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Abstract. Sink trees are a frequent topology in many networked sys-
tems; typical examples are multipoint-to-point label switched paths in
Multiprotocol Label Switching networks or wireless sensor networks with
sensor nodes reporting to a base station. In this paper, we compute end-
to-end delay bounds using a stochastic network calculus approach for a
flow traversing a sink tree.
For n servers with one flow of interest and n cross-flows, we derive so-
lutions for a general class of arrivals with moment-generating function
bounds. Comparing algorithms known from the literature, our results
show that, e.g., pay multiplexing only once has to consider less stochas-
tic dependencies in the analysis.
In numerical experiments, we observe that the reduced dependencies
to consider, and therefore less applications of Hölder’s inequality, lead
to a significant improvement of delay bounds with fractional Brownian
motion as a traffic model. Finally, we also consider a sink tree with
dependent cross-flows and evaluate the impact on the delay bounds.

Keywords: Network calculus · Sink trees · Moment-generating func-
tions · Hölder’s inequality · Fractional Brownian motion.

1 Introduction

1.1 Background

The stochastic network calculus (SNC) offers a versatile uniform framework
to compute probabilistic performance bounds in networked systems. The most
prominent goal is to control tail probabilities for the end-to-end (e2e) delay, i.e.,
probabilities for rare events shall be bounded, e.g., P(e2e delay > 10ms) ≤ 10−6.
Many modern systems are eager after such performance guarantees, as exempli-
fied in application visions like, e.g., Tactile Internet [17], Industrial IoT [8], or
Internet at the speed-of-light [43].

Over almost three decades, the development of SNC has progressed with the
pioneering work by [11, 15, 45], and important contributions in [9, 13, 18, 23, 28]
to name a few, see also [14, 19] for a guide and some perspectives. Two flavors
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(a) Sink tree.

(b) Sink tree tandem after reduction with n servers and n+ 1 flows.

Fig. 1. Sink tree reduction.

of SNC have evolved: arrival and service processes characterized either by tail
bounds [13, 15, 23] or by moment-generating function (MGF) bounds [12, 18].
While tail bounds offer a wider modeling scope, they have been shown to result
in more conservative bounds in scenarios where independence between stochastic
processes can be assumed [37]. In this paper, we focus on the SNC with MGF
bounds.

1.2 E2E Analysis in SNC – State of Affairs

When performing an SNC analysis given a network of servers with a set of flows
routed over subsets of theses servers, the first step is to reduce the network to
the tandem of servers which are traversed by a certain flow of interest (foi), see
also Figure 1. To that end, arrival bounds for each cross-flow with which the foi
shares a subset of servers need to be computed at the point when it joins the
foi. Conceptually, this simple, but important step just requires the computation
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Fig. 2. Tandem in [18].

of output bounds for the cross-flows and has recently been improved by the use
of Lyapunov’s inequality in [34].

While, in this paper, we assume this reduction from network to tandem has
already been performed, an important observation has to be made: Even under
the assumption that all flows are independent when entering the network, some
of them become dependent when traversing a shared server. These stochastic
dependencies between cross-flows severely aggravate the e2e analysis for the foi.
In the SNC based on MGF bounds, one can resort to use Hölder’s Inequal-
ity to deal with dependent scenarios. However, the inequality is known to be
very conservative and, if invoked too often in the e2e analysis, loosens the per-
formance bounds considerably. This was shown in a simple tandem of servers
traversed by many parallel flows in [32]. In that paper, it was demonstrated
that two different ways of doing the e2e delay analysis, known from the de-
terministic network calculus (DNC) as separated flow analysis (SFA) and pay
multiplexing only once (PMOO), result in very different bounds. In these simple
tandems, PMOO completely avoids the usage of Hölder’s inequality if all flows
are originally independent whereas SFA requires the inequality’s invocation at
each server; consequently, PMOO clearly outperforms SFA in the quality of the
bounds (and also in run times). This shows the importance of a careful e2e anal-
ysis and has been investigated extensively in DNC literature, see, e.g., [5, 7, 41].
Yet, to the best of our knowledge, it has not been investigated much in the
literature on SNC with MGF bounds.

In existing work on the SNC based on MGF bounds [18], a tandem as in
Figure 2 was analyzed with all flows being independent and a nice linear scaling
of the e2e delay bound was shown. Yet, such a tandem, if being the result of
a network reduction, is likely to be crossed by dependent flows based on their
previous entanglement. Apart from the work mentioned above [32], there is also
some work to deal with stochastic dependencies in the analysis [6,16,33]. Overall,
it must be concluded that the e2e analysis in SNC still faces many open problems.

1.3 Motivation and Contribution

In this paper, we take the next step in tackling the SNC e2e delay analysis by
providing results for a particular topology: sink trees. Sink trees are interesting
for a number of application scenarios:
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– Classically, in Multiprotocol Label Switching (MPLS) networks there is the
the option to set up multipoint-to-point label-switched paths between several
ingress edge routers and one egress edge router [39], thus creating a sink tree.

– Multi-hop wireless sensor networks with a central base station collecting data
from sensor nodes induce a sink tree topology and have been investigated
using network calculus methods previously, see, e.g., [25,40]. More generally,
any data collection by a central point results in a sink tree and if time-critical
decisions are made based on that data, performance guarantees are desirable,
see, e.g., [47].

– Network-on-Chip architectures frequently employ tree topologies and have
been analyzed using network calculus methods previously, see, e.g., [21, 36].

– Switched Ethernets set up spanning trees to avoid cycles in frame forward-
ing, hence, again sink trees emerge as a natural choice to support resource
allocation in such installations [22].

– Sink trees are also related to so-called fat trees in supercomputing [26]; in
fact, fat trees have also been proposed in data center interconnects and have
been subject to SNC-based analysis in [44,46], recently.

Hence, from an application perspective, it is clearly interesting to provide an e2e
delay analysis for sink trees. While we constrain the topology for the SNC e2e
analysis to sink trees, we want to remain as flexible as possible with respect to
arrival and service models. In particular, we intentionally do not restrict to linear
MGF bounds as provided by the so-called (σ, ρ)-bounds from [12], but derive the
e2e delay bounds for general MGF bounds on arrivals and service. For instance,
this includes a traffic model based on fractional Brownian motion (fBm). FBm
has been shown to be useful for Internet traffic modeling [20,35], because it can
capture the typical long-range dependence, which is why we also use it in our
numerical experiments. On the other hand, it is a non-trivial traffic type for
SNC to deal with and we do not provide stationary (time-independent) delay
bounds (for Hurst parameter H > 0.5), but transient (time-dependent) delay
bounds only. Having said that, it is interesting to note that some applications
are actually more interested in transient bounds and corresponding developments
have been reported in [2, 4, 10,29].

1.4 Outline

In Section 2, we provide the necessary SNC background and notations used
throughout the paper. Section 3 presents the derivations for the e2e delay anal-
ysis of sink tree tandems under independent and dependent cross-flows using
different algorithms (SFA and PMOO). In Section 4, numerical evaluations of
different aspects are provided: influence of the time horizon on the transient
delay bounds, effects of traffic parameters and sink tree depths, comparisons
between different analysis algorithms and the independent and dependent sce-
narios. Section 5 concludes the paper.
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2 SNC Background and Notation

We use the MGF-based SNC in order to bound the probability that the delay
exceeds a given value T ≥ 0. The MGF bound on a probability is established by
applying Chernoff’s bound [31]

P(X > a) ≤ e−θa E
[
eθX

]
, θ > 0.

Definition 1 (Arrival Process). We define an arrival flow by the stochastic
process A with discrete time space N0 and continuous state space R+

0 as

A(s, t) :=

t∑
i=s+1

ai, (1)

with ai ≥ 0 as the traffic increment process in time slot i.

Network calculus provides an elegant system-theoretic analysis by employing
min-plus algebra.

Definition 2 (Convolution and Deconvolution in Min-Plus Algebra [1]).
Let x(s, t) and y(s, t) be real-valued, bivariate functions. The min-plus convolu-
tion of x and y is defined as

x⊗ y (s, t) := inf
s≤u≤t

{x(s, u) + y(u, t)} .

The min-plus deconvolution of x and y is defined as

x� y (s, t) := sup
0≤u≤s

{x(u, t)− y(u, s)} .

The characteristics of the service process are captured by the notion of a dynamic
S-server.

Definition 3 (Dynamic S-Server [12]). Assume a service element has an
arrival flow A as its input and the respective output is denoted by D. Let S(s, t),
0 ≤ s ≤ t, be a stochastic process that is nonnegative and increasing in t. The
service element is a dynamic S-server iff for all t ≥ 0 it holds that

D(0, t) ≥ A⊗ S (0, t) = inf
0≤s≤t

{A(0, s) + S(s, t)} .

Definition 4 (Work-Conserving Server [12] [18]). For any t ≥ 0 let τ :=
sup {s ∈ [0, t] : D(0, s) = A(0, s)} be the beginning of the last backlogged period
before t. Assume again the service S(s, t), 0 ≤ s ≤ t, to be a stochastic process
that is nonnegative and increasing in t with S(τ, τ) = 0. A server is said to be
work-conserving if for any fixed sample path the server is non-idling in (τ, t] and
uses the entire available service, i.e., D(0, t) = D(0, τ) + S(τ, t).

The analysis is based on a per-flow perspective. That is, we consider a certain
flow, the so-called flow of interest (foi). Throughout this paper, for the sake of
simplicity, we assume the servers’ scheduling to be arbitrary multiplexing [41].
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Fig. 3. Tandem of n servers.

Proposition 1 (Leftover Service under Arbitrary Multiplexing [18]).
Consider two arrivals flows f1 and f2 at a work-conserving dynamic S-server
with service process S. Then, the corresponding arrival A1 sees under arbitrary
multiplexing the leftover service

Sl.o.(s, t) = [S(s, t)−A2(s, t)]
+
.

Definition 5 (Virtual Delay). The virtual delay at time t ≥ 0 is defined as

d(t) := inf {τ ≥ 0 : A(0, t) ≤ D(0, t+ τ)} .

It can briefly be described as the time it takes for the cumulated departures to
“catch up with” the cumulated arrivals.

Theorem 1 (Output and Delay Bound [12] [18]). Consider an arrival
process A(s, t) with dynamic S-server S(s, t).

The departure process D is upper bounded for any 0 ≤ s ≤ t according to

D(s, t) ≤ A� S (s, t). (2)

The delay at t ≥ 0 is upper bounded by

d(t) ≤ inf {τ ≥ 0 : A� S (t+ τ, t) ≤ 0} .

We focus on the stochastic analogue of Theorem 1 for moment-generating func-
tions:

Theorem 2 (MGF Delay Bound [18] [3]). For the assumptions as in The-
orem 1, we obtain:

The violation probability of a given stochastic delay bound T ≥ 0 at time
t ≥ 0 is bounded by

P(d(t) > T ) ≤ E
[
eθ(A�S (t+T,t))

]
, ∀θ > 0. (3)

In order to obtain the tightest possible result, the bound in Equation (3) should
be optimized in θ.

The next theorem shows how network calculus leverages min-plus algebra to
derive end-to-end results.

Theorem 3 (End-to-End Service [18]). Consider a flow f crossing a tandem
of n work-conserving servers with service processes Si, i = 1, . . . , n as in Figure 3.
Then, the overall service offered to f can be described by the end-to-end service

Se2e(s, t) =

n⊗
i=1

Si(s, t) := S1 ⊗ S2 ⊗ · · · ⊗ Sn (s, t).
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Fig. 4. Sink tree with 3 flows and 2 servers.

In the following definition, we introduce (σ, ρ)-constraints [12] as they are
often used to compute time-independent, stationary bounds under stability.

Definition 6 ((σ, ρ)-Bound [12]). An arrival flow is (σA(θ), ρA(θ))-bounded
for some θ > 0, if for all 0 ≤ s ≤ t

E
[
eθA(s,t)

]
≤ eθρA(θ)(t−s)+θσA(θ).

Theorem 4 (Generalized Hölder Inequality [30]). Let X1, . . . , Xn ≥ 0 be
random variables such that E[Xpi

i ] <∞. Then we have

E

[
n∏
i=1

Xi

]
≤

n∏
i=1

E[Xpi
i ]

1
pi

with
∑n
i=1

1
pi

= 1 and pi > 1.

3 Sink Tree End-to-End Delay Bound

In this section, we provide stochastic delay bounds for sink trees for the sepa-
rated flow analysis (SFA) and pay multiplexing only once (PMOO) e2e analysis
algorithms as known from DNC [42]. All topologies in this paper assume the
servers to be work-conserving and independent of the arrivals. We start the
analysis with independent cross-flows, but forego this assumption at the end of
the section.

3.1 Two-Server Sink Tree

We start the sink-tree analysis with the two-server case (Figure 4) as an illustra-
tive example, since it already enables us to point at some key differences between
SFA and PMOO. We extend the results to general sink trees in the following
subsection.

Separated Flow Analysis (SFA) Here, we compute the leftover service at
each server (assuming arbitrary multiplexing) until we convolve all service pro-
cesses in a final step.

For the two-server sink tree in Figure 4, SFA yields the end-to-end service

Se2e = [S1 −A2]
+ ⊗ [S2 − (A3 + (A2 � S1))]

+
. (4)
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Observe that the arrival process A2 appears twice. For the analysis, this means
that we need to invoke Hölder’s inequality to upper bound the MGF of dependent
processes. It follows for the delay bound, that

P(d(t) > T )

(3)
≤ E

[
eθ(A1�Se2e (t+T,t))

]
(4)
= E

[
eθ(A1�[S1−A2]

+⊗[S2−(A3+(A2�S1))]
+ (t+T,t))

]
...

≤
t∑

s0=0

E
[
eθA1(s0,t)

]

·

(
t+T∑
s1=s0

E
[
ep1θA2(s0,s1)

] 1
p1

E
[
ee

−p1θS1(s0,s1)
] 1
p1

E
[
ep2θA3(s1,t+T )

] 1
p2

·

(
s1∑
s2=0

E
[
ep2θA2(s2,t+T )

]
E
[
e−p2θS1(s2,s1)

]) 1
p2

E
[
e−p2θS2(s1,t+T )

] 1
p2

 ,

where 1/p1 + 1/p2 = 1.

Pay Multiplexing Only Once (PMOO) In contrast to SFA, in PMOO, we
first convolve and then subtract. However, we only obtain a rigorous bound if
we convolve servers that share the same set of cross-flows. Therefore, one has
to first subtract all flows that are not in this intersection of cross-flows. For
sink trees, there is still a unique outcome when applying the PMOO algorithm,
since there is no overlapping interference. The analysis can become much more
complex when considering general topologies [42].

It is known in deterministic network calculus, that neither of the analyses is
strictly better than the other [41], though for many topologies PMOO yields a
better delay bound [42].

For the two-server sink tree, PMOO yields the end-to-end service

Se2e =
[(

[S2 −A3]
+ ⊗ S1

)
−A2

]+
. (5)

In contrast to SFA, A2 appears only once.

P(d(t) > T )

(3)
≤ E

[
eθ(A1�Se2e (t+T,t))

]
(5)
= E

[
e
θ
(
A1�[(S1⊗[S2−A3]

+)−A2]
+

(t+T,t)
)]
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≤
t∑

s0=0

E
[
eθA1(s0,t)

]
E
[
e−θ[(S1⊗[S2−A3]

+)−A2]
+
(s0,t+T )

]
≤

t∑
s0=0

E
[
eθA1(s0,t)

]
E
[
eθA2(s0,t+T )

]
E
[
e−θ((S1⊗[S2−A3]

+))(s0,t+T )
]

≤
t∑

s0=0

E
[
eθA1(s0,t)

]
E
[
eθA2(s0,t+T )

]( t+T∑
s1=s0

E
[
e−θS1(s1,t+T )

]
· E
[
e−θ[S2−A3]

+(s0,s1)
])

≤
t∑

s0=0

E
[
eθA1(s0,t)

]
E
[
eθA2(s0,t+T )

]( t+T∑
s1=s0

E
[
e−θS1(s1,t+T )

]
E
[
eθA3(s0,s1)

]

·E
[
e−θS2(s0,s1)

])
.

Even though we consider only a two-server sink tree, we can already ob-
serve the key difference between SFA and PMOO, as only the SFA has to apply
Hölder’s inequality. We see in the following subsection, that this insight is even
more evident in the general sink tree.

3.2 The General Case

In this subsection, we generalize the two-server sink tree to the sink tree with n
servers, as in Figure 1b. The proof follows lines similar to the one of Proposition 3
and is therefore omitted.

Proposition 2 (Delay Bound with SFA). With the SFA, the end-to-end
service for n+ 1 arrival flows and n servers in a sink tree is

Se2e = [S1 −A2]
+ ⊗ [S2 − (A3 + (A2 � S1))]

+

· · · ⊗
[
Sn −

(
An + (An−1 � Sn−1) + · · ·+

(
(A1 � S1)� [S2 −A2]

+
)
�

· · · � [Sn−1 − (A2 + · · ·+An−1)]
+
)]+

.

(6)
This yields for the delay bound

P(d(t) > T )

(6)
≤

t∑
s0=0

E
[
eθA1(s,t)

] t+T∑
s1=s0

· · ·
t+T∑

sn−1=sn−2

E
[
ep1θA2(s0,s1)

] 1
p1

E
[
e−p1θS1(s0,s1)

] 1
p1

· · ·E
[
epnθ(An+1+(An�Sn−1)+···+(((A2�S1)�[S2−A3]

+)�···�[Sn−1−(A3+···+An)]+))(sn−1,t+T )
] 1
pn

·E
[
e−pnθSn(sn−1,t+T )

] 1
pn


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with
∑n
i=1

1
pi

= 1.

The PMOO, on the other hand, does not have to take into account the
dependencies between cross-flows that share servers.

Proposition 3 (Delay Bound with PMOO). With the PMOO, the end-to-
end service for n+ 1 arrival flows and n servers in a sink tree is

Se2e =

[([(
[Sn −An+1]

+ ⊗ Sn−1

)
−An

]+
⊗ · · · ⊗ S1

)
−A2

]+
. (7)

This yields for the delay bound

P(d(t) > T )

(7)
≤

t∑
s0=0

E
[
eθA1(s0,t)

]
E
[
eθA2(s0,t+T )

] t+T∑
s1=s0

E
[
e−θS1(s1,t+T )

]
E
[
eθA3(s0,s1)

]

·

(
s1∑

s2=s0

E
[
e−θS2(s2,s1)

]
E
[
eθA4(s0,s2)

]
· · ·

(
sk−1∑
sk=s0

E
[
e−θSk(sk,sk−1)

]
E
[
eθAk+2(s0,sk)

]

· · ·

 sn−2∑
sn−1=s0

E
[
e−θSn−1(sn−1,sn−2)

]
E
[
eθAn+1(s0,sn−1)

]
E
[
e−θSn(s0,sn−1)

] .

Proof. See Appendix A.1.

3.3 Delay Bounds with PMOO under Dependent Cross-Flows

So far, the analysis only considered originally independent arrival flows. Now,
if we assume the cross-flow arrivals to be dependent, even with the PMOO,
we have to apply Hölder’s inequality. Such dependencies may be due to resource
sharing between cross-flows before they hit the foi, or simply because the original
data sources are already dependent, as, e.g., in an environmental sensor network
where the range of sensor nodes is overlapping and, thus, an observed physical
phenomenon is reported by several neighboring nodes at the same time.

Proposition 4 (Delay Bound with PMOO and Dependent Cross-Flows).
If all n cross-flows are dependent, the PMOO yields

P(d(t) > T )

≤
t∑

s0=0

E
[
eθA1(s,t)

] (
E
[
ep1θA2(s,t+T )

]) 1
p1

·

 t+T∑
s1=s0

E
[
e−p2θS1(s1,t+T )

] (
E
[
ep2p3θA3(s0,s1)

]) 1
p3
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· · ·

 sk−2∑
sk−1=s0

E
[
e−p2p4···p2k−2θSk−1(sk−1,sk−2)

] (
E
[
ep2p4···p2k−2p2k−1θAk+1(s0,sk−1)

]) 1
p2k−1

· · ·

 sn−3∑
sn−2=s0

E
[
e−p2p4···p2n−4θSn−2(sn−2,sn−3)

]

·
(
E
[
ep2p4···p2n−4p2n−3θAn(s0,sn−1)

]) 1
p2n−3

·

 sn−2∑
sn−1=s0

E
[
e−p2p4···p2n−2θSn−1(sn−1,sn−2)

]
E
[
ep2p4···p2n−2θAn+1(s0,sn−1)

]

· E
[
e−p2p4···p2n−2θSn(s0,sn−1)

] 1
p2n−2

. . .


1

p2k−2


1
p4


1
p2

,

where 1
p1

+ 1
p2

= 1, . . . , 1
p2n−1

+ 1
p2n−2

= 1.

4 Numerical Evaluation

In this section, we evaluate and compare the delay bounds in sink trees for
different algorithms and parameters. At the beginning, all flows are assumed to
be independent. At first, we investigate the impact of the transient time horizon
t on the bound and how it relates to the assumed fractional Brownian motion
traffic model. Then, we compare the SFA with the PMOO, before taking a look at
the sensitivity of the model with respect to the fBm parameters. Furthermore,
we consider the scaling behavior when increasing the tree depth. In the last
experiment, we relax the independence assumption and consider the case of
dependent cross-flows.

We assume the arrivals to be of the form (as in [27,35,38])

A(0, t) := λt+ σZ(t), (8)

where Z(t) is a normalized fractional Brownian motion, λ is the mean arrival
rate and σ2 > 0 is the variance of A(0, 1). The fBm Z(t) is governed by the Hurst
parameter H ∈ (0, 1) that, in turn, is independent of the other parameters [35].
This arrival process, also called fBm traffic model [27], has been shown to have
the following MGF [24] for t ≥ 0:

E
[
eθA(0,t)

]
= eλθt+

θ2σ2

2 t2H . (9)

ForH ∈ (0.5, 1), fBm exhibits a property called long-range dependence (LRD). If
not mentioned otherwise, throughout the experiments, we choose λ = 1, σ2 = 1,
and H = 0.7.
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(b) SFA with H = 0.9.
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(c) PMOO with H = 0.5.
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(d) PMOO with H = 0.9.

Fig. 5. Delay violation probability for two servers and different t.

Given the continuous nature of fBm, the arrivals in Equation (8) are a
continuous-time process

A(s, t) =

∫ t

s

a(x)dx, where 0 ≤ s ≤ t,

that has to be discretized in order to be applicable to our discrete-time arrival
model (cf. Equation (1)).

We proceed as in [13]. Let τ > 0 be a discretization parameter and t ≥ 0.
Then, assuming a dynamic S-server, it can be shown for the delay bound that

P(d(t) > T ) ≤
b tτ c∑
j=0

E
[
eθA(t−(j+1)τ,t)

]
E
[
e−θS(t−jτ,t+T )

]
.

The rest follows along similar lines as in the discrete-time case.
If not explicitly specified, by default, the cross-flows are assumed to be inde-

pendent and t is equal to 20. The server rate (we assume homogeneous sink trees)
is denoted by c > 0. Further, all results are obtained by numerically optimizing
θ and the Hölder parameters pi.
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Fig. 6. Comparison between delay violation probabilities using SFA and PMOO.

4.1 Impact of a Finite Time Horizon

We compare the delay bounds for different time horizons t, applying the bounds
for SFA (Proposition 2) and PMOO (Proposition 3), respectively. The results
are depicted in Figure 5.

We observe that the delay bounds do not change significantly for larger t
when the Hurst parameter H = 0.5 (Figure 5a and 5c). Since for this particular
H, the fBm traffic model is (σ, ρ)-bounded (Definition 6), we can also derive
stationary bounds that hold for all t. However, for H = 0.9 (Figure 5b and 5d),
when the fBm traffic model exhibits a long-range dependence, the delay bounds
vary strongly for different t. This indicates that, if one is aiming at transient
bounds, results obtained from a stationary analysis may be too conservative.

4.2 Comparison between SFA and PMOO

For a sink tree with two servers, we compare the delay bounds using SFA and
PMOO. To that end, we consider a three-server sink tree with server rate c = 6.0.

The results in Figure 6 indicate a significant gap in the delay bounds. While
the difference in the violation probability is about two orders of magnitude, in
the delay space, the PMOO bound exhibits an improvement of roughly 30%.
This is caused by the additional application of Hölder’s inequality, that is only
necessary in the SFA. Hence, in the following experiments, we only use PMOO.

4.3 Parameter Sensitivity of Fractional Brownian Motion

In this subsection, we investigate the impact of the fBm traffic model parameters
on the delay bounds. Therefore, for a three-server sink tree, we fixed the server
rates to c = 9.0 and varied the parameters separately by 0.2. The results are
shown in Figure 7.

We see that, while all parameters clearly influence the outcome, the param-
eter sensitivity significantly differs. As expected, it is evident that, at the same
load, the Hurst parameter H can be decisive whether the system suffers from
long queues (H = 0.9), or hardly sees any queueing effects (H = 0.5) (Figure 7c).
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Fig. 7. Parameter sensitivity of fractional Brownian motion on the delay bounds.

4.4 Scaling Effects of PMOO

In this experiment, we focus on how the delay violation probability scales with
the number of servers for a delay of T = 4. Further, we keep the utilization at
the last server (since it is the server with the heaviest load in a homogeneous
sink tree, (n+1)λ

c ) constant, i.e. we scale its capacity with the number of flows.
The results in Figure 8 show that the delay bounds improve with the number

of servers. This improvement is due to statistical multiplexing effects as the
number of flows grows.

4.5 Comparison Between Independent and Dependent Cross-Flows

So far, all experiments considered the cross-flows to be independent. In this last
experiment, we now omit the independence assumption, i.e., we apply Hölder’s
inequality to the MGF of the cross-flows. The delay bounds for a sink tree of
three servers with server rate c = 9.0 are depicted in Figure 9.

As expected, the impact of dependence (and therefore Hölder’s inequality)
is strong. The delay violation probability is about 9 orders of magnitude higher
compared to the independent case. This indicates the importance of treating
and, if possible, avoiding the invocation of Hölder’s inequality.
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5 Conclusion

In this paper, we have derived end-to-end delay bounds for a flow traversing a
sink tree using a stochastic network calculus approach. It has been shown that
pay multiplexing only once has to consider less stochastic dependencies, and
therefore applies less Hölder inequalities in the analysis. Further, our numerical
experiments with a fractional Brownian motion traffic model indicate that each
application of Hölder’s inequality significantly worsens the delay bound.

Overall, the e2e analysis still imposes many open problems in the stochas-
tic network calculus. The most striking one is clearly how to take stochastic
dependence into account. One possible approach could be to leverage negative
dependence as in [33].
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A Appendix

A.1 Proof of Proposition 3

Proof. We prove the theorem via induction. The base case n = 2 is already
treated in Subsection 3.1.

Assume now that the induction hypothesis (IH) is true for some n ∈ N.
We denote the end-to-end service of tandems of length n by Sne2e. Observe that
extending the sink tree basically means that we prolong all flows and add one flow
that only traverses the last hop. Therefore, we apply the induction hypothesis on
the last server n servers S2, . . . , Sn+1 and receive Sne2e. Afterwards, we basically
apply the base case, as the network is reduced to the network consisting of S1

and Sne2e. This gives

Sn+1
e2e = [(Sne2e ⊗ S1)−A2]

+

(IH)
=

[([([(
[Sn+1 −An+2]

+ ⊗ Sn
)
−An+1

]+
⊗ · · · ⊗ S2

)
−A3

]+
⊗ S1

)
−A2

]+
.

For the delay bound, it follows that

P(d(t) > T )

(3)
≤ E

[
eθ(A1�Se2e (t+T,t))

]
≤

t∑
s0=0

E
[
eθA1(s0,t)

]

· E

[
e
−θ
[([(

[([Sn+1−An+2]
+⊗Sn)−An+1]

+⊗···⊗S2

)
−A3

]+
⊗S1

)
−A2

]+
(s0,t+T )

]
(IH)

≤
t∑

s0=0

E
[
eθA1(s0,t)

]
E
[
eθA2(s0,t+T )

] t+T∑
s1=s0

E
[
e−θS1(s1,t+T )

]
E
[
eθA3(s0,s1)

]

·

 s1∑
s2=s0

E
[
e−θS2(s2,s1)

]
E
[
eθA4(s0,s2)

]
· · ·

 sn−2∑
sn−1=s0

E
[
e−θSn−1(sn−1,sn−2)

]
E
[
eθAn+1(s0,sn−1)

]

·E
[
e−θ([Sn+1−An+2]

+⊗Sn)(s0,sn−1)
]

≤
t∑

s0=0

E
[
eθA1(s0,t)

]
E
[
eθA2(s0,t+T )

] t+T∑
s1=s0

E
[
e−θS1(s1,t+T )

]
E
[
eθA3(s0,s1)

]

·

 s1∑
s2=s0

E
[
e−θS2(s2,s1)

]
E
[
eθA4(s0,s2)

]
· · ·

 sn−2∑
sn−1=s0

E
[
e−θSn−1(sn−1,sn−2)

]
E
[
eθAn+1(s0,sn−1)

]
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·

(
sn−1∑
sn=s0

E
[
e−θSn(sn,sn−1)

]
E
[
eθAn+2(s0,sn)

]
E
[
e−θSn+1(s0,sn)

])))
.

This finishes the proof.
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