
Replication with QoS support for a Distributed Multimedia System

Giwon On1, Jens Schmitt1, Michael Liepert1, and Ralf Steinmetz1,2

Email: {Giwon.On, Jens.Schmitt, Michael.Liepert, Ralf.Steinmetz}@KOM.tu-darmstadt.de

1: Darmstadt University of Technology
Merckstr. 25 • 64283 Darmstadt • Germany

2: FhG-IPSI
Dolivostr. 15 • 64293 Darmstadt • Germany

“ accepted for the 27th EUROMICRO Conference, Workshop on Multimedia and Telecommunication;
Warsaw, September 4-6, 2001”

he
heir
g-

le-
t-

ly
n-

the
ac-
on-

e
e
ify
ir
te
ta-

o-
nd
lled
t-

n
ap-
er
i-
c-

of
nt

en-
re-
ber
an-
Abstract

Replicating data and services at multiple networked com-
puters increases the service availability, fault-tolerance
andquality of service (QoS)of distributed multimedia sys-
tems. In this paper, we discuss some relevant design and im-
plementation issues of a replication mechanism for a
distributed multimedia system medianode[1] which is a
software infrastructure to share multimedia-enhanced
teaching materials among lecture groups. To identify new
replication requirements, we first study the characteristics
of presentational media types which are handled in median-
ode, then extract new replica units and granularities which
have not been considered and not supported in existing rep-
lication mechanisms. Based on the new requirements and
the result of feature surveys, we implemented a replication
mechanism for medianode. The next working step is to eval-
uate the efficiency of our replica maintenance mechanism.

1. Introduction

For practical use of a distributed multimedia system such
as medianode[1] in a multimedia-enhanced teaching envi-
ronment in which a fast and consistent accessibility of the
teaching material for all accepted users of the system should
be provided, the availability of the material must be in-
creased by bypassing a variety of potential error sources.
Replication of presentation materials and meta-data is a fun-
damental technique for providing high availability, fault tol-
erance and quality of service (QoS) in distributed
multimedia systems[2], and in particular in medianode. For
example, when a user requires access (read/write) to a pres-
entation which comprises audio/video data and some re-
sources which are not available in the local medianode at
this point of time, a local replication manager copies the re-
quired data from their original location and puts it into ei-
ther one of the medianodes located nearby or the local
medianode without requiring any user interaction (user
transparent). This function enhances the total performance
of medianode by reducing the response delay that is often
caused due to insufficient system resources at a given serv-

ice time. Furthermore, because of the available replica in t
local medianode, the assurance that users can continue t
presentation in a situation of network disconnection, is si
nificantly higher than without replica.

In this paper, we discuss some relevant design and imp
mentation issues of a replication mechanism for a distribu
ed multimedia system medianode[1] which is current
developed as an infrastructure to share multimedia-e
hanced teaching materials among lecture groups. With
replication mechanism, medianode provides enhanced
cess to presentation materials in both connected and disc
nected operation modes.

The structure of the paper is as follows. In Section 2, w
identify new replication requirements. After analyzing th
characteristics of presentational media types, we class
three different types of target replicas according to the
granularity (data size), requirement of QoS support, upda
frequency. Section 3 presents the design and implemen
tion issues for our replication model. We describe the pr
posed replication maintenance mechanism, e.g. how a
when replicas are created and how the updates are signa
and transported. In Section 4, we give an overview of rela
ed work. The merits and limitations of existing replicatio
mechanisms are discussed and a comparison of our
proach with previous work is given. We conclude the pap
with a summary of our work and an outlook towards poss
ble future extensions of our replication mechanism in Se
tion 5.

2. Identifying New Replication Requirements

2.1. Different Types of Presentation Data

In medianode, data organization comprises the storage
content data as well as meta information about this conte
data in a structured way. For the purpose of QoS-based g
eration of presentation files and replication, the system
source usages information such as the used memory num
of the loaded medianode components is collected and m
aged.

ld
ify

u-
e-
ot
in

er-
f

o-
o
A

e.
-
nd
er-
s
he
to

ted
be
out
the

e.
e
as
ve
er
The typical data types which can be identified in median-

ode are the following:

• Presentation contents: this type of data comprises text,
image, audio/video files and can be stored in file systems
which should handle automatic data distribution and
access, and also support the multimedia characteristics of
this content type.

• Presentation description data, e.g. XML files.
• Meta-data of user, system, domain, and organization

information. User’s title, group, system platform, and
university are examples for this meta-data category.

• Meta-data of system resource usage information such as
memory usage, number of threads running within medi-
anode process, number of loaded bows.

• Meta-data of user session and token information.
• Meta-data of user, system, domain, and organization

information. User’s title, group, system platform, and
university are examples for this meta-data category.

• Meta-data of system resource usage information such as
memory usage, number of threads running within medi-
anode process, number of loaded bows.

• Meta-data of user session and token information.
Table 1 shows an overview of these data types with their

characteristics.

2.2. Classification of Target Replicas

The main goal of our replication system is to increase the
availability of medianode’s services and to decrease the
response time for accesses to data located on other median-
odes. To meet this goal, data which is characterized by a

high availability requirement, as shown in Table 1, shou
be replicated among the running medianodes. We class
different types of target replicas according to their gran
larity (data size), requirement of QoS support, update fr
quency and whether their data type is ‘persistent’ or n
(‘volatile’). Indeed, there are three classes of replicas
medianode:

• Metareplicas (replicated metadata objects) that are p
sistent and of small size. An example would be a list o
medianodes (sites) which currently contains an up-t
date copy of a certain file. This list itself is replicated t
increase its availability and improve performance.
metareplica is a replica of this list.

• Softreplicas which are non-persistent and of small siz
This kind of replicas can be used for reducing the num
ber of messages exchanged between the local a
remote medianodes, and thereby reducing the total s
vice response time. I.e., if a local medianode know
about the available local system resources, then t
local replication manager can copy the desired data in
the local storage bow, and the service that is reques
from users which requires exactly these data can
processed in a shorter response time. Information ab
the available system resource, user session and
validity of user tokens are replicas of this type.

• Truereplicas which are persistent and of large siz
Content files of any media type, which also may b
parts of presentation files are Truereplicas. Truereplic
are the only replica type, to which the end users ha
access for direct manipulation (updating). On the oth

Table 1: Data categories and their characteristics in medianode

target data
availability
requirement

consistency
requirement

persistency
update

frequency
data size

QoS
playback

global
interest

presentation
description

high middle
(high)

yes low small/
middle

not required yes

organizational
data

high high yes low small not required yes

file/data
description

high middle yes middle small not required yes

multimedia
resources

high middle yes middle large required yes

system
resources

middle
(low)

middle no high small not required not strong

user session/
token

high high no high small not required no

not
ted
ers,
re
ns
he
t-
tar-

int,
n
r:

n-
ing

e
is
side, these are also the only replica type which requires
the support of really high availability and QoS provi-
sion.

All replicas which are created and maintained by our
replication system are an identical copy of original media.
Replicas with errors (non-identical copy) are not allowed to
be created. Furthermore, we do not support any replication
service for function calls, and elementary data types.

2.3. Concept of Logically Centralized Database

For a technical realization of our proposed replication
system in medianode, we use the concept of a so-called
“logically centralized database (LCDB)” which especially
enables the transparent access to presentation materials.
Similar to the concept of location-independent identifiers in
distributed database system[3], LCDB enables a mapping

between logical and physical resources. So users do
need to know where presentation resources are loca
physically and how they are accessed. Requests from us
either for reading or writing any presentation materials, a
first sent to the Access Bow of the local medianode that ru
on the user’s local machine. After successful check of t
accessibility for the user and the availability of the reques
ed resources, the corresponding storage bows send the
get data to the users. Figure 1 illustrates the interface po
the bows building the LCDB and the interactions betwee
the bows. Some additional remarks on LCDB are in orde

• According to the data types, all of the presentation co
tents and their meta-data are stored in correspond
storage bows.

• The ‘front-end’ of the storage bow API provides uniqu
interface functions, independent of the data types: this
similar to the VFS (virtual file system) interface in UNIX
systems.

VSB

Distributed

Distributed FS Bow (DFSB)

Figure 1:medianode architecture with replication service

Storage API

Verifier API

Access API

medianode 1

CORE

VSB

DDBB

DFSB

Storage API

Verifier API

Access API

medianode 2

CORE

Volatile SB (VSB)

DDBBDFSB

Webserver

Storage API

Verifier API

Access API

medianode 3

CORE

DB/2

DB Bow (DDBB)

Backend

Webserver
Backend

Webserver
Backend LCDB’s single access point

single view of LCDB

multicast RPC

ent
es

le

e-
ca
ers

d,
til

ca
lica
nd

es,
ag-
b-
or

a
or
he
n-
re
• Replication has to be supported for most storage bows,
although the number of replicas and the update fre-
quency may differ between the individual bows.

• For the update propagation between replication manag-
ers, a multicast RPC (remote procedure call) communi-
cation mechanism is used.

3. Design and Implementation Issues

3.1. Scope of our Replication System

In medianode, we mainly focus on the replication service
for accessing data in terms of ‘inter-medianode’, i.e. be-
tween medianodes, by providing replica maintenance in
each medianode. Consequently, a replication manager can
be implemented as one or a set of medianode’s bow instanc-
es in each medianode. The replication managers communi-
cate among each other to exchange update information
through the whole medianodes. A replication service within
a medianode, i.e., ‘intra-medianode’, is not considered for
the first stage of our implementation. However, the replica-
tion concept in this paper is straightforwardly applicable to
the replication service for intra-medianode scope.

3.2. The Replication Mechanism

Basically, our replication system does not assume a cli-
ent-server replication model, because there are no fixed cli-
ents and servers in the medianode architecture; every

medianode may be client or server depending on its curr
operations. peer-to-peer model with the following featur
is used for our replication system:

(a) Every replica manager keeps track of a local file tab
including replica information.

(b) Information whether and how many replicas are cr
ated is contained in every file table. I.e., each local repli
manager keeps track of which remote replica manag
(medianode) are caching which replicas.

(c) Any access to the local replica for reading is allowe
and guaranteed that the local cached replica is valid un
notified otherwise.

(d) If any update happens, the corresponding repli
manager sends a multicast-based update signal to the rep
managers which have the replica of the updated replica a
therefore members of the multicast group.

(e) To prevent excessive usage of multicast address
the multicast IP addresses through which the replica man
ers communicate can be organized in small replica su
groups. Examples for such sub-groups are file directories
a set of presentations about the same lecture topic.

3.3. Implementation Architecture

To show a ‘prove of concept’, we have implemented
prototype of the proposed replication system model f
Linux platform (Suse 7.0, Redhat 6.2). Implemented are t
replica manager (ReplVerifierBow), update transport ma
ager (ReplTransportBow), replica service APIs which a

MNBow

MNAccessBow MNVerifierBow MNStorageBow

(GUI)TelnetBow ReplVerifierBow FileBow

XMLBowReplTransportBow

ReplFileSysBow

VolatileStorBow

Figure 2:The medianode bow (MNBow) class hierarchy

ed
o
files
h
et-
ers
the
to

p-
the
ese
is

for
s

est)
re-

ep
he
ifi-
fi-
g a
ns-
a

and
ist
be
e

he
is
li-
the
p-
e-
he
he
-
lica
ps

if-
rs.
if-
gh
Unix-like file operation functions such as open, create, read,
write, close (ReplFileSysBow), and a Volatile storage bow
which maintains user’s session and token information. Fig-
ure 2 shows a class hierarchy of medianode’s basic bows
and of extended bows for the replication system. MNBow is
the root class and the three bow APIs, MNAccessBow, MN-
VerifierBow and MNStorageBow are implemented as MN-
Bow’s child class. [14] gives a detailed description of the
implemented bows.

The interaction model for medianode’s bows is based on a
‘request-response’ communication mechanism. A bow
which needs to access data or services creates a request
packet and sends it to the core. According to the request
type, the core either processes the request packet directly, or
forwards it to a respective bow. The processing results are
sent to the origin bow in a response packet. The request and
response packets contain all necessary information for the
communication between bows as well as for processing the
requests. Based on this request-response mechanism, we
experimented some presentation scenarios with and without
a replication service.

3.4. Initialization of Replication Service

In this subsection, we describe the medianode’s operation
flow with the replication service. Basically, the replication
service in medianode begins by creating media list and
replica tables of the three replica types in each medianode.
As shown in Figure 3, ReplFileSysBow sends a request
packet via the core to ReplVerifierBow for creating a media
list for media data which are located in the local
medianode’s file system (steps 1~2). Upon receiving the
request packet, ReplVerifierBow creates media list which
will be used to check the local availability of any required
media data (step 3). ReplVerifierBow then builds the local
replica tables for the two replica types,Truereplicasand
Metareplicas,if the replica information exists already. A
medianode configuration file can specify the default
location where replica information is stored. Every type of
replica table contains a list of replicas with the information
about organization, replica volume identifier, unique file
name, file state, version number, number of replicas, a list
of replica, a multicast IP address, and some additional file
attributes, such as access right, creation/modification time,
size, owner, and file type. The third replica table for the
Softreplicas to which the local system resource, user
session and token information belong may be needed to be
created in terms of memory allocation, and the contents of
this table can be partly filled when users request some
certain services. Once the replica tables are created, they
are stored in the local file system and accessible
persistently.

3.5. Maintaining Replica Tables

In medianode, these three replica tables are maintain
locally by the local replication manager. So, there is n
need to exchange any update-related messages for the
of which there is no replica created. This approac
increases the system resource utilization, especially n
work resources, by decreasing the message numb
exchanged between the replication managers among
distributed medianodes. But, when any medianode wants
get a replica from the local replica tables, the desired re
lica elements are copied to the target medianode, and
replication manager at the target medianode keeps th
replica elements separate in another replica table which
used only for the management of remote replicas, i.e.
the management of replicas for which their original file
are stored in a remote medianode.

3.6. Acquiring a Replica to Remote Replication
Managers

Upon receiving the service requests (data access requ
from users, the local medianode attempts to access the
quired data in a local storage bow (ReplFileSysBow) (st
4~5). In the case, when the data is not available locally, t
local ReplFileSysBow sends a request packet to ReplVer
erBow to get a replica for the data (step 6). The ReplVeri
erBow then start a process to acquire a replica by creatin
corresponding request packet which is passed to ReplTra
portBow (steps 7~8). The ReplTransportBow multicasts
data search request to all the peer replication managers
waits for replication managers to respond (step 9). The l
of medianodes to which the multicast message is sent can
read from the medianode’s configuration file. Whether th
ReplTransportBow waits for all responses or receives t
first one is dependent on the optimization policy which
given as configuration flag. After receiving the target rep
ca, the ReplTransportBow sends a response packet to
ReplVerifierBow which then updates the corresponding re
lica tables, i.e., ReplVerifierBow adds the new replica el
ment to the Truereplicas table and its metadata to t
Metareplicas table, respectively (steps 10~13). Finally, t
local ReplFileSysBow which originally issued replica crea
tion request creates a response packet including the rep
handle and then sends it to the MNAccessBow (ste
14~15).

3.7. Update Distribution & Transport Mechanism

The update distribution mechanisms in medianode d
fers between the three replica types and their manage
This is due to the fact that the three replica types have d
ferent levels of requirements on and characteristics of hi

In
her
st
.

he
e
t
of

e
up-

a-
availability, update frequency and consistency. Experience
from [4] and [5] also shows that differentiating update dis-
tribution strategies makes sense for web and other distribut-
ed documents.

The medianode’s replication system offers a unique in-
terface to the individual update signalling and transport pro-
tocols which are selectively and dynamically loaded and
unloaded from the replica transport manager that is imple-
mented as an instance of medianode’s access bow. The up-
date transport and signalling protocols used are:
• RPC protocol [2] as a simple update distribution proto-

col. This mechanism is mainly used at the first step of
our simple and fast implementation.

• A multicast based RPC communication mechanism.
this case, the updates are propagated via multicast ot
replica managers which are members of the multica
group. RPC2 [6,9] is used for the first implementation
RPC2 offers the transmission of large files, such as t
updated AV content files or diff-files, by using the Sid
Effect Descriptor. But, the RPC2 with Side Effec
Descriptor does not guarantee any reliable transport
updates.

3.8. Approaches for Resolving Update Conflicts

The possible conflicts that could appear during th
shared use of presentational data and files are either (a)

MNCore

ReplTransportBow

MNAccessBow

processRequest()

presentFile()

do_repl_transport()

4

10

9

8

7

65

Bow
->sendR

equest()

C
ore->

S
endR

equest()

ReplFileSysBow/VolatileBow

processRequest()

fileOperation()

B
ow

->
R

ec
vR

es
po

ns
e(

)
Bow->RecvRequest()

14

15
ReplVerifierBow

pr
oc

es
sR

eq
ue

st
()

check_consistency()

MaintainMediaList()

ReplicaListManager

MeidaListManager

ConsistencyControlLib

TransportPolicyLib

MaintainReplicaTable()
1

2

3

11

12

13

Figure 3:Service flow showing the internal bow interaction mechanism in medianode: with replic
tion support

DispatcherThread

Req/RespQueue

ll
a
t

h
for
le
e

ing
the
ed
r
st
all
er,
ad
ex-
S)
te.

s a
lt
i-
ant
a-

er
es,
rd-
te
on
are
ted.
n-
s-

th
a-
-
for
are
h-
ts.
r

m:
li-
or-
s.
is-
of
f

date conflict when two or more replicas of an existing file
are concurrently updated, (b) naming conflict when two (or
more) different files are given concurrently the same name,
and (c) update/delete conflict that occur when one replica of
a file is updated while another is deleted. In most existing
replication systems, the conflict resolving problem for up-
date conflicts was treated as a minor problem. It was argued
that most files do not get any conflicting updates, with the
reason that only one person tends to update them[8]. De-
pending on the used replication model and policy, there are
different approaches to resolving update conflicts, of which
our replication system will use the following strategies [2,
6, 7, 11]:
• Swapping - to exchange the local peer’s update with

other peer’s updates;
• Dominating - to ignore the updates of other peers and to

keep the local tentative update as a final update;
• Merging - to integrate two or more updates and build one

new update table;

4. Related Work

There are many works and approaches to replication. The
approaches differ for distributed file systems from those for
Internet-based distributed web servers and those for
transaction-based distributed database systems. Well-
known replication systems in distributed file systems are
Coda[6], Roam[11], Rumor[13] and Ficus[17] which keep
the file service semantics of Unix. Therefore, they support
to develop applications based on them. They are based
either on a client-server model or a peer-to-peer model.
Often they use optimistic replication which can hide the
effects of network latency. Their replication granularity is
mostly the file system volume, with a large size and low
number of replicas. There is some work on optimization for
these examples concerning of update protocol and replica
unit. To keep the delay small and therefore maintain real-
time interaction, it was desirable to use an unreliable
transport protocol such as UDP. In the earlier phases, many
approaches used unicast-based data exchange, by which
the replication managers communicated with each other
one-to-one. This caused large delays and prevented real-
time interaction. To overcome this problem, multicast-
based communication has used recently [6, 8, 15, 16]. For
Coda, the RPC2 protocol is used for multicast-based
update exchange, which provides with theSide Effect
Descriptor transmission of large files.

For limiting the amount of storage used by a particular
replica, Rumor and Roam developed the selective
replication scheme[12]. A particular user, who only needs a
few of the files in a volume, can control which files to store
in his local replica with selective replication. A

disadvantage of selective replication is the ‘fu
backstoring’ mechanism: if a particular replica stores
particular file in a volume, all directories in the path of tha
file in the replicated volume must also be stored.

JetFile[8] is a prototyped distributed file system whic
uses multicast communication and optimistic strategies
synchronization and distribution. The main merit of JetFi
is its multicast-based callback mechanism by which th
components of JetFile, such as file manager and version
manager interact to exchange update information. Using
multicast-based callback, JetFile distributes the centraliz
update information which is normally kept by the serve
over a number of multicast routers. However, the multica
callbacks in JetFile are not guaranteed to actually reach
replication peers, and the centralized versioning serv
which is responsible for serialization of all updates, can le
to a overloaded system state. Furthermore, none of the
isting replication systems supports quality of service (Qo
characteristics of (file) data which they handle and replica

5. Summary and Future Work

Replication of presentation materials and meta-data i
fundamental technique for providing high availability, fau
tolerance and quality of service (QoS) in distributed mult
media systems. In this paper, we discussed some relev
design and implementation issues of a replication mech
nism for a distributed multimedia system medianode. Aft
analyzing the characteristics of presentational media typ
we classified three different types of target replicas acco
ing to their granularity, requirement of QoS support, upda
frequency. We also described the proposed replicati
maintenance mechanism, e.g. how and when replicas
created and how the updates are signalled and transpor

We are currently in the process of implementing the co
flict resolving mechanism and versioning and storage/tran
port load levelling mechanisms, which are integrated wi
the replication manager. With the forthcoming implement
tion we will be able to build medianode as a highly availa
ble, scalable and cooperative, distributed media server
multimedia-enhanced teaching. The next working steps
to evaluate the efficiency of our replica maintenance mec
anism and to design other replication service componen
We are intensively investigating for the following issues fo
extension of our replication system:
• Reliable multicast-based update distribution mechanis

in the multicast-based replication environment, the rep
cas and their updates should be propagated 100% c
rectly to avoid any inconsistency between replica
Although the RPC2 offers the multicast-based transm
sion, it does not guarantee any reliable transport
updates. LC-RTP (Loss Collection RTP)[10] is one o

.
c

u/

-

-

-

nn.
.

-

reliable multicast protocol which is originally developed
as an extension of RTP protocol to support the reliable
video streaming within the medianode project. We adopt
LC-RTP and check the usability of the protocol, depend-
ing on the degree of reliability required for the individual
groups of replicas.

• QoS-aware replication for distributed multimedia sys-
tems: the decision problems of (a) whether a replica
should be created from original file and if then which
files should be replicated (replica selection problem) and
(b) to which system replicas should be put (replica place-
ment problem) are made by checking the current usages
of available system resources. [18] gives a survey on the
works related two these problems and their performance
models.

References
[1] The medianode project. (http://www.httc.de/medianode).
[2] G. Coulouris, J. Dollimore and T. Kindberg.Distributed

Systems, 3rd Ed., Addison-Wesley, 2001.
[3] A. Eickler, A. Kemper and D. Kossman. Finding Data in the

Neighborhood. InProc. of the 23rd VLDB Conference, Ath-
ens, Greece, 1997.

[4] P. Triantafillou and D.J. Taylor. Multiclass Replicated Data
Management: Exploiting Replication to Improve Efficien-
cy. In IEEE Trans. on Parallel and Distributed Systems,
pages 121-138, Vol.5, No.2, Feb.1994.

[5] G. Pierre, I. Kuz, M. van Steen and A.S. Tanenbaum. Dif-
ferentiated Strategies for Replicating Web documents, In
Proc. of 5th International Workshop on Web Caching and
Content Delivery, Lisbon, May 2000.

[6] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki,
E.H. Siegel, and D.C. Steer. Coda: A Highly Available File
System for a Distributed Workstation Environment. In
IEEE Transaction on Computers, 39(4), April 1990.

[7] J. Yin, L. Alvisi, M. Dahlin and C. Lin. Volume Leases for
Consistency in Large-Scale Systems. InIEEE Transactions
on Knowledge and Data Engineering, 11(4), July1999.

[8] B. Groenvall, A. Westerlund and S. Pink. The Design of a
Multicast-based Distributed File System. InProceedings of
Third Symposium on Operating Systems Design and Imple-
mentation, (OSDI’99), New Orleans, Louisiana,pages 251-
264. February, 1999.

[9] M. Satyanarayanan and E.H. Siegel. Parallel Communica-
tion in a Large Distributed Environment. InIEEE Trans. on
Computers, pages 328-348, Vol.39, No.3, March 1990.

[10] M. Zink, A. Jones, C. Girwodz and R. Steinmetz. LC-RTP
(Loss Collection RTP): Reliability for Video Caching in the
Internet. InProceedings of ICPADS’00: Workshop,pages
281-286. IEEE, July 2000.

[11] D. Ratner, P. Reiher, and G. Popek. Roam: A Scalable Rep-
lication System for Mobile Computing. InWorkshop on
Mobile Databases and Distributed Systems (MDDS),Sep-
tember 1999. (web site http://lever.cs.ucla.edu/project-
members/reiher/available_papers.html)

[12] D.H. Ratner. Selective Replication: Fine grain control of

replicated files.Master’s thesis, UCLA,USA, 1995.
[13] R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and G

Popek. Rumor: Mobile Data Access Through Optimisti
Peer-to-Peer Replication. InWorkshop on Mobile Data Ac-
cess,November 1998. (web site http://lever.cs.ucla.ed
project-members/reiher/available_papers.html).

[14] G. On and M. Liepert. Replication in medianode.Technical
Report TR-2000-03, Darmstadt University of Technology,
Germany, September 2000.

[15] C. Griwodz. Wide-Area True Video-on-Demand by a De
centralized Cache-based Distribution Infrastructure.PhD.
dissertation, Darmstadt University of Technology, Germa
ny, April 2000.

[16] M. Mauve and V. Hilt. An Application Developer’s
Perspective on Reliable Multicast for Distributed In
teractive Media. InComputer Communication Re-
view, pages 28-38, 30(3), July 2000.

[17] T.W. Page,Jr., R.G. Guy, G.J. Popek, and J.S. Heidema
Architecture of the Ficus scalable replicated file system
Technical Report CSD-910005, UCLA,USA, March 1991.

[18] M. Nicola and M. Jarke. Performance Modeling of Distrib
uted and Replicated Databases, inIEEE Transactions on
Knowledge and Data Engineering, 12(4), pages 645-672,
July/Aug. 2000.

	1. Introduction
	2. Identifying New Replication Requirements
	2.1. Different Types of Presentation Data
	Table 1: Data categories and their characteristics in medianode

	2.2. Classification of Target Replicas
	2.3. Concept of Logically Centralized Database
	Figure 1: medianode architecture with replication service
	Figure 2: The medianode bow (MNBow) class hierarchy

	3. Design and Implementation Issues
	3.1. Scope of our Replication System
	3.2. The Replication Mechanism
	3.3. Implementation Architecture
	3.4. Initialization of Replication Service
	3.5. Maintaining Replica Tables
	Figure 3: Service flow showing the internal bow interaction mechanism in medianode: with replicat...

	3.6. Acquiring a Replica to Remote Replication Managers
	3.7. Update Distribution & Transport Mechanism
	3.8. Approaches for Resolving Update Conflicts

	4. Related Work
	5. Summary and Future Work
	References
	[1] The medianode project. (http://www.httc.de/medianode).
	[2] G. Coulouris, J. Dollimore and T. Kindberg. Distributed Systems, 3rd Ed., Addison-Wesley, 2001.
	[3] A. Eickler, A. Kemper and D. Kossman. Finding Data in the Neighborhood. In Proc. of the 23rd ...
	[4] P. Triantafillou and D.J. Taylor. Multiclass Replicated Data Management: Exploiting Replicati...
	[5] G. Pierre, I. Kuz, M. van Steen and A.S. Tanenbaum. Differentiated Strategies for Replicating...
	[6] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki, E.H. Siegel, and D.C. Steer. Coda: A...
	[7] J. Yin, L. Alvisi, M. Dahlin and C. Lin. Volume Leases for Consistency in Large-Scale Systems...
	[8] B. Groenvall, A. Westerlund and S. Pink. The Design of a Multicast-based Distributed File Sys...
	[9] M. Satyanarayanan and E.H. Siegel. Parallel Communication in a Large Distributed Environment....
	[10] M. Zink, A. Jones, C. Girwodz and R. Steinmetz. LC-RTP (Loss Collection RTP): Reliability fo...
	[11] D. Ratner, P. Reiher, and G. Popek. Roam: A Scalable Replication System for Mobile Computing...
	[12] D.H. Ratner. Selective Replication: Fine grain control of replicated files. Master’s thesis,...
	[13] R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and G. Popek. Rumor: Mobile Data Access Thro...
	[14] G. On and M. Liepert. Replication in medianode. Technical Report TR-2000-03, Darmstadt Unive...
	[15] C. Griwodz. Wide-Area True Video-on-Demand by a Decentralized Cache-based Distribution Infra...
	[16] M. Mauve and V. Hilt. An Application Developer’s Perspective on Reliable Multicast for Distr...
	[17] T.W. Page,Jr., R.G. Guy, G.J. Popek, and J.S. Heidemann. Architecture of the Ficus scalable ...
	[18] M. Nicola and M. Jarke. Performance Modeling of Distributed and Replicated Databases, in IEE...

