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Abstract

Giving tight estimates for output bounds is key to an accurate network analysis using the stochastic network calculus
(SNC) framework. In order to upper bound the delay for a flow of interest in the network, one typically has to calculate
output bounds of cross-traffic flows several times. Thus, an improvement in the output bound calculation pays off
considerably. In this paper, we propose a new output bound calculation in the SNC framework by making use of
Jensen’s inequality. In consists of inserting a convex function h into the bound, the so-called h-mitigator. We prove the
bound’s validity and also show that, by choosing h as the power function, that it is always at least as accurate as the
state-of-the-art method. Numerical evaluations demonstrate that even in small heterogeneous two-server topologies, our
approach can improve a delay bound’s violation probability by a factor of over 135. For a set of randomly generated
parameters, the bound is still decreased by a factor of 1.23 on average. Furthermore, our approach can be easily integrated
in existing end-to-end analyses. Last but not least, we investigated another variant for h, the exponential function and

showed numerically that this approach is mostly disadvantageous.
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1. Introduction

1.1. Motivation

Providing delay bounds in packet-switched networks is
a timeless challenge with recent sample applications as,
e.g., Internet at the speed of light [1], Tactile Internet [2],
Internet of Things [3], or the envisioned cyber-physical
systems [4], which often face real-time requirements.

The network calculus (NC) holds the promise to enable
a tight end-to-end delay analysis in such advanced appli-
cations building on a modular and uniform mathematical
framework based on min-plus algebra [5]. Starting from
the 1990s with two papers by Cruz [6, 7], NC demon-
strated its benefits providing tight bounds for determin-
istic worst-case end-to-end delay bounds. In the follow-
ing, the deterministic network calculus (DNC) was further
elaborated and mathematically cast into a min-plus al-
gebra setting [8, 9]. More recently, NC was generalized
into a stochastic setting providing probabilistic worst-case
bounds: The stochastic network calculus (SNC) frame-
work [8, 10, 11, 12, 13]. SNC’s main features can be sum-
marized as providing a very general scheduling abstraction
(the service curve) and the ability to enable system-wide
end-to-end analysis (the concatenation theorem) [13].
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SNC results can be categorized into different branches
such as tail-bound based [10, 14, 12|, moment generat-
ing functions (MGF) based [8, 11], and martingale based
[15] approaches. Recent work evidences its applicability to
modern problems, e.g., in the analysis of parallel systems
(using the fork-join pattern) or multi-tenancy [16, 17, 18].

Typically, a DNC/SNC network analysis proceeds along
the following steps:

1) Reducing the network to a tandem of servers tra-
versed by the flow of interest (foi) by invoking the
output bound calculation to characterize cross-traffic
flows at the servers where they join the foi.

2) Reducing the tandem of servers traversed by the flow
of interest (foi) to a single server representing the
whole system.

3) Calculating the delay bound of the foi at the single
server representing the whole system.

Most of the existing NC literature has mainly focused
on steps 2) and 3). In DNC, step 1) has seen some ad-
vanced treatment recently [19], but in SNC it has been
largely neglected in the sense that no work beyond the
standard output bound calculation was invested. In con-
trast to this, we focus on step 1) and, in particular, try
to improve the SNC output bound calculation in this pa-
per. As the output bound calculation has to be invoked
numerous times in step 1), we believe its accuracy to be
key in larger network analyses. For example: Assume a
full binary tree of height A where each node represents a
server and each of these servers has an arrival flow that is
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Figure 1: Full binary sink tree with seven nodes.

transmitted to the sink; let the foi be starting from one of
the leaf nodes (see also Figure 1), then the number of out-
put bound calculations is 2" — h — 1, whereas we only need
to invoke the delay bound calculation once (in step 3)).
Thus, any improvement in the output bound calculation
pays off tremendously in larger network analyses.

Yet, how can we improve upon the standard SNC out-
put bound calculation? The tail bound and MGF SNC
analyses have the application of the so-called Union bound
or Boole’s inequality in common. In a series of publica-
tions, [15, 20, 21, 22|, the authors emphasized its poor
performance and suggested an appealing martingale-based
approach. It provides tight single hop lower and upper
bounds on the delay for different scheduling disciplines.
Yet, to the best of our knowledge, so far there is no con-
catenation result in the martingale-based SNC and thus
step 2) from above cannot be performed and, thus, an el-
egant end-to-end analysis remains elusive. Hence, we de-
cided to remain within the standard SNC framework and,
yet, try to counteract the inherent problems of the Union
bound.

1.2. Main Contribution

In this paper, we present a modification of the MGF-
based SNC that mitigates the Union bound’s effect in the
output bound calculation. It consists of the application of
Jensen’s inequality via a convex function h just before the
invocation of the Union bound and does not impose any
additional assumptions. It is thus minimally invasive and,
using the power function for h, all existing results and pro-
cedures of the SNC are literally still applicable while, as
we see below, it improves the performance bounds. We try
different functions h for Jensen’s inequality and show that
its choice is key to a tight and computationally fast analy-
sis. In fact, we prove this new bound with the power func-
tion, the so-called “power-mitigator”, to be always at least
as good as the state-of-the-art method. Evaluations in a
very simple heterogeneous two-server setting show that it
can improve the delay bound already by a factor of up to
33.

It comes, however, at the price of an additional param-
eter per invocation of Jensen’s inequality. Thus, we trade
higher computational effort in the optimization of these
parameters for improved bounds. However, as we also
show this effort is moderate if the optimization is done
carefully.

1.3. Outline

The rest of the paper is structured as follows: In Sec-
tion 2, we introduce the necessary notations for SNC and
its main results as we need them in this paper. In Sec-
tion 3, we present our new output bound calculation and
prove its validity. A numerical evaluation is given in Sec-
tion 4: we compare output bounds for a single server and
delay bounds for a two-server setting as well as a fat tree
topology with the current state-of-the-art method. In Sec-
tion 5, we prove that Jensen’s inequality with the power
function cannot be applied directly to delay bounds. We
investigate alternatives by choosing h as the exponential
function in Section 6. Section 7 concludes the paper.

2. SNC Background and Notation

In this section, we introduce some of the basic terms
and concepts in SNC.

We use the MGF-based SNC in order to calculate per-
flow delay bounds. To be precise, we bound the probability
that the delay exceeds a given value, typically denoted by
T. The connection between probability bounds and MGFs
is established by Chernoft’s bound [23]

P(X >a) < efeaE[e(’X] , 0>0, (1)

with E[e?X] as the moment-generating function (MGF)
of a random variable X. We define an arrival flow by
the stochastic process A with discrete time space N and
continuous state space R as A(s, t) = Zf:sﬂ a(i), with
a(t) as the traffic increment process in time slot . Network
calculus provides an elegant system-theoretic analysis by
employing min-plus algebra:

Definition 1 (Convolution in Min-Plus Algebra [5]).
The min-plus (de-)convolution of real-valued, bivariate func-
tions x(s,t) and y(s,t) is defined as

(x®y) (s,t) = migt {z (s,1) +y(,t)},

DN )
(x @y) (s,t) = max {x(i,t) —y(i,s)}.

0<i<s

The characteristics of the service process are captured by
the notion of a dynamic S-server.

Definition 2 (Dynamic S-Server [8]). Assume a ser-
vice element has an arrival flow A as its input and the
respective output is denoted by A’. Let S(s,t), 0 < s <,
be a stochastic process that is nonnegative and increasing
in t. The service element is a dynamic S-server iff for all
t > 0 it holds that:

A0,8) > (A®8) (0,1) 2 min {A(0,7) + S(i,0)}



The analysis in this paper is based on a per-flow per-
spective. That is, we consider a certain flow, the so-
called flow of interest (foi). Throughout this paper, for
the sake of simplicity, we assume the servers’ scheduling
to be arbitrary multiplexing [24]. That is, if flow fo is
prioritized over flow fi, the leftover service at a dynamic
S-server for the corresponding arrival A; is S), (s,t) =
[S(s,t) — Ag(s,t)]". Therefore, we require the server to
be work-conserving.

Definition 3 (Work-Conserving Server [8][11]). For
any t > 0 let 7 == sup{s € [0,t]: A’(0,s) = A(0,s)} be
the beginning of the last backlogged period before ¢. As-
sume again the service S(s,t), 0 < s < t, to be a stochas-
tic process that is nonnegative and increasing in ¢ with
S(7,7) = 0. A server is said to be work-conserving if for
any fixed sample path the server is non-idling and uses the
entire available service, i.e., A’(0,t) = A'(0,7) + S(7, ).

In the following definition, we introduce (o, p)-constraints
[8] as they enable us to give bounds under stability condi-
tions.

Definition 4 ((c, p)-Bound [8]). An arrival flow is (o4, pa)-

bounded for some 6 > 0, if its MGF exists and for all

0<s<t

E[eems,t)} < Pa(0)(t=5)+04(0))

A dynamic S-server is (og, ps)-bounded for some 6 > 0, if
its MGF exists and for all 0 < s <t
E[efesw)} < e~ 0lps(=0)(t=5)=05(~0))

Definition 5 (Virtual Delay). The virtual delay at time
t > 0 is defined as

d(t) ==

It can briefly be described as the time it takes for the
cumulated departures to “catch up with” the cumulated
arrivals.

inf {s >0: A(0,t) < A'(0,t +s)}.

Theorem 6 (Output and Delay Bound). [8/[11] Consider
an arriwal process A(s,t) with dynamic S-server S(s,t).

The departure process A’ is upper bounded for any 0 <
s <t according to

Al(s,t) < (A0 S) (s,t).
The delay at t > 0 is upper bounded by
dit) <inf{s>0: (A0 S) (t+s,t) <0}.

We focus on the analogue of Theorem 6 for moment
generating functions:

Theorem 7 (Output and Delay MGF-Bound [11][25]).
For the assumptions as in Theorem 6, we obtain:

The MGF of the departure process A’ is upper bounded
for any 0 < s <t according to

E[eeA’(s,t)} < E[eG(A®S) (si)] ) (3)

The violation probability of a given stochastic delay bound
T >0 at time t > 0 is bounded by

P(d(t) > T) <E [e%“@s) <t+T’t>} . (4)

3. New Output Bound Calculation

In this section, we derive our new approach to compute
the MGF-output bound. Furthermore, we apply this idea
to (o, p)-bounded arrivals and service.

8.1. Insertion of Jensen’s Inequality

The standard approach to bound the output-MGF (3)
is as follows

E[GOA’(s,t)} (%) E[ee(Am) (s,t)}

@ E[69maxogi,s,g{A(i,t)—S(i,s)}:|

<ZE[

where the max is always less than or equal to the sum since
we have only non-negative terms. Inequality (5) is similar
to the application of the Union bound?,

(i,t)—S(i, s)):| ’ (5)

P(lmax X>a> ZPX > a) (6)

1

In the following, we call the bound in (5) “standard ap-
proach” given that it is the most intuitive way to proceed.
It has been shown to often perform poorly, in particular
for correlated increments. The authors of [15] suggested
instead a martingale-based approach that allows for sig-
nificantly more accurate delay bounds. To the best of our
knowledge, however, achieving a concatenation property
to enable an end-to-end analysis remains an elusive goal
in the martingale-based approach.

The idea in this paper is to insert Jensen’s inequality to
mitigate the inaccuracy imposed by the (5). Therefore, we
call this approach in the following “h-mitigator”. Nonethe-
less, this approach is able to preserve end-to-end analyses
for certain functions A, as we show in the subsequent Sub-
section 3.2.

2For probability bounds such as the backlog or the delay, it is
even equivalent to the Union bound, as

P X (2) 9 P(X (2

max X >a ,;(z>a),

i=1,...,

n
e*"‘ZZE[eexi]
i=1
O 0x:] D e 06X,
<SPl max X; >a) < e "PE| max e"i| <e ‘IZE[e l]
i=1,..., n i=1,..., n =

Therefore, we call the inequality in (5) in the following “quasi-Union
bound.”



Theorem 8 (Jensen’s Inequality [23]). Suppose that h is a
differentiable convex function on R and let X € L'. Then

h(E[X]) < E[r(X)]. (7)
This enables us to prove a new output bound.

Proposition 9 (h-Mitigator). Let h, : RT — RT be a
differentiable, strictly increasing, and convex function with
parameter p over a set P C R.

1. It holds that

E {eGA/(s,t)}

S;nga {h;l (;E[hp (ee(A(i,t)—S(z‘,s)))D } )

2. If we additionally assume that hy is the identity for
apeP,ie.,

(8)

hole) =, (9)

then this bound is always at least as good as the stan-
dard approach in (5).

Proor. We know by Jensen’s inequality that

E {BOA’(s,t)}

(%) E |:€0 maxogigs{A(i’t)fs(i’s)}}

A L )}
= nt {5 (B g (r00-0) )}
S;nga {h;l <§%E{hp (ee(A(i,t)—S(i,s))ﬂ) } :

where we used that strictly increasing function on R always
have an inverse in the third line and the quasi-Union bound
in the last inequality. This proves the first part of the
proposition.

For the second part, we simply observe

,}2}1 {h;l (; E [hp (eH(A(i,t)—S(i,s)))] ) }

< Z E {EO(A(i,t)fS(i,s))} ’
=0

where we used that there is one p € P such that (9) holds.
This finishes the proof.

The goal of the parameterization of h,, is to enable a whole
set of functions that, ideally, lead to tighter bound as well
as the possibility to provide a guarantee to not worsen the
bound as in Proposition 9.2.

f1 = foi —@—>

Figure 2: One server topology.

3.2. Power-Mitigator and (o, p)-Bounds

In this subsection, we show that Proposition 9 general-
izes the results in [26]. Moreover, we restate the compati-
bility with the (o, p)-bounds in Definition 4.

Proposition 9 yields an output bound given a param-
eterized function h,. A suitable candidate for h, is the
power function

hy : RT — R
x> aP, (10)

where p > 1, because it suffices the necessary conditions
of both parts of Proposition 9 being differentiable, strictly
increasing, convex, and is the identity for p = 1. Hence, we
call the h-mitigator with this choice the “power-mitigator”.

Corollary 10 (Power-Mitigator). Let h, be defined as in
(10). Then it holds that

1

P

E[BOA’(s,t)} S;gfl (gE[epe(A(i’t)S(i’s))D (11)

< Z E {GO{A(i,t)—S(i,s)}} ’
=0

i.e., we receive a new output bound (11) that guarantees
to be as good as the standard approach in (5).

Here, we see that the subadditivity of the root function
implies that the insertion can mitigate the effect of the
quasi-Union bound (5).

Single Server Setting. Assume now a single flow - single
server setting as in Figure 2. We have already deduced
that

—
INe

E[ee(A’(s,t))} EFB(A@S)(S})&)}

S

B {eG(A(i,t)fs’(i,s))} .
=0

—
INe

<

We now require the arrivals and service to have (o, p)-
constraints (Definition 4). For pa(0) < pg(—0) the stan-
dard approach leads to

E [ee(A'(s,t))] < i: E {GO(A(i,t)fs(i,s))]
=0

N ploain] pl—6sG.s)
;E[e t ] E[e }



<37 ePPa (Ot 00 (0) =005 (~0)(s—i) 005 (~0)

i=0
—e9(pa(0)(t=s)+oa(0)+0os5(-0))

L3 oA ps (-0
7=0

00 (0)(t—8)+oA(0)+05(~0))
ST T A sy

(12)

where we have used the independence of arrivals and ser-
vice in the second line, (o, p)-bounds in the third line and
the convergence of the geometric series in the last line.
The shows that the output is (o, p)-bounded as well (see
Proposition 11 below).

If we use Jensen’s inequality with the power function
(11) instead, we obtain in comparison

E[GOA’(s,t)}
. PP (D0)(t=5)+0 4 (p6) +o5 (~p0)) \ 7
< ;rzlfl ( 1 — epf(pa(P9)—ps(—po)) )

e(pa(pd)(t—s)+oa(pd)+os(—pb))

= inf
p=>1

n (13)
(1 — epf(pa (pG)—ps(—pG))) B

Thus, the power-mitigator can also be used under (o, p)-
constraints (see Proposition 12). That is, it can easily be
integrated in existing end-to-end analyses.

Proposition 11 ([8][25]). Consider a (o4, pa)-bounded
arrival process A(s,t) with (g, pg)-bounded dynamic S-
server S(s,t), as in Figure 2. If the stability condition
pa(f) < ps(—0) holds, then the output A’ is (oar,par)-
bounded with

1
oa(0) =04(0) +o5(—0) — ] log (1 - eg(”A(e)_pS(_o))>
par(0) =pa(6).

Proposition 12 (The Output Bound with the Power-Mit-
igator is (o, p)-Bounded). Under the assumptions in Propo-

sition 11 plus a modified stability condition p(pf) < ps(—pb),

we obtain that the output A’ is (cas, par)-bounded with

o (pd) =oa(ph) + os(—pb)

1 log (1 — epe(PA(PG)*PS(f;DO)))
pb

pa(p0) =pa(pd),
where p > 1.
PROOF. See Appendix A.l.

Remark 13 (Computational Advantage). The bounds
in (5) and (8) give an estimate for the min-plus opera-
tors in Theorem 7, but are computationally infeasible for

° M ’
A
b

Figure 3: MMOO Model.

larger networks. Since the number of sums in these cal-
culations typically scales linearly with the number of in-
voked min-plus operators, one usually seeks for stationary
closed-form solutions. Using (o, p)-bounds conveniently
solves this problem by letting these sums converge. The
computational advantage can be observed as follows:

The quasi-Union bound yields

E{GGA'(s,t):| (2 ZE[ee(A(i,t)—S(i,s))] :
=0

i.e., we have to compute a sum with s + 1 summands.
With the additional assumption of (o, p)-constraints, the

, (12)
output can be bounded by the closed form E |:69A (S’t)} <

eG(pA (6)(tfs)+aA(9)+as(79))
1o (PaA(O)—ps(—0))

Remark 14 (Improvement of the Output Bound).
The power-mitigator’s MGF output bound (13) can be
moved arbitrarily close to its lower bound 1. This can
be seen as follows: Assume a sequence p, and 6, such
that p,f0, — ¢ with constant ¢ > 0 and that the MGF
E[e/(A00=505)] exists, where p, — oo and 6,, — 0 but
0,, > 0 for all n (for example, choose 6,, = % and p, = ¢n).
Then it holds that

e0n(pA(Pr07)(t=8)+0A (P 0n)+05(Prbn))

E|:60A’(s,t):| < lim .

n=00 (1 — epnen(PA(pnen)_PS(pnen))) Pn
efn(palc)(t—s)+oa(c)+os(c))

~ lim T

"IN (1 eelpale)=ps())7n

=1

)

where we used that the numerator converges to 1 for arbi-
trary small 6 and the denominator converges also to 1 as
palc) < ps(c) = 1 — eclrale)=rs()) ¢ (0,1). Examples of
this MGF output bound behavior are depicted in Figure 4.
Therefore, we focus in the evaluation on the impact on the
delay in topologies with multiple server.

4. Evaluation

In this section, we investigate the increased accuracy of
our new output bound introduced in Section 3. That is, we
evaluate the gain of the delay bound by the improved out-
put bound calculation calculation for a two-server topol-
ogy and a fat tree. The improvement factor is measured
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Figure 4: MGF Output bound comparison in the single server setting.

by calculating
Bound standard approach

Bound power-mitigator (14)
where clearly larger values are desirable.
The formulae are implemented in the general-purpose
programming language Python®. We made the source code
publicly available?. Throughout this paper, we only con-
sider arrivals that are (o, p)-bounded. Therefore, all arrival
processes inherit in an object-oriented manner from the
class “Arrival” that has the abstract methods “sigma(theta)”
and “rho(theta)”.
We have implemented three different arrival distribu-
tions:

1. D/M/1 Independent exponentially distributed in-
crements with parameter A:
For this model, the MGF is given by

E {ews,t)} —E {60 T a(z‘)}

A t—s
— —_— <_
(/\_0> , 0<fO< )\ s<t

Since the packets arrive with constant inter-arrival
times due the discrete-time model and by the choice
of the arrivals’ distribution, this basically corresponds
to a D/M/1-queue.

2. MMOO Markov-Modulated On-Off traffic model:
It consists of a continuous-time Markov chain with
two states, 0 and 1, together with transition rates u
and A. If the chain is in state 0, it means that no
traffic arrives, whereas in state 1, data with burst
rate b are sent (see Figure 3). It has been shown
in [27] that, for this arrival model, the MGF can be
bounded by

E[eeA(m} <009 950 s<t,

where w(f) = anvAle s W and d = p+ A —6b. How-

ever, in contrast to the exponentially distributed in-
crements above, the MMOO traffic model is a contin-
uous process A(s,t) = fst a(z)dz, s < t. Therefore,

3https://www.python.org
4https://github.com/paulnikolaus/snc-mgf-toolbox

fl = foi

Figure 5: Two-server topology.

we also need discretizing techniques such as in [10]
as we use a discrete time model.

3. M/D/1 Independent exponentially distributed inter-
arrival times with parameter A:
In contrast to 1), the time between arrival of size 1
is distributed exponentially, yielding the MGF [28]

E[EGA(s,t)] — e/\(th)(etl), s<t.

This arrival class corresponds to the M/D/1-queue
and is, as for the MMOO traffic, a continuous-time
model that needs to be discretized.

The service is always chosen to be work-conserving and
of constant rate. Its according class also has the methods
“sigma(theta)” and “rho(theta)”. All mentioned arrival and
service processes can be described by (o, p)-bounds, there-
fore all network calculus operations such as the convolu-
tion of server or the computation of the leftover service
yield closed-form solutions that can also be represented by
(o, p)-bounds [29, 17]. Implementation-wise, this means
that all operations inherit either from the arrival or the
server class. As a consequence, all performance bounds
can be obtained via closed-form solution, as well. The
same holds for the output bound with the power-mitigator
(13) as shown in Proposition 12.

If not stated otherwise, # and the Jensen parameters p;
are optimized by a brute force optimization along a grid
using the “brute()” method in the “scipy.optimize” library
[30]. When applying a second optimization with the best
grid point as initial solution, this method also evaluates
points outside the grid meaning that we actually apply
an unconstrained optimization to a constrained problem.
Therefore, we set the function value to co (“math.inf”) if 6
or p are not in the feasible set ensuring that these points
are not in an optimal solution.
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(d) MMOO with (,ul,,ug) = (1.0,3.6), (/\1,)\2) =
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(f) M/D/1 with (A1, A2) = (3.6,0.28), service rates
(r1,r2) = (4.4,0.7)

Figure 6: Delay bound comparison in the two-server setting.

With each application of this new inequality, an addi-
tional parameter has to be optimized. On the other hand,
since the costs of incorporating the power-mitigator in a
given implementation are rather moderate, it gives us con-
venient new options: Either we prioritize accuracy and op-
timize all p; (at the cost of higher computational effort),
or focus more on speed setting many p; = 1 (setting all
p; equal to 1 would yield the old approach). Hence, we
gain more flexibility while being minimally invasive at the
same time.

4.1. Two-Server Topology

In this section, we investigate the effect of Jensen’s
inequality on the delay bound. Therefore, we consider
the two-server setting in Figure 5. Here, a cross flow
fo enters server Sy and its output (< (A2@S52)) is pri-

oritized over the flow of interest f; at server S;. The im-
proved output bound impacts the delay by being more
accurate in terms of the foi’s leftover service. Mathemat-
ically speaking, this leftover service at Sy is described by
S11o. = [S1— (A2 @Sg)]+. In this topology, we calculate
the delay bound (4) but take the new output bound invo-
cation into account. For the D/M/1, M/D/1, and Markov-
Modulated On-Off (MMOO) traffic, two examples for each
distribution are depicted in Figure 6. The plot is comple-
mented by delay measurements in a packet-level simula-
tion. Here, the violation probability is estimated by the
empirical distribution computing the average number of
occurred delays. As we can observe from these examples,
the actual gain from our new power function output bound
calculation can vary strongly depending on the scenarios’
parameters. For that reason, we decided to systematically



| Distribution | D/M/1 [ MMOO [ M/D/1 |
Average gain 1.40 1.04 1.03
Maximum gain 135.0 36.6 15.5
Share of improved bounds | 99.8% 99.8% 99.9%

| Distribution | D/M/1 | MMOO | M/D/1 |
Average gain 1.47 1.30 1.13
Maximum gain 93.2 68.5 10.9

Share of improved bounds | 100% 99.3% 100%

Table 1: Improvement of the delay’s violation probability for the
two-server setting and delay = 10 (above: uniform sampling, below:
exponential sampling).

sample the parameter spaces in a Monte Carlo-type fash-
ion. That is, we took samples with a size of 10° from
a uniform distribution as well as an exponential distri-
bution (since the parameter space is only lower bounded)
and computed the average and largest improvement as well
as the share of improved bounds. The parameters of the
arrival and service distribution are drawn from the same
distribution, i.e., the stability condition p4(0) < ps(—0)
is approximately half of the time violated. These cases are
removed from the results given in Table 1. Furthermore,
since we aim to focus our analysis on queueing-relevant
load situations, we also removed all cases with a utiliza-
tion < 0.5.

We often observe an improved delay bound, as one can
see in the examples of Figure 6. It shows that even in
the delay space (the difference in the delay bound for a
given probability), the difference is up to 50%. Depend-
ing on the parameters, the gap between the simulation
results and the analytically derived bounds can be closed
considerably. Average behavior on the other hand is less
significant. Table 1 indicates a highly non-linear behavior
where some violation probabilities are improved by a fac-
tor of 135.0, whereas average gain is moderate with a total
mean of 1.23.

4.2. Fat Tree

Starting off with the two-server topology in Figure 5,
we investigate the delay bound’s scaling behavior for mul-
tiple invocations of Jensen’s inequality. We now take a
look at n flows, where n — 1 are cross flows with corre-
sponding server and their outputs jointly enter server S;
(see Figure 7). The flow of interest is again, due to arbi-
trary multiplexing, assumed to be served after the cross
traffic. In terms of leftover service provided for the foi,
this means Sl,l.o. = [Sl — Z;L:Q (Al®Sz)]+ .

We calculated the delay’s violation probability for the
following setting: The foi has exponentially distributed
increments (D/M/1) with parameter A\; = 0.5 and enters
server S with rate ry = 4. The n — 1 cross flows are also
D/M/1, but with parameters A; = 8,4 =2,...,n and cor-
responding servers S; with rates r; =2, ¢=2,...,n. The
accuracy gains for different numbers of servers is depicted
in Figure 8.

=0,
) f1 = foi
)

fn

Figure 7: Fat tree topology.
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Figure 8: Delay bound improvement for different numbers of
servers (delta time = 8).

We observe that the ratio increases quickly to 32.8 in
the case of 8 servers, even though only an improvement
of 1.5 was achieved for the two-server setting. This shows
that the power-mitigator can fully develop its strengths
in larger networks, when more output bound calculations
have to be invoked.

4.8. Run Time

So far, we focused on the power-mitigator’s accuracy
gain and observed favorable outcomes. Yet, the other
side of the coin is the computational effort the new out-
put bound calculation must invest to optimize over the
higher-dimensional parameter space. To investigate this
in more detail, we ran 10° experiments for D/M/1 as well
as MMOO-traffic in the two-server topology (Figure 5)
and the fat tree (Figure 7) with 2,4,...,12 flows. In this
scenario, the aforementioned naive grid optimization runs
quickly into computational problems, as a computation for
4 flows already took approximately a day. Therefore, we
implemented the so-called Pattern Search [31] heuristic.
Here, a function is minimized by changing arguments only
in a single direction. If multiple modifications lead to a de-
scent, a step in the direction of all successful intermediate
steps is attempted. The results of the ratio

Computation time power-mitigator

Computation time standard approach
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Figure 9: Computation time comparison for the state-of-the-art
and power function approach.

for these experiments are depicted in Figure 9.

For Pattern Search, we observe that the computational
overhead scales only linearly with the number of invoca-
tions of Jensen’s inequality. This indicates that a good
trade-off between cost and accuracy gain can be achieved,
if optimization is done carefully.

5. Direct Application to Delay Bounds

At first glance, it is tempting to apply the power-mitigator

to the delay bound calculation as well, given its results in
Section 4. That is, we would modify the computation of
the delay’s violation probability as follows:

Pd(t) > T)

E[e(’ AQS) (t+T, t)}

INE

IIN

[ee maxo<i<iyr{ Ali,t)— (i,t+T)}]

—in (E |:ep(9 maxogigt{A(i,t)—S(i,t—i—T)}})
p>

1

S

_ [ 6 maxo<;<i{ A(i,t)— S’(i,tJrT)}]
f
1

b
(i) nf zt: E[epe(A(i,t)fs(i,t+T)):| ’ (16)
— le P ?

where we used that A(s,t) =0 for s > ¢ in the third line,
the identity-property for p = 1 in (15), and the quasi-
Union bound in the last line. Owing to the fact that this
estimates a probability, only values below 1 are of interest
for (16). Disappointingly for this case, no improvement
can be obtained, as the next theorem states.

Theorem 15. Let a delay bound T according to (16) exist
such that

zt:E[epO(A(i,t)S(i,t+T))} <1 (17)

If p and 6 are optimized (denoted by p* and 0* ), then p* =
1, i.e., no improvement can be achieved.

PROOF. Assume that p* and 6* are the optimal parame-
ters for (16) and that {* > 1. This means that there exist
1 <9p < p*and 6 > 0* such that p'0’ = p*0*. But this
means

1

=

too
<ZE ep*@*(A(i,t)su,HT))D
i=0
t %
_ (Z E _ep’e’(A(i,t)S(i,tJrT))])
i=0
] 1
> (Z E _ep’e'(A(i,t)S(i,t+T))]>
i=0

=
where we inserted p*6* = p’6’ in the second line. In the
third line, we used that 27 > 27 holds for all z € (0,1)
and p* > p’ > 1. Clearly, this is a contradiction to our
assumption that we had an optimal solution. Thus, the
optimal p* must be equal to 1.

As a consequence, the power-mitigator approach can only
indirectly decrease delay bounds via the output bound cal-
culation. The same holds for the backlog bound (the proof
follows along the same lines).

6. The Exp-Mitigator

In this subsection, we investigate an alternative h-mitigator

using the exponential function
hy : RT — RT
x T, (18)
where p > 1, as it is differentiable, strictly increasing, and

convex. But, since there is no p such that p® equals the
identity, only the first part of Proposition 9 can be utilized.

Corollary 16 (Exp-Mitigator). Let h, be defined as in
(18). Then it holds that

E[GQA/(S’t)} < H;fi {]ng (iE[p(ee(A(i,t,)—s(i,sn)}) } )
D i—
=0 (19)

Above all, we cannot guarantee that this bound does
not deteriorate in comparison to the standard bound (5).
The bound in (19) is difficult to obtain analytically
even for simple distributions such as exponentially dis-
tributed increments (D/M/1). Taking the expectation in-

side, i.e.,
S
. (ef FAGO=SG])
st s (20 0

would lead to a lower bound on the upper bound (19)
(again, by Jensen’s inequality). This significantly restricts
the applicability of the exp-mitigator.



6.1. Numerical FEvaluation of the Exp-Mitigator

In the following, we compare the delay bounds obtained
with the exp-mitigator and the standard approach. Given
that we do not have a closed-form solution for the exp-
mitigator, we limit ourselves to the single server topology
(Figure 2). Based on (14), we measure the improvement

via
Bound standard approach

Bound exp-mitigator
because for this topology, the power-mitigator could not
improve the bound on the delay violation probability (see
Section 5). The exp-mitigator’s delay violation probability
(derived in Appendix A.2),

P)>T) < inf1 {logp (iE{p(eemu’”S““”)}) }7
P> i=0

lacking a closed form, is implemented with the non-stationary

lower bound

t
. (J(EIA(LU]—F{S(in-T)]))
ot {logp (ZP

i=0
to avoid calculating the double exponential of the expec-
tation. As a consequence, the exp-mitigator has a strong
advantage in the evaluation.

In a supplementary evaluation, we approximate the vi-
olation probability by using the strong law of large num-
bers [32]. That is, for i.i.d. random variables € £! and
measurable function f it holds that

n

nler;%Zf(X,») S FEX)) as

For the sake of simplicity, we only assume the arrivals to
be of exponential distributed increments (D/M/1) and a
service of constant rate. As for the parameter choice, we
apply the same Monte Carlo-type analysis like in the pre-
vious numerical evaluation. The results are shown in Ta-
ble 2.

On average, the lower bound is about 19% worse. On
the other hand, a maximum improvement factor of 16.5
is achieved. Yet, given that this is only a lower bound, it
is quite surprising that only at most 2.2% of the bounds
are improved. The performance gap is for sample mean
approximation is even larger, bearing in mind that nearly
no enhancement at all is obtained despite the choice of
stationary bounds as competitors.

Remark 17 (Relation p and t). Let us fix a p > 1 for
the moment. This results for the bound on the violation
probability P(d(¢) > T) in

1ng (i B [p(ee(A(i,t)—S(i,t+T)))i| )
1=0
t
>log, (Z E[p°]>
1=0

=log, (t+1),

10

l Distribution [ Lower Bound [ Sample Mean ‘

Average gain 1.05 0.09
Maximum gain 14.2 0.96
Share of improved bounds 18.4% 0%

l Distribution [ Lower Bound [ Sample Mean ‘

Average gain 0.63 0.06
Maximum gain 16.5 1.03
Share of improved bounds 9.7% 1.0%

Table 2: Delay bound improvement for a single server and delay
= 10 (above: uniform sampling, below: exponential sampling).

where we used in the second line that e* > 0 for all z € R.
This means that, in order to make sure that the bound on
the violation probability is less than 1, p has to be greater
than t + 1. As a consequence, there is no finite p in this
approach for a stationary delay bound.

Besides this strong quantitative evidence, the exp-mitigator
also exhibits a number of qualitative disadvantages:

e The lack of closed-form solutions significantly in-
creases the run time as the sums have to be cal-
culated from every single summand making it rather
elusive for a network analysis.

e The double exponential causes many floating-point
errors that have to be caught and subsequently re-
moved from the evaluation.

Following these arguments, we can clearly recommend the
usage of the power-mitigator.

7. Conclusion

In this paper, we proposed a novel approach to improve
the MGF output bound calculation in the stochastic net-
work calculus using Jensen’s inequality with h-mitigators.
We also gave a proof that shows why this is a valid bound
and, when using the power function, that it is always at
least as accurate as the state-of-the-art method. It is also
shown in comprehensive numerical evaluations that the de-
lay’s violation probability can be improved for two-server
topologies as well as fat trees. Our evaluation indicated a
significant gain in some cases while leading to more moder-
ate improvements on average. For a fat tree, we observed
a very high gain as the number of cross flows is increased.
These gains come conceptually for free, as no additional
constraints have to be imposed, thus making our approach
minimally invasive. Yet, from a computational perspec-
tive the gain comes at the price of a higher-dimensional
optimization in the last stage of computing the bounds.
Fortunately, our experiments indicate that the computa-
tional overhead only scales linearly with the invocations of
the Jensen’s inequality under a carefully chosen optimiza-
tion method. We also showed in a numerical evaluation,



that, in contrast, the application of the exp-mitigators of-
ten times provides worse delay bounds apart from hav-
ing far higher computation times caused by the lack of a
closed-form solution.

Considering the crucial role of the output bound, we

believe that we have made a significant contribution to
the SNC network analysis. On the other hand, there are
still many open challenges in the analysis of larger and
more complex networks, e.g., dealing effectively with cor-
relations in the traffic flows, which are left for future work.
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Appendix A. Appendix

Appendiz A.1. Proof of Proposition 12

We have already seen in Subsection 3.2 that

E [eeA/(s,t)}

1

P

<inf Z E [ePQ(A(i,t)fs(i,s))} 7
=0

p>1

which can be continued with

1
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where we, again, used the independence of arrivals and
service in the second line and the (o, p)-constraints for ar-
rivals and service in the third line.

Since we assume that pa(pf) < ps(—pb), we obtain by
convergence of the geometric series

... = inf { f(Pa(pO)(t=s)+oa(ph)+os(—pb))
p=>1

S

Z eP(pa(p0)—ps(—p0))j

Jj=0

p>1

1
1 »
' <1 — ep9(PA(P9)—PS(—P9))> } '

This finishes the proof, as it is equal to

< inf { 0(pa(p0)(t—s)+0a(pd)+os(—po))

... = inf { 9(Pa(PO)(t—s)+oa(pO)+os(—pf))
p>1

,60<7;Tle 10g(176P9(ﬂA(P"”)—ﬂs(—l’le)))> }

which yields

o4 (pd) =04 (ph) + o5(—pb) — Z%log (1 - e”"(”“‘(pa)"’S(‘pe))) :
par(pt) =pa(pf)

as the theorem states.

Appendiz A.2. Delay Bound of Exp-Mitigator

The delay bound using the Jensen bound with the ex-
ponential function yields

P(d(t) > T) < E[60<A@s> wm)}

—F [60 maxogigt{A(iyt)—s(iyt-FT)}]

< f 1 B (66maxOSiSt{A(i,t)—S(i,t+T)})
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