsky, and W. Willinger, “Estimators for long-
range dependence: an empirical study,” Fractals, vol. 3, no. 04, pp.
785-798, 1995.

O. Rose, “Estimation of the Hurst parameter of long-range dependent
time series,” University of Wiirzburg, Institute of Computer Science
Research Report Series, Tech. Rep., 1996.

J. Beran, Statistics for long-memory processes. New York: Chapman
and Hall, 1994.

——, “Statistical methods for data with long-range dependence,” Sta-
tistical Science, vol. 4, no. 7, pp. 404-427, 1992.

R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2018. [Online]. Available: https://www.R-project.org/

F. Ciucu, E Poloczek, and J. Schmitt, “Sharp per-flow delay bounds
for bursty arrivals: The case of FIFO, SP, and EDF scheduling,” in
Proc. IEEE International Conference on Computer Communications
(INFOCOM'’14), Toronto, Canada, 2014.

P. Nikolaus and J. Schmitt, “On Per-Flow Delay Bounds in Tandem
Queues under (In)Dependent Arrivals,” in Proc. IFIP Networking 2017
Conference (NETWORKING’17), Stockholm, Sweden, 2017.

APPENDIX A
PROOF OF THEOREM 7

Proof: We introduce the time scale parameter 7 > 0

(compare to [4]) to discretize the event from (5) at the points

j= V - SJ ©)
T

for all 0 < s < ¢. Then we obtain for the arrivals A(s,t) <
A(t — (j + 1)7,t) and for the service S(s,t) > S(t — jr,t).
This gives us

P(q(t) > b)

()]

< P( sup {A(s,t) — S(s,t)} > b)

0<s<t

<P maf{J{A(t—(j—l—l)T,t)—S(t—jT,t)}>b
0<j<|t

<D P(A(t— (j + D) t) = S(t — j7,t) > b) (10)

SZ inf {e—ﬁjbE|:60j(A(t—(j+1)'r,t)—S(t—j-r,t)):|}

6;,>0
i=0"7"
[£] 2,2
@ : —0,b_—0,C 7 N0 (1) LT (G +1)7)2H
= inf e YiPe % ITen U z
6;>0
j=0 s
t
= 1
s : O (A—C)kr—(b—C7)) BT (er)2H
= D jnf et OTORTTEmOm T (11)
0
1 k>
t +1
4] b=CrH(CMRT (N\—C)kr—(b—C1))
— E e o2(kr)2H (12)
k=1
b—Cr+(C=Nkt 2 52 2H
-e( o2(kr)2H ) o (k) )
t
= 1
LTJJF _ (b=CTH(C=NEkT)2 1 (b=CrH(C=N)kT)?
— § e o2(kr)2H 62 o2 (kr)2H
k=1
t
= 1
I-TJ+ _ (b—Cr(C=Nk)?

= e 202(kr)2H
k=1
where we used the Union bound in (10) and in the sub-
sequent line Chernoff bound to each summand. In (11), we
shift the index, whereas in (12) we computed the minimum
0, = % (since b > A7). Term manipulations
finish the proof.
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