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Abstract

Computing probabilistic end-to-end delay bounds is an old, yet still challenging problem. Stochastic
network calculus enables closed-form delay bounds for a large class of arrival processes. However, it
encounters difficulties in dealing with dependent flows, as standard techniques require to apply Holder’s
inequality. In this paper, we present an alternative bounding technique that, under specific conditions,
treats them as if flows were independent. We show in two case studies that it provides often better delay
bounds while simultaneously significantly improving the computation time.

1 Introduction and Background

Stochastic network calculus (SNC) is a versatile framework to compute stochastic per-flow delay bounds.
Developed as a deterministic worst case analysis in the 1990s by Cruz [Cru91al [Cru91b], stochastic exten-
sions of network calculus emerged quickly after. It allows for closed-form solutions for a broad class of arrival
and service processes. In [RF11], it has been shown that the SNC branch using moment generating functions
[Cha00l [Fid06] provides tighter bounds than the approach using envelope functions [CBL06 [JLOS| [Cru96],
as it leverages the independence of arrival flows. However, many results limit the end-to-end analysis to
pure tandem topologies.

Analyzing more general networks requires to consider also dependent flows at some points in the network,
as the sharing of a resource clearly has a mutual impact on the flows’ output behavior. Therefore, if we want
to obtain the moment generating function (MGF) of aggregated, yet dependent arrival processes Aj(s,t)
and As(s,t), we typically invoke Holder’s inequality:

E |:€6(A1(s,t)+A2(s,t))} <E [epGAl(s,t)} VP & [quAg(s,t)] 1/a ,
where 0 < s < t, 6 > 0, and % + % =1, p,q € [1,00]. Holder’s inequality is completely oblivious of the
actual dependence structure, thus it often leads to very conservative bounds. Furthermore, it places the
burden of an additional, nonlinear parameter for each application to optimize.

Dependence of arrivals does not have to be a negative property per se. Taking advantage of the
information about the dependence structure to improve upon the bounds has been attempted before.
In [DWS15], the functional dependence is estimated using a copula-based approach. In our work, we
investigate a simpler alternative, using the independent scenario as an upper bound. To that end, we rely



on a characteristic called negative dependence. We explain the main idea with the help of the following,
simplistic example.

Consider a single time slot assuming two arrivals, A7 and As, that are multiplexed at one server. Both
arrivals send one packet, each independently with probability p € (0, 1), and the server serves one packet
but strictly prioritizes A,. Clearly, their two outputs, Dy and Ds, are strongly dependent, as an arrival
of the prioritized flow forces the other one to wait in the queue. For the joint distribution of the output,
we obtain for the departures both being equal to 0, that P(D; = 0,Dy =0) = (1 — p)2. On the other
hand, we compute for the product distribution by a simple conditioning, that P(Dy =0) - P(Ds =0) =
(1=p)*+p) (1 —p) > (1 —p)% Hence, if we deliberately forego the knowledge about the dependence
structure, we only obtain an upper bound, yet, it allows us to consider only the marginal distribution.

2 Definitions and Modeling Assumptions

2.1 SNC Background and Notation

We use the MGF-based SNC in order to calculate per-flow delay bounds. To be precise, we bound the
probability that the delay exceeds a given value T'. The MGF bound on a probability is established by
applying Chernoff’s bound [Nel95]

P(X >a) < e*eaE{e“)X} . 0>0.

We define an arrival flow by the stochastic process A with discrete time space N and continuous state
space ]Rar as A(s,t) = Zf: s41 @i, With a; as the traffic increment process in time slot . Network calculus
provides an elegant system-theoretic analysis by employing min-plus algebra.

Definition 1 (Convolution in Min-Plus Algebra [BCOQ92]). The min-plus (de-)convolution of real-valued,
bivariate functions z(s,t) and y(s,t) is defined as

(z®@y) (st) = sigr;; {z(s,4) +y(i, 1)},

(z© Z/) (s, t) = oi%gs {x(z, t) - y(i7 3)} :

The characteristics of the service process are captured by the notion of a dynamic S-server.

Definition 2 (Dynamic S-Server [Cha00]). Assume a service element has an arrival flow A as its input and
the respective output is denoted by D. Let S(s,t), 0 < s < t, be a stochastic process that is nonnegative
and increasing in ¢. The service element is a dynamic S-server iff for all t > 0 it holds that

DO,1) = (A® ) (0.1) = inf {A(0,5)+S(s,1)}.

The analysis is based on a per-flow perspective. That is, we consider a certain flow, the so-called flow
of interest (foi). Throughout this paper, for the sake of simplicity, we assume the servers’ scheduling to
be arbitrary multiplexing [SZF08]|. That is, if flow fo is prioritized over flow fi, the leftover service at a
dynamic S-server for the corresponding arrival Aj is Sy (s,t) = [S(s,t) — Aa(s,t)]". Therefore, we require
the server to be work-conserving.

Definition 3 (Work-Conserving Server [Cha00][EFid06]). For any ¢ > 0let 7 := sup {s € [0,t] : D(0,s) = A(0,s)}
be the beginning of the last backlogged period before t. Assume again the service S(s,t), 0 < s < t, to
be a stochastic process that is nonnegative and increasing in ¢ with S(7,7) = 0. A server is said to be
work-conserving if for any fixed sample path the server is non-idling and uses the entire available service,

ie., D(0,t) = D(0,7)+ S(7,1).



Definition 4 (Virtual Delay). The virtual delay at time ¢ > 0 is defined as
d(t) =inf{r > 0: A(0,t) < D(0,t +7)}.

It can briefly be described as the time it takes for the cumulated departures to “catch up with” the
cumulated arrivals.

Theorem 1 (Output and Delay Bound). [Cha00/[Fid06] Consider an arrival process A(s,t) with dynamic
S-server S(s,t).
The departure process D is upper bounded for any 0 < s <t according to

D(s,t) < (A S) (s,t). (1)
The delay at t > 0 is upper bounded by
dit) <inf{r>0: (A S) (t+,t) <0}.
We focus on the analogue of Theorem [I] for moment generating functions:

Theorem 2 (Output and Delay MGF-Bound [Fid06][BecI6]). For the assumptions as in Theorem [1], we
obtain:
The MGF of the departure process D is upper bounded for any 0 < s <t according to

E{(g@D(S,t)} < E[ef)((A@S) (s,t))] ) (2)
The violation probability of a given stochastic delay bound T > 0 at time t > 0 is bounded by
P(d(t) > T) <E [e‘)((f‘@s) <t+T¢>>] . (3)

In the following definition, we introduce (o, p)-constraints [ChaO0] as they enable us to give bounds
under stability conditions.

Definition 5 ((o, p)-Bound [Cha00]). An arrival flow is (04, pa)-bounded for some 6 > 0, if its MGF exists
and for all 0 < s <t
E[eeA(s,t)} < H0aO)(t=5)+04(0))

2.2 Negative Dependence and Acceptable Random Variables

As we explained in the introduction, we would like to bound the joint distribution of two random variables
by their respective product distribution. This concept is captured in the 1960s by Lehmann and his notion
of negative dependence.

Definition 6 (Negative Dependence [Leh66]). A finite family of random variables { X7, ..., X,,} is said to
be negatively (orthant) dependent (ND) if the two following inequalities hold:

P(X1 <z, Xo <) < [[P(XG < 1),

n
P(X1>m1,..., Xn > 0) < [[P(Xi > 1),

for all real numbers z1,...,z,.



The following lemma shows how this characteristic can be used directly in the context of MGFs.

Lemma 1 ([JDP83| [Sunlil). If {X,,n > 1} is a sequence of ND random variables, then for any 6 > 0,
E{eeZ?:le} < HE[@QXZ} . (4)
=1

In other words, treating the aggregate of ND random variables as if they were independent yields an
upper bound for the respective MGFs. Random variables that suffice Eqn. (4]) are called “acceptable”
[AKVO0S], but are studied in an unrelated context.

Showing that two random variables are negatively dependent is a challenging task. Some results exist,
e.g., in [JDP83|, it has been shown that a permutation distribution, and therefore random sampling without
replacement, is ND. In our context, this provides a result for a single time slot. In the following, we confine
ourselves to conjecture this property for intervals.

Conjecture 1. Let two independent flows with according arrival processes A1 and As traverse a server
with finite capacity. Further, both arrival processes have iid increments. Then, we assume their respective
output processes D1(s,t) and Da(s,t) to be ND for all intervals with 0 < s < t.

We do not have a proof but it held in all our experiments using 10 samples to estimate the joint and
product (C)CDFs, respectively: For two flows with exponentially distributed packet sizes at one server, we
tried over 3800 different combinations of intervals, x1, x2, (as in the CDF) and utilizations (between 0.4
and 0.9).

The focus on the same interval for both process is important, as the following, admittedly simplifying,
argument suggests: Assume the high priority (HP) flow to send a lot of packets consecutively, i.e., the low
priority (LP) flow has no output in this period and queues all its packets. Then, it is more likely for the
LP flow to have outputs when the HP flow stops sending, as it is more likely for it to have queued packets.

3 Independence as a Bound

In this section, we investigate two cases studies to show in which part of the analysis we exploit the negative
dependence.

In the following, we call the flow f;, whose delay we stochastically upper bound, flow of interest (foi).
All arrival processes A; are assumed to be discrete time and to have iid increments and all servers S; are
work-conserving and provide a constant rate ¢; > 0. To simplify notation, we denote by ng ) the output of
flow ¢ at server j.

3.1 Diamond Network

In this case study, we consider the topology in Fig. [l Assume the foi to have the lowest priority and fs to
have the highest priority. By SNC literature |[CBLOG, [Fid06], the service provided for the flow of interest,
also known as the network service curve, can be described by

Shet = [Sl - (((AQ @[Sy — A3]+) %) SQ) + (A3 0 S1) © Sg))]Jr.

Since Conjecture [I] is made on output processes, we postpone the application of the output bound in
Eqn. by keeping the exact output at first. That is, we start with

Suer = [$1— (DY) + Dg”))r,
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Fig. 1: Diamond network.

use then the conjecture to bound the MGF of the aggregate by their product (Eqn. (4)), and apply the
output bound in a final step.

The probability that the delay process d(t) exceeds a value T > 0 is upper bounded by
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where we used Theorem [2] in the first inequality and the Union bound in the line below. Since the flows
fo and f3 share the server Sy, their according output processes D§4) and D§4) are dependent and, as a
consequence, D§2) and D(s), as well. However, by the conjecture above, we assume that the resource
sharing at Sy indicates that the dependence structure on [r1,¢ + T is of a negative nature which, in turn,
is the reason why we upper bound them as if they were independent.

This can be interpreted as if we analyzed a new system, where the server Sy would be split into two
servers. That is, one provides the same service as the original (for the high priority flow f3), and the other
provides the leftover service [S} — A4]", where S has the same service rate as Sy and Aj is a new arrival
process, but with the same distribution as As.

Hence, the second factor is upper bounded by
E 69(D§2)+D§3>)(n,t+T)] <E[60Dé2)(7—1,t+T)] E[eepé?))(Tl,t—f—T)}

<E [60((A2®[S4—A3}+)®Sz)(717t+T)} E [69((A3®54)@53)(717t+T) )



This gives us

P(d(t) > T)
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0
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after applying the Union bound for each usage of the deconvolution. Further assuming all A; to be (o4, p4)-
bounded [Cha00] yields a closed-form for the delay bound under the stability condition

PA, (0) + pA2( ) +pA; (9) <ct1,
PAs (9) <c2,
pas(0) <cs,
pAQ( ) + PAJ(Q) <4t
P(d(t) > T)

t
S Z 60(/),41 (9)(t—7’1)+0’1(9))6—901(t+T—T1)

T1=0
T1 T2
. { Z {Z e@(pAQ(H)(t+T Tg)+aA2(9)) (pA3(9)(7'273)+UA3(9))6—GC4(7'2—T3)} 6—902(7'1—72)}
T2=0 \13=0
{ { 22 e@(pA3 (9)(t+T—7'3)+0'A3 (9))6—964(7'2—7'3)} 6—063(7’1—7‘2)}
70=0 \713=0
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t
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In contrast, standard techniques proceed at Eqn. by applying the output Bound Eqn. immediately
and continue with Hélder’s inequality to deal with the dependence.

3.2 ThelL

In this case study, we analyze the topology in Fig. 2] The foi has the lowest priority and fo the highest.
Similarly to Subsection we assume the outputs processes of fy and f3 to be ND, based on Conjecture ]
Here, the network service curve is

Snet = [([S1 — (A2 @ S3)]T ® S2) — (A3 @ [S5 — A )] T

Again, we postpone the output bounding and start with

N +
Suet = K[Sl _ DS”] ® 52) - Dg(f’)} '

The crucial difference is that, in order to obtain the delay bound for the foi, the so-called min-plus
convolution has to be applied to the service processes of S; and Sy forcing us to analyze the output

{ L O (Pag (0)—c2)(r1—72)

1)



processes at different intervals:
P(d(t) > T)

<E [69(A1 @Snet) (t+T,t)}
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where we used the Union bound for each application of the convolution / deconvolution. This scenario is
not covered by Conjecture [1] (see also the discussion at the end of Subsection [2.2). Our workaround is to

leverage the monotonicity of Dég):

E[ ODS) (11,44 eHDé?’)(n,frg)} < E[eepg‘”(n,tw) 69D§3>(7—1,t+T)} '

We then continue with
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. {i E[GGAg(Tg,tJrT)} E[eeAg(Ts,n)} 6963(7173)} '

13=0
If we again assume all A; to be (04, pa)-bounded, we obtain for
pa,(0) + pa, () + pag(0) < min{cy, co},
pay(0) + pa, (6) <cs,
and c¢1 # ca:

Pd(t) > T)
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4 Numerical Evaluation

We present the results of a numerical evaluation for both case studies. We ran 10* Monte-Carlo simulations
to sample the parameters for different server rates and packet sizes, the latter sampled from an exponential
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Fig. 3: Case study delay bounds.

distribution. The scenarios are then filtered to ensure a utilization € [0.5,1).

4.1 Quality of the Bounds

Diamond Network: This topology, after above mentioned filtering, yields 485 remaining scenarios, of
which 371 are improved. The fact that not all are improved despite the avoidance of Holder’s inequality
can be explained as follows: In the analysis, the Union bound is applied after Hoélder’s inequality. The expo-
nentiation before the summing followed by a square root can have a reducing effect. A similar observation
has been exploited in SNC literature before |?].

We also measured the extent of the improvement by computing the ratio of the delay violation probability
of the standard approach over the “independence bound”. Clearly, values above 1 are desirable. Here, we
obtain a median improvement of 6.04. In Fig. we depict the delay bounds for a specific parameter set.

The L: Here, we expect a weaker performance, as our approach using independence requires the addi-
tional step of extending the interval of one output process. The numerical results confirm this expectation:
Out of the 729 scenarios, only half of them (384) yield a performance gain. The median of the improvement
ratio confirms this, being relatively close to 1 (1.27). Again, we show the delay bounds for a fixed parameter

set (Fig. [3b)).

4.2 Computation Run Time

Our proposed approach not only often substantially improves the bounds but it also has a much lower
computation complexity than the standard approach. The reason is that the latter relies on an additional
Holder parameter. The optimizations are conducted using a grid search followed by a downhill simplex
algorithm. The improvements ratios are in the median 337.5 (1.62 sec compared to 0.0048 sec) for the
diamond scenario and 458.1 for the L (1.42 sec compared to 0.0031 sec).

5 Discussion

In this paper, we found some interesting results indicating that by using independence as a bound, one
can often times improve the delay bound while also speeding up the run time significantly. Obviously, the
crucial next step is to find scenarios in which the conjecture can be proved rigorously. Furthermore, more
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scenarios can be analyzed in which the negative dependence can be exploited. In particular, this includes
large-scale experiments that require many invocations of Holder’s inequality.
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