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Abstract—Controlled sink mobility has been shown to be very
beneficial in lifetime prolongation of wireless sensor networks
(WSNs) by avoiding the typical hot-spot problem near the sink.
Besides striving for elongated lifetimes, many applications of
WSNs are time-sensitive, i.e., they strongly benefit from bounds
on the message transfer delay. Further, large WSNs require
multiple sinks in order to scale well with respect to delay and
lifetime. Therefore, it becomes very interesting to investigate how
to plan the trajectories of multiple mobile sinks such that lifetime
and delay goals are met simultaneously. To that end, we propose a
geometrically principled heuristic for finding good trajectories of
multiple mobile sinks in large-scale, time-sensitive WSNs. First,
we discuss the high analytical challenges of optimally planning
the trajectories of multiple mobile sinks. Based on this, we relax
the problem by transforming it into a geometric design problem,
which, subsequently, is solved in closed form. In simulations, we
investigate how well this geometric heuristic for sink trajectories
of multiple mobile sinks performs with respect to delay and
lifetime. We find that it excels especially in large-scale WSNs,
for example in a WSN with 500 nodes and 20 sinks, it roughly
cuts delay bounds by 50% while tripling the lifetime compared
to the sinks following random walks. Hence planning the sink
trajectories carefully really pays off.

I. INTRODUCTION

Mobility is a mixed blessing for wireless sensor networks
(WSNs). On the one hand, the degree of network dynamics
induced by mobile nodes or sinks may aggravate the design
of networking protocols and distributed algorithms. On the
other hand, controlled mobility also creates opportunities [5].
One of the successful ways to apply controlled mobility in
WSNs is to use a mobile sink in order to avoid the typical
hot-spot problem around a static sink [6], [2]. By moving the
sink throughout the sensor field, the burden of being a direct
neighbor of the sink can be shared among all nodes of the
network and the network lifetime increases.

In general, sink mobility as, for example, using random
walks of multiple mobile sinks, increases the maximum in-
formation transfer delay over that of a proper placement of
a set of stationary sinks. This is simply due to the fact that
there is always a delay-optimal placement of the sinks and
if the sinks move away from it the message transfer delay
becomes worse. Clearly, this creates a problem for time-
sensitive WSN applications. So, using sink mobility, we face
a conflict between lifetime maximization and delay bound
minimization in large-scale, time sensitive WSNs. The chal-
lenge thus becomes to find good trajectories for the sinks such
that lifetime and delay goals are met simultaneously. In this
paper, we first provide a multi-objective optimization problem
formulation for planning the trajectories of multiple mobile
sinks, called OST (Optimal Sink Trajectory). We remark that

already the single objective problem of maximizing network
lifetime is known to be NP-hard [6]. Hence, we relax the OST
problem by giving it a geometric interpretation, called GST
(Geometric Sink Trajectory). The intuition behind this is that
both, delay and lifetime, benefit from nodes being closer in
terms of Euclidean distance to their assigned sinks. So, the
two objectives are amalgamated into one. Furthermore, the
GST lends itself to a solution based on the kernel insight that,
for a single sink, the problem is reduced to simply finding a
minimum enclosing circle, whose center is the optimal position
for the sink to minimize the maximum Euclidean distance.
Extending this insight we propose a geometrically principled
approach using a polar grid to divide the sensor field into
areas of similar size, each of which is the responsibility of
a single sink. The sinks are moved synchronously (e.g., once
a day) along an inner and an outer orbit. The optimal size
of the inner and outer orbit as well as the optimal number of
sinks on inner and outer orbit are derived in closed form using
geometric arguments.

The rest of the paper is organized as follows. Section II
provides an overview of related work. Section III describes
the network model and, in order to reveal the structure of
the problem, provides the original problem formulation for
the OST. Next, the GST and its derivations are presented in
Section IV. The performance of the polar grid-based trajectory
for multiple sinks is evaluated and compared against several
alternatives using simulations in Section V. We conclude the
paper in Section VI.

II. RELATED WORK

In literature, a number of works rise to the challenge of
using multiple mobile sinks [4], [3], yet often not delving into
the optimal planning of their trajectories. Sink trajectories can
be categorized into random, state-dependent, and predefined.
Usage of a random trajectory can, e.g., be found in [3] where
mobile sinks perform a random walk and collect the data
from the sensors of their assigned clusters trying to achieve
a load balancing and lifetime maximization. Recently, [2],
[14] address state-dependent sink mobility for maximizing the
lifetime of WSNs. In their approach, the sink trajectory is a
function of a particular network variable, such as, e.g., the state
of nodes’ batteries; the sink moves either grid-based [2] or
following a straight line [14]. Though the lifetime performance
of such trajectories is good, the methods assume knowledge of
global and dynamic information for determining the optimal
paths and sojourn times, which is a very strong assumption
in large-scale WSNs. [4], [13] propose a predefined single
sink trajectory independent of any network state such that
the sink appears on the same path periodically. Interestingly,



[13] considers a predefined trajectory along concentric circles
separated by 27, where 7, is the transmission range of node,
with the aim of minimizing the total energy consumption. This
is very related to our polar grid-based trajectory, yet ours is
designed for multiple mobile sinks and takes lifetime as well as
delay goals into account. In contrast to a periodical movement,
the work in [6] proposes a predefined sink trajectory where the
sink only appears once at each position along the trajectory.
The author studied the improvement of lifetime prolongation
by using a joint sink mobility and routing scheme similar to
[7]. Most of these studies are concerned with the lifetime
prolongation of a WSN, often restricting to the single sink
case.

In our work, we tackle the problem of finding good tra-
jectories for multiple mobile sinks such that we keep the
maximum message delay low and still achieve a long lifetime.
So, delay and energy are traded off against each other. Along
similar lines, [14] optimizes this trade-off, too, designing a
trajectory for a “data mule” which collects the data from each
sensor node directly [10]. Yet, the data mule approach incurs
long latencies and is generally not applicable in time-sensitive
WSNEs.

In [15], [7], [6], the movement of a sink is abstracted as a
sequence of a static sink placements assuming that the time
scale of sink mobility is much larger than that of data delivery;
we follow this assumption in our work. Methodologically
similar to our work in using geometric arguments, [6] focuses
on minimizing the average distance between sink and assigned
sensor nodes. The reasonable assumption is that in a multi-
hop network, the energy cost of transmitting a message from
the node to the sink is linearly proportional to the Euclidean
distance between them. Such a distance-related assumption is
also at the heart of our work but with additional consideration
of a message transfer delay bound, which is why we set out
to minimize the maximum distance.

III. NETWORK MODEL AND PROBLEM STATEMENT

In this section, we first provide our network model along
with some basic assumptions and, next, state the problem of
planning sink trajectories for multiple mobile sinks as a multi-
objective optimization problem. Here, the intention is to shed
light on its basic mathematical structure without providing a
solution approach yet.

A. Network Model

V is the set of sensor nodes with [V| = N; S is the set of
sinks with |S| = K. We model the WSN as a directed graph,
G= V&), where YV =V US. For all a,b € V, J(a,b) € £ if
and only if a and b are within a disc-based transmission range
Ttx-

o We assume that the sinks’ movement is synchronous, i.e.,
all sinks move at the same time. Further, sink movement
takes places on relatively long time-scales (e.g., once a
day), much larger than the time-scale of the message
transfer delay from sensors to sinks (e.g., on the order of
seconds). Therefore, we neglect the time periods when the
sinks are actually moving (or being moved) and the sink
mobility is abstracted as a sequence of sinks’ locations.
At each location the sinks stay for an equal amount of
time, further on called epoch n =0, 1,2, ... In particular,

we also assume that all data is flushed from the WSN
before a sink movement takes place, i.e., there is no data
dependency between epochs.

o The sensor nodes are assumed to be homogeneous and
uniformly distributed: They send L(n) data packets in
each epoch n and have the same initial energy budget E/
available. We focus on the energy consumption for trans-
mitting and receiving data, since the energy consumption
by other units of sensor node is relatively the same for
all nodes and, as such, can be taken as a constant. Also,
the sensor nodes are stationary.

» We define the locations of sink s in epoch n as l5(n) €
R2, and by I(n) € R?*X we denote the sinks’ placement
in epoch n.

o For node to sink assignment, we define z, s(n) as a
binary variable which is set to 1 if node v is allocated
to sink s in epoch n and 0 otherwise. Hence, the overall
assignment X (n) in epoch n is a binary matrix:

X(n) = (xv,s(n))’UGV,SGS S {O, 1}NXK.

o For a certain assignment X (n) we can define a routing
as follows:

PX(n) = U

vEV,sES 1y, s (n)=1

Pv,s

where, P, ; is a path from node v to sink s which is
described as the set of edges lying on this path under the
assumption of multi-hop communication.

o We call a sequence of triples

(l(n)’ X(”)? PX(n)) neN =: Sn

a strategy.
o We define the network lifetime by the timespan until the
first node dies due to battery depletion.

B. Optimal Sink Trajectory: Problem Statement

Based on these definitions, we formulate the optimization
problem of finding sink trajectories for multiple sinks in a
WSN with the aim of minimizing the maximum delay and
maximizing the network lifetime 7' of the network:

D,(n)

min max
Sn veV,neN

max T

n

subject to: Vn € N
S fale)= D fale)=L WweV 6))

e€d— (v) ecst(v)
> fale)=L(n) Y wus(n) VseS 2)
e€dt(s) veV
Y ausn)=1 YweV 3)
seS
T
Z Z Etz(ehfn(e)) + Z E’rcv(e7fn(€)) <FE YveV
n=0 \e€s~(v) ecs+(v)

“)

where §~(v) = {e € Ele = (v,n),n € V} and 6" (v) = {e €
Ele = (n,v),n € V}. The function f,, : & — R describes



the amount of data sent over an edge in epoch n. Equations (1)
and (2) are flow balance equations to ensure that no additional
data is produced or any data is lost at the nodes. Equation (3)
enforces that a sensor node is assigned to exactly one sink
in epoch n. The energy constraint for each node v € V is
defined in Equation (4); here, the total energy consumption
for reception FE,..,(e, fn(€)) and transmission Fy, (e, f,,(e))
up to epoch T, the lifetime of the WSN, must not exceed the
initial energy E' for any nodes.

The delay function D, (n) represents the end-to-end delay
characteristics for the message transfer from node v to its
assigned sink in epoch n. At this point, we still remain abstract
about whether, e.g., an average delay over an epoch or the
maximum delay experienced is taken. However, later on (in
the simulations as presented in Subsection V-D), based on
sensor network calculus [9], we use a bound on the maximum
end-to-end delay to instantiate D, (). In any case, the delay
function D, (n) is a very complex function, which does not
only depend on the path from the node v to its sink, but
also on all other paths interfering with it. Hence, differences
in choosing a path for just one node-sink pair, in general,
affect multiple end-to-end delays. Similarly, we also remain
abstract about the energy functions E,., and E,,, which are
also complex functions, thus aggravating the problem further.
A last but not least hardness of the problem stems from the
two objective functions and their conflicting nature.

IV. GEOMETRIC SINK TRAJECTORY (GST)

Due to its fundamental hardness, we relax the OST problem,
which is basically a graph problem, into a geometric one,
called the Geometric Sink Trajectory (GST) problem. Basing
on the assumption of a large-scale WSN with a more or less
uniform node distribution we abstract from nodes as such. For
the geometric shape of the sensor field we assume it to be a
circle, a somewhat arguable, but often made assumption on this
level of abstraction [6]. We briefly come back to a discussion
about the circular shape in Section VI

Under these abstractions for the GST, the objective of
minimizing the maximum delay is reduced to the objective
of minimizing the maximum Euclidean distance d, s(n) =
[lls(n) — pos(v)||2 from sink s € S to node v € V in epoch
n; here, pos(v) refers to the position of sensor node v in
the Euclidean space. Somewhat more indirectly, we cater for
the lifetime maximization by partitioning the sensor field into
areas of similar size (per epoch), each of which is under the
responsibility of a single sink. The rationale of this being that
each sink is roughly assigned a similar number of sensors
thus leading towards a good balancing of the forwarding load
between areas.

Interestingly, for the single sink case, we remark that
by simply substituting the delay function by the Euclidean
distance, and neglecting the energy issues, the OST problem
becomes a well-known minimum enclosing circle problem
[11] (we point out, though, that with K circles the problem
remains hard). This problem and its solution by a minimum
enclosing circle is illustrated in Figure 1. The center of such
a circle is the optimal placement for a sink in terms of
minimizing the maximum distance between sink and sensor
nodes. We recur to this basic insight several times further on,
when we look for optimal positions of sinks in their respective
area.

Fig. 1. An example of a minimum enclosing circle.

() (b)

Fig. 2. Sinks assignment in (a) an equal sectorization, and (b) a polar grid.

Our framework to construct sink trajectories /(n) based on
solutions to the GST consists of the following steps:

1) We assign areas of similar sizes to the sinks (—lifetime
maximization). In fact, there are different possibilities
to achieve this and we discuss them in the following
subsection.

2) After that we calculate the optimal placement of the
sinks, such that the maximal distance of any point in
these areas to its sink is minimized (—delay minimiza-
tion).

3) Finally we define the sink trajectory for each sink by
specifying its movement to the next position.

A. The Area Assignment Problem

The area assignment problem is: How to partition a circular
network of radius R in order to achieve areas of similar size
with respect to a given number of sinks K? A first and exact
solution is an equal sectorization which has a nice scalability
property in terms of handling an increasing number of sinks K
without compromising the equal size of each sector. No matter
how large K is, equal sectorization achieves equally sized
areas by calculating the center angle of each sector as ® = 2?”
Figure 2(a) shows an example of equal sectorization for a 14
sinks network. Due to its symmetrical nature, it is sufficient
to find a minimum enclosing circle for one of the circular
sectors. Although, the equal sectorization achieves beneficial
properties like scalability, congruity, and simplicity, the area
of each circular sector becomes increasingly narrower for a
growing number of sinks K, which results in relatively large
maximum distances to a sink. In fact, the maximum distance
for a point to its sink in a circular sector is bounded from
below by %. This implies that the delay performance does not
improve significantly any more after a certain number of sinks
is reached even if more sinks are available.

Therefore, we introduce an alternative way of partitioning
the sensor field, which is designed to improve on minimizing
the maximum distance for a growing number of sinks K.
The idea is to have two concentric circles of radii » and R,
as illustrated in Figure 2(b). By dividing the circle into two
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Fig. 3. Circumscribed circles of polar grid cells: (a) a sector in the inner
circle, and (b) an annular segment in the annulus.

different parts, the maximum distance between any point to its
sink can be reduced effectively and the resulting scheme still
can achieve a balanced area assignment. The resulting partition
is usually called a polar grid. The following section describes
how to find the optimal sink distribution in a polar grid, i.e.,
how many of the sinks to place in the outer ring together with
the optimal value for the radius of the inner circle r.

B. Optimization of the Polar Grid Area Assignment

As shown in Figure 2(b), sinks are assigned in the inner
circle and in the annulus of the outer circle to create a polar
grid. We define K, and K,,; as the number of sinks for the
inner circle and the annulus, respectively. Figure 2(b) illus-
trates an example of 14 sinks with K, = 4 and K,,; = 10.
Let us define d;;,, and d,,; as the minimal radii of enclosing
circles for the sector and annular segment, respectively, given
r, K, and K. Then, the polar grid-based area assignment
problem can be formulated as:

o fmin - min max {din, dout } - ©)
We calculate d;,, and d,,¢ from the corresponding minimum
enclosing circles. In the following we assume K, Koy > 3
to avoid degenerate cases.

1) Formulation of d;, and d,: There are two types of
cells in the polar grid-based assignment scheme: a sector in
the inner circle and an annular segment in the annulus of the
outer circle. The optimal values of K, and K, are likely
to be unequal in general, which implies two different center
angles 0, and 6, for sector and annular segment, respectively.
This is also illustrated in Figure 3(a) and (b).

We find the minimum enclosing circle and its radius by
approximating each polar grid cell by an easier shape. In
particular, we determine the minimum enclosing circles for
the isosceles triangle and isosceles trapezoid for the respec-
tive polar grid cells. In Figure 3(a) and (b), the minimum
enclosing circles for the isosceles triangle AABO and the
isosceles trapezoid ABDE are depicted, which, in this case,
are the circumscribing circles of the triangle and trapezoid,
respectively.

din and d,,; are calculated from the respective minimum
enclosing circles formulation. Given r, R, « and (3 (see Figure
3 and 4), the following equations characterize d;, and dgq;:

T for‘A—QBlgh

2sin 8
for ‘A—QBI >h

din, =
" r cos (3

(6)

(a) Sector Segment (b) Annular Segment

Fig. 4. OPtimal sink placement inside a sector and an annular segment with

|AB
large 5=

v/ (R—7)2+4rRcos? a

2sin o

for @ <z
|AB|

Rcosa forTza:

)

dout =

Note that @ < zx is equivalent to r < R — 2R cos? v and
@ < h is equivalent to 0 < 6; < % It can be shown
that the approximations of using a triangle and a trapezoid
for sector and annular segment, respectively, actually deliver
the same results with respect to the optimal sink placement
as the original shapes. Due to space restrictions, we omit the
mathematical proof of this statement and refer the interested
reader to [8].

2) Optimal r and sink distribution K;, vs. K,,;:: Based on
the mathematical formulations for d;,, and d,,;, we are able
to evaluate expression (5). As one can see in the previous
subsection d;;, is strictly increasing in r and d,,; is non-
increasing in r for any fixed K;, and K,,;. Hence there
exists a unique intersection between these two functions. This
intersection is the minimum of max{d;,, doy:} as a function
of 7.

In the first case of Equation (6) the necessary calculations
to find the minimum of max{d;,, do.:} are:

r \/(R — 1) + 4rR cos? o
2sin3 2sin a
—b 4 Vb? — dac
= ryrp=—
2a
ro = R — 2R cos? a, (8)

where
a =sin’® a — sin? 3,
b =2Rsin? B(1 — 2 cos® a),
c=— R%sin® 3.
By taking the minimum of [rg]4, r1 and ro we can find the
optimal radius for this case.
If we use instead the second case of Equation (6) the
computations are quite similar and look like follows:
—e =+ \/e2 —4df
2d

ro = R — 2R cos? a,

r,Tr2 =
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Fig. 5. (a) An example of polar grid_based trajectory for a 14 sinks network,
and (b) optimal sink distributions (K, vs. Koqt) for the polar grid-based
area assignment.

where

d=4sin’acos® 3 — 1,
e =2R — 4R cos® a,
f=—-R%

Again the minimum of [ro]4, 71 and 75 is the optimal value
for 7.

For a given K and R, we can now exhaustively search for
the optimal values of r trying all possible combinations of
K;, and K,,; (the size of the search space is just K — 5
since we assume K, Ky,¢ > 3). Among all combinations,
we select the best configuration of K;,, and K,,; with respect
to the minimum distance of d;,, and d,,; (using the best ),
thus implementing Equation (5).

C. Designing the Sinks’ Trajectories

Now, we know the optimal points (i.e., the centers of the
minimum enclosing circles for sector and annular segments)
which produce the optimal d;, and d,,;. Based on these
points, we design circular mobile sink trajectories. Let r;,
and r,,; denote the distances from the center of the network
to the center of the minimum enclosing circles for the sector
and annular segment, respectively, as illustrated in Figure 5(a).

The radii r;, and 7,,; are defined by:

oy for P < ©)
" rsin (8 for@Eh

and

for @ <z
for 1ABL > 4

~(10)
The trajectories of the sinks basically result from rotating the
whole polar grid in an attempt to keep both, message transfer
delay and load per sink, balanced. Clearly, an interesting
parameter is how far we rotate the polar grid, i.e., which step
size we use for each sink when going from one epoch to the
other. Results concerning this step size and a deeper discussion
of its influence are provided in Section V.
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Fig. 6. The maximum Euclidean distances distribution of (a) an equal
sectorization, and (b) a polar grid-based area assignment schemes.

D. Analytical Evaluation of the Geometric Sink Trajectory

Before we delve into a detailed simulative study of our
approach, we first analytically compare the equal sectorization
and polar grid-based area assignment schemes with each
other. Figure 6(a) and (b) show the maximum distance dis-
tributions of an equal sectorization- and a polar grid-based
area assignment for R = 100m and a varying number of
sinks K up to 30. Apparently, a polar grid area assignment
effectively reduces the maximum distance as K grows. Note
that for ' < 8 the equal sectorization is in fact superior to
the polar grid. The reason lies in the restriction of having
Kipn, Koyt > 3, otherwise the polar grid should always be
superior, since equal sectorization can be considered a special
case of a polar grid (with K,,; = 0 and r = R). The results
are based on the optimal choice for r and the optimal sinks
distribution for K;,, and K.

We further show the corresponding optimal sink distribution
K, and K,,,; in Figure 5(b). Starting from K = 13, the value
of Ky is |5 | and consequently the Value of Kout becomes
2] I
general, the 0pt1ma1 sink distribution is about one third of the
sinks for the inner circle and about two-thirds for the annulus.
Furthermore, we observed that the optimal 7 is converging to
half of the radius R under the optimal sink distribution.

We remark that, in general, the polar grid does not achieve a
perfectly equal area assignment. Nevertheless, the differences
are not too large and as discussed in the following section the
polar grid performs favorably with respect to both objectives,
lifetime maximization and delay minimization.

V. PERFORMANCE EVALUATION

In this section, using discrete-event simulations, we evalu-
ate the performance of the polar grid-based solution to the
GST under the assumptions of the original OST problem
formulation. In particular, we compare it to a number of
alternative sink trajectories with respect to delay and lifetime
performance. Furthermore, we analyze factors like the number
of sensor nodes, the number of sinks, and the movement step
sizes of the sinks.

A. Competitors

We selected three competing sink trajectories which are
illustrated in Figure 7(a), (b), and (c). Supposedly as a lower
bound among the trajectories, using a random walk (with a
fixed step size) for each of initially randomly placed sinks is



Fig. 7. Competitors: (a) a random walk, (b) an outer periphery, and (c) an
equal sectorization trajectory.

selected. Clearly, this is a very simple strategy which shall
serve as a reference in how far investing more effort in the
planning of sink trajectories is justified.

The next competitor is based on an insight by Luo for the
single sink case (see Claim 7 in his thesis [6]): using the
outer periphery for the sink is actually optimal with respect to
lifetime (under mild assumptions about the symmetry of the
trajectory). We simply extend this into having multiple sinks
circulating in equal distances from each other in the outer
periphery of the WSN.

As a last competitor, Figure 7(c) illustrates an equal sec-
torization trajectory which, in fact, is constructed exactly as
the inner circle of the polar grid-based trajectory mentioned
in Figure 5(a).

Apart from the random walk trajectory, all other trajectories
are predefined so that the sinks move along the corresponding
trajectory repeatedly until the network dies.

B. Delay Performance

While an average delay analysis is certainly useful for some
WSN applications, for time-sensitive WSNs being able to
bound the worst-case delay is generally more important. To
that end, we evaluate the delay performance of the the differ-
ent sink trajectories using the framework of sensor network
calculus (SNC) [9]. This requires to specify bounds on the
arrival and service processes, called arrival and service curves,
their actual settings are given in Subsection V-D.

C. Lifetime Performance

As has been mentioned in Subsection III-A, we define the
lifetime of the WSN as the timespan until the first sensor node
depletes its battery. In order to capture this event we need to
keep track of the battery levels of each sensor node. To that
end, we define a simple, yet fairly realistic model mimicking
the energy consumption of MICAz motes [1]. We focus on the
energy consumption of the transceiver unit. The formulation
of the total energy consumption for all data transmissions from
the nodes to their assigned sinks up to epoch n, is denoted by
E} .5 itis the sum of total energy consumption of all nodes:

Ejora = )_ B} (1n)
veV

where the energy consumption for a node v in epoch n, E},
is given in accordance to Equation (4) as:

Ey = Z Eia(e, fnle)) + Z Erco(e; fn(€)),
e€d— (v) e€dt(v)

with

Erc’u(67 fn(e)) :Ercv(fn(e)) - Prcv X trc’u(.fn(e))v
Eiz(e, fn(e)) =Fiz(e) Xtz (fnle)).

12)
13)

In (12), we see that the energy consumption for receiving
the data f,(e) is just the time needed to receive the data
trew(fn(e)) multiplied by the power consumption P,.., of the
receiving unit; this is independent of the distance between the
sending and receiving node. In (13), the energy consumption
for sending data is again the time needed to send the data
tix(fn(e)) times the power consumption of the sending unit
P, (e), which, however, now is dependent on the distance
between the communicating nodes. Taking the values from the
MICAz data sheet [1], we can calculate the power consumed
by the receiver electronics P,.,. Basically, P;, depends on the
transmitted output power setting which again depends on the
distance and the selected modulation scheme. Here, we relied
on a model for the MICAz mote from the literature, please
refer for more details to [12].

D. Results

The primary factors in our simulative experiments are: the
number of nodes, the number of sinks, and the step sizes (i.e.,
the Euclidean distance between two consecutive stops). In all
scenarios, nodes are uniformly distributed over a circular field
with radius R. The respective network radii are chosen such
that a node density of ﬁ is achieved. A 16 m disc-based
transmission range is used. Furthermore, sink assignment is
done according to the minimum Euclidean distance between
nodes and sinks, whereas shortest path routing is used for path
selection. For all experiments, we performed 10 replications
for each factor combination and present the average results
from these. For the large majority of results, we obtained non-
overlapping 95% confidence intervals, so we do not show these
in most graphs for reasons of legibility.

For the SNC computations, the popular token-bucket arrival
curve and rate-latency service curves are used. In particular,
for the service curve we use a rate-latency function that
corresponds to a duty cycle of 1%. For the 1% duty cycle,
it takes 5 ms time on duty with a 500 ms cycle length which
results in a latency of 0.495 s!. The corresponding forwarding
rate becomes 2500 bps.

For the lifetime evaluation, the nodes are set to an initial
battery level of 0.1 joule. The packet size is assumed to
be 100bytes. Based on 7 = 2 for the free space propa-
gation and using the relationship in [12], in all scenarios a
packet transmission incurs a current consumption of 8.5mA
with—25 dBm for distances up to 12.5m, and 9.9mA for
distances between 12.5m and 23m with —20 dBm. Here,
a transmission data rate of 250 Kbps is used, which takes
tiz = 3.2ms for a 100 byte packet. A constant voltage of 3V
is used to transmit and receive modes. We use a current of
19.7mA for the consumed power by the receiver electronics
with a 1% duty cycle for receiving a data packet. With these
assumptions, we apply Equations (11) to (13).

IThe values are calculated based on the TinyOS files CC2420AckLpl.h and
CC2420AckLplP.nc.
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Fig. 8. The worst-case delay comparisons of (a) 200 nodes with 10 sinks
network, and (b) 500 nodes with 20 sinks network.
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Fig. 9. The lifetime comparisons of (a) 200 nodes with 10 sinks network,
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1) Experiment 1: Baseline comparison: The simulation re-
sults of the worst-case delay for the different competitors over
20 epochs are shown in Figure 8(a) and (b) for a 200-nodes-
10-sinks and 500-nodes-20-sinks WSN, respectively. Here, the
step size of the equal sectorization trajectory resulting from
a movement by a center angle of 10 degrees is used as a
reference for the step sizes in the polar grid, outer periphery,
and random walk trajectories.

In both scenarios, the polar grid trajectory achieves signifi-
cantly lower worst-case delays than its competitors (especially
in the 500 node network). On average, the polar grid achieves
about 50% lower delays than the random walk and the
outer periphery and roughly 20 % lower delay than the equal
sectorization. As we expected, the random walk trajectory
provides a high worst-case delay. At first glance surprisingly,
the outer periphery performed even worse than the random
walk, though, due to the fact that the sinks are rather far
away from some of the nodes this is not unreasonable. The
equal sectorization produces fairly good delays in the smaller
network but cannot stay close to the polar grid in the larger
one. So we validated its lesser scalability in terms of delay
performance as it was already indicated in the analytical
evaluation in Subsection IV-D.

The results for the lifetimes of the four competitors are
shown in Figure 9(a) and (b). Here, the x-axis represents
the lifetime of the WSN (in number of epochs). The y-axis
indicates the percentage of the total energy consumption of
the whole network during the lifetime of the WSN. As can
be observed, the polar grid trajectory strongly outperforms
the other trajectories in both scenarios. On average, the polar
grid achieves a 440 %, 450 %, and 330 % higher lifetime than
the random walk, outer periphery, and equal sectorization
trajectories, respectively. From Figure 9 it becomes clear that
this is mainly for two reasons: (1) it requires less total energy

@ Random Walk

Outer Periphery

o @ Equal Sectorization
@ Polar Grid

delay bound (s)

#sinks

Fig. 10. Delay bound comparison under different numbers of sinks in a 500
node network.

per epoch and (2) it drains the energy from the sensor field in
a more balanced fashion (indicated by having a higher total
energy consumption when the network dies). It may be note-
worthy that the equal sectorization actually performs worse
than the random walk in the 500 node network indicating that
it does not scale well with respect to lifetime due to a high
energy consumption per epoch as well as not being successful
in avoiding hot-spot problems. Similarly, the outer periph-
ery performs worse than the random walk in the 500 node
network. This is even a bit more surprising than its inferior
delay performance, as single sink outer periphery trajectory
maximizes lifetime. So, this indicates that the multiple sinks
trajectory problem is fundamentally different from its single
sink counterpart.

2) Experiment 2: Varying the number of sinks: In the next
experiment, the effect of the number of sinks for each of the
competitors is evaluated. Apart from varying the number of
sinks, we use the same settings as for Experiment 1. Figure
10 provides the results for the delay bounds under different
number of sinks in a 500 node network. As can be seen,
the only trajectory that is really able to exploit a growing
number of sinks to reduce the delay bound significantly is
the polar grid; the outer periphery and the equal sectorization
are actually quite insensitive to it, the random walk exhibits
a rather chaotic behavior (20 sinks are worse than 10 sinks).
One may note that in the 6 sinks case the equal sectorization
outperforms the polar grid. This, as already discussed in
Subsection IV-D, is due to the artefact that K;,, K, > 3
disables an effective optimization of the polar grid trajectory
for this small number of sinks. In a certain sense it shows that
an unoptimized polar grid can also perform unfavorably.

3) Experiment 3: Varying step sizes: From Experiment 1
and 2, we can clearly see that the polar grid trajectory is
a promising heuristic for minimizing the worst-case delay
and maximizing the lifetime of large-scale WSNs. In this
last experiment, we now investigate the effect of varying the
step size of the polar grid trajectory. For this, we focus on
the lifetime performance for different step sizes as the delay
performance is not particularly sensitive to it. Figure 11(a)
and (b) show the lifetimes of the polar grid trajectory for
different step sizes in a 200 node network with 10 sinks (here
(b) provides a zoom-in for an interesting range of (a)). The
interpretation of the x-axis is as follows: based on the center

angle of an annular segment = KQ;’“ , the different step sizes

are computed as %, where n represents the value displayed on
the x-axis; this means the x-axis runs from large step sizes to
very small ones. More specifically, the optimal value of K,
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Fig. 11. Lifetime comparisons under varying step sizes in a 200 nodes with
10 sinks network.

in this experiment is 7 (out of 10 sinks) and thus 65 = 27” and

the step size is varied by letting n = 2* for k =0, ..., 9.
From this experiment, we can see that the step size has a
significant effect in prolonging the lifetime. In particular, it is
neither good to move too much nor too little, but there is a step
size that optimizes the lifetime. For comparison, we also show
the performance of a static polar grid-based sink placement,
which basically provides the baseline lifetime performance.
Hence, this shows another time that sink mobility pays off,
but most if the trajectory is designed carefully (in fact, random
walk, outer periphery, and equal sectorization performed worse
than the static polar grid). A zoom-in for the interesting range
of n between 8 and 32, where the optimum step size lies for
this experiment, is shown in Figure 11(b). As can be observed,
the lifetime behavior is rather chaotic in this range, which hints
at the difficulty of obtaining a closed form for the optimal step
size under the polar grid, which we leave for future work.

VI. CONCLUSION AND OUTLOOK

In this paper, we addressed the problem of finding good
trajectories for multiple mobile sinks in WSNs with respect
to both, minimizing worst-case delay and maximizing the
lifetime of the network. Due to its fundamental hardness, we
resorted to a geometric interpretation of the problem for which
we introduced and optimized a polar grid trajectory. The sim-
ulation results exhibited a very promising delay and lifetime
performance for the polar grid trajectory when compared to
other trajectories.

As the design space for possible sink trajectories is huge
it is tempting to contemplate a bit about extensions as well
alternatives to the polar grid trajectory. An obvious extension
of the two orbits model used by our polar grid is to use n
orbits. Going to n orbits, however, will be harder to optimize
by enumeration as the search space for distributing K sinks
over n orbits grows as (" "7"!) (allowing orbits to be empty).
Apart from applying heuristics for that search, one could strive
for a closed-form expression over the maximal distances in the
n-orbit polar grid to avoid this combinatorial explosion. While
this seems hard it would constitute an important step in the
general understanding of concentric trajectories.

Non-concentric, but still periodic (following a closed circuit)
strategies are imaginable, for example a star shaped trajectory.
As a generalization of the concentric class of strategies one
may hope for further improvement under the assumption of a
successful optimization. In fact, we have experimented with
a specific (unoptimized) star-shaped trajectory, yet it was
inferior to the polar grid trajectory.

Even for non-periodic trajectories, like the random walk,
one may see a case if suitably enhanced. For example, a
biased random walk which tries to avoid areas of low energy
could perform well with respect to lifetime maximization,
though this involves a certain state-dependence which may
be undesirable in large-scale WSNs.

At last, we briefly want to discuss how to possibly relax
certain assumptions we made throughout the paper leading to
further future work items. Dispensing with the assumption of
a circular field could certainly be interesting. One direct way
may be to go for an ellipsoid shape, which would probably
still allow for a similar approach to the one presented in this
paper, based on a suitably generalized polar grid (probably
with segments of unequal size within one orbit). Similarly, we
have made assumptions on node homogeneity and uniform
distribution of nodes. Both of these may be relaxed by going
to a three-dimensional geometric interpretation of the original
problem where the third dimension could capture, e.g., nodes
with (initially) higher battery levels or areas of higher node
density. Clearly, the problem will not become simpler, but
based on the good experience we made with the geometric
interpretation of the underlying problem, we believe that this
could be a winning strategy also for such advanced problem
settings.
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