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t. Creating an opportunity from 
hallenges generated by mo-bility in WSNs prolongs the lifetime of WSNs by relo
ating the sinksto avoid a hot-spot problem. Su
h eviden
e makes a great impa
t onenergy-
onstrained WSNs. It, however, produ
es an undesirable infor-mation transfer delay. Often the maximum allowable message transferdelay must be bounded in order to enable time-sensitive appli
ations ofWSNs, hen
e, it is 
ru
ial to develop a mobile enabled WSNs that min-imize the worst-
ase delay without the loss of a lifetime degradation. Todo so, multiple mobile sinks are designed, in parti
ular, for the sink tra-je
tory. In fa
t, sink traje
tory in mobile enabled WSNs is a dis
rete formof stati
 sink pla
ement in traditional WSNs. In this report, we proposea geometri
ally prin
ipled heuristi
 for �nding good traje
tories of mul-tiple mobile sinks in large-s
ale, time-sensitive WSNs. First, we dis
ussthe high analyti
al 
hallenges of optimally planning the traje
tories ofmultiple mobile sinks. Based on this, we relax the problem by transform-ing it into a geometri
 design problem, whi
h, subsequently, is solved in
losed form. The analyti
al results are 
ompared with Java-based simu-lation results. The polar grid-based traje
tory e�e
tively minimizes theworst-
ase delay and maximizes the lifetime as, for example in a WSNwith 500 nodes and 20 sinks, it has in the order of 50 % lower worst-
asedelay and 300 % higher lifetime than a random walk traje
tory. Hen
eplanning the sink traje
tories 
arefully really pays o�.Keywords.Wireless Sensor Networks, Sink Traje
tory, Worst-Case De-lay, Lifetime.1 Introdu
tionResear
h a
tivity and appli
ation area of wireless sensor networks (WSNs) hasbeen in
reasing sin
e the last de
ade. Existing state-of-the-art hardwares andproto
ols enable testing of the real world appli
ations and provide their sub-stantial resear
h. A de�
ient energy supply of WSNs drives most of the resear
htowards energy awareness in WSNs. Obviously, energy is a 
riti
al issue thatis essential in the optimization of the lifetime prolongation of WSNs. In all as-pe
ts, su
h as designs and proto
ols, numerous energy-aware methods have beenproposed and others already de�ned as the state-of-the-art te
hnology. Amongthe distin
t features of WSNs, a time-sensitive nature is a noti
eable problemfor appli
ation-spe
i�
 WSNs. The worst-
ase message transfer delay plays a



vital role in as, for example, intrusion dete
tion appli
ation. Therefore, it be-
omes very interesting to built WSNs su
h that lifetime and delay goals are metsimultaneously.So, the question is how to design a performan
e-aware WSN under mini-mizing the worst-
ase delay and maximizing the lifetime. In a multi-hop WSN,delay signi�
antly relies on the path length (in hops) from the sour
es to thesink. Intuitively, the geographi
 positions of sinks play a vital role in minimizingdelay in WSNs. In order to solve the problem of minimizing the worst-
ase delay,two possible solutions are proposed. One solution is to use a dire
t 
ommuni
a-tion to the sink by assuming that sensors have enough energy supply. However,be
ause of the limited battery life, this expensive solution is not always feasiblein pra
ti
e, as it results in the loss of 
overage. It is only feasible if a sensor isintelligent enough to distinguish the priority of the message. Another solutionis to deploy multiple sinks to allow sensors to 
onne
t to the nearest sink. Byutilizing multiple mobile sinks, the information transfer delay redu
es e�e
tively.The latter solution is adequate and preferable for the de�
ient energy supply ofsensor nodes. In order to prolong the lifetime, mobility is a solution. In fa
t,mobility is a mixed blessing for WSNs. On one hand, the degree of network dy-nami
s indu
ed by mobile nodes or sinks may aggravate the design of networkingproto
ols and distributed algorithms. On the other hand, 
ontrolled mobility also
reates opportunities [10℄. One of the su

essful ways to apply 
ontrolled mo-bility in WSNs is to use a mobile sink in order to avoid the typi
al hot-spotproblem around a stati
 sink [5, 14℄. By moving the sink throughout the sensor�eld, the burden of being a dire
t neighbor of the sink 
an be shared among allnodes of the network and the network lifetime in
reases.In general, sink mobility as, for example, using random walks of multiplemobile sinks, in
reases the maximum information transfer delay over that of aproper pla
ement of a set of stationary sinks. This is simply due to the fa
t thatthere is always a delay-optimal position for the sink and if the sink is moved awayfrom it the message transfer delay be
omes worse. Clearly, this 
reates a problemfor time-sensitive WSN appli
ations. So, using sink mobility, we fa
e a 
on�i
tbetween lifetime maximization and delay bound minimization in large-s
ale, timesensitive WSNs. The 
hallenge thus be
omes to �nd good traje
tories for thesinks su
h that lifetime and delay goals are met simultaneously. In this report,we �rst provide a multi-obje
tive optimization problem formulation for planningthe traje
tories of multiple mobile sinks (
alled OST (Optimal Sink Traje
tory)).We remark that already the single obje
tive problem of maximizing networklifetime is known to be NP-hard [13℄. Hen
e, we relax the OST problem bygiving it a geometri
 interpretation (
alled GST (Geometri
 Sink Traje
tory)).The intuition behind this is that both, delay and lifetime, bene�t from nodesbeing 
loser in terms of Eu
lidean distan
e to their assigned sinks. So the twoobje
tives are amalgamated into one. Furthermore, the GST lends itself to asolution based on the kernel insight that, for a single sink, the problem is redu
edto simply �nding a minimum en
losing 
ir
le, whose 
ir
um
enter is the optimalposition for the sink to minimize the maximum Eu
lidean distan
e. Extendingthis insight we propose a geometri
ally prin
ipled approa
h using a polar grid todivide the sensor �eld into areas of similar size, ea
h of whi
h is the responsibilityof a single sink. The sinks are moved syn
hronously (e.g., on
e a day) along aninner and an outer orbit. The optimal size of the inner and outer orbit as well as



the optimal number of sinks on inner and outer orbit are derived in 
losed formusing geometri
 arguments.The rest of the report is organized as follows. Se
tion 2 provides an overviewof related work. Se
tion 3 des
ribes the network model and, in order to revealthe stru
ture of the problem, provides the original problem formulation for theOST. Next, the GST and its derivations are presented in Se
tion 4. We introdu
ethe MICAz-based energy model in Se
tion 5. The performan
e of the polar grid-based traje
tory for multiple sinks is evaluated and 
ompared against severalalternatives using simulations in Se
tion 6. We 
on
lude the report in Se
tion 7.2 Related WorkThree types of mobile elements have been introdu
ed in WSNs: mobile node,mobile relay, and mobile sinks. The use of mobile nodes 
an be seen in [4℄ wherethe authors introdu
e the heterogeneous mobile sensors to a
hieve full 
overage.Some related work of mobile relay 
an be found in [17, 11, 3, 8℄ where mobileelements a
t as relays for information gathering. In literature, a number of worksrise to the 
hallenge of using multiple mobile sinks [9, 7℄, yet often not delvinginto the optimal planning of their traje
tories. This se
tion reviews a mobile sinkapproa
h and related issues, su
h as type of sink traje
tory and performan
eissues.In general, the type of sink traje
tory 
an be 
ategorized as a random, state-dependent, and prede�ned. The use of the random walk traje
tory 
an be foundin [15, 6, 7℄. In [7℄, mobile sinks perform a random walk and 
olle
t the datafrom the sensors of their assigned 
lusters 
onstru
ted by load balan
ing andlifetime maximization. With the random walk traje
tory the hot-spot problemis eliminated by distributing the random tra�
. It, however, is likely to max-imize the worst-
ase delay in WSNs. Re
ently, [5, 21℄ address state-dependentmobility for maximizing the lifetime of WSNs. In their approa
h, the sink tra-je
tory is a fun
tion of a parti
ular network variable, su
h as, e.g., the state ofnodes' batteries; the sink moves either grid-based [5℄ or following a straight line[21℄. Though the lifteime performan
e of su
h traje
tories is good, the methodsassume knowledge of global and dynami
 information for determining the opti-mal paths and sojourn times, whi
h is a very strong assumptions in large-s
aleWSNs.The prede�ned traje
tory is fully deterministi
 where the sink is expe
ted toappear on the same path periodi
ally [9, 11, 22℄. In [9℄, a data 
olle
tion s
hemeuses a multi-hop 
ommuni
ation for multiple mobile sinks to maximize through-put and to minimize energy 
onsumption. To 
olle
t data the mobile sink movesperiodi
ally with 
onstant speed along the straight lines. In [11℄, by �xing thetraje
tory to be a straight line at the middle of ea
h equal region of the networkarea (i.e., a re
tangular �eld shape), the authors try to balan
e the number ofsensor nodes for ea
h mobile element servi
es. Intuitively, this model 
an min-imize energy 
onsumption and thus extend the lifetime of WSNs. It, however,does not guarantee a delay optimization. In [22℄, the authors present a traje
toryat the periphery of the network as the best strategy over other �xed traje
toriessu
h as mid-periphery, diagonal 
ross, and mid-
ross for load balan
ing in WSNs,by proving the 
orre
tness of [14℄. An interesting thing is [20℄ 
onsidered a �xed



traje
tory along 
on
entri
 
ir
les separated by 2rtx, where rtx is the transmis-sion range of node, for the entire network with the purpose of minimizing totalenergy 
onsumption. Su
h traje
tory looks similar to our polar grid traje
torybut ours is for multiple mobile sinks in whi
h lifetime and delay goals are metsimultaneously.In 
ontrast to a periodi
al movement, the work in [14℄ proposes a prede�nedsink traje
tory that appears just one round. Here, the movement of a sink isthe sequen
e of a stati
 sink pla
ement like [23, 15℄, and the sink velo
ity andsojourn time are 
omputed a

ording to the expe
ted lifetime of WSNs. At ea
hsojourn along a given traje
tory, the sink broad
asts its 
urrent lo
ation and
olle
ts data that are forwarded to it through multi-hop 
ommuni
ation. In [15,14℄, the improvement of lifetime prolongation by using joint mobility and routingmethod is presented. In [15℄, the authors present the problems of determiningsink sojourn times at ea
h random sink lo
ation and the authors in [14℄ addressa modi�ed periphery sink traje
tory with a better routing design that uses a
ombination of round routes and short paths. Most of these studies are 
on
ernedwith the lifetime prolongation of a WSN, often restri
ting to the single mobilesink 
ase.In our work, we ta
kle the problem of �nding good traje
tories for multi-ple mobile sinks su
h that we keep the maximum message delay low and stilla
hieve a long lifetime. So, delay and energy are traded o� against ea
h other.Along similar lines, [21℄ optimizes this trade-o�, too, designing a traje
tory fora �data mule� whi
h 
olle
ts the data from ea
h sensor node dire
tly [17℄. Inorder to minimize delay, the speed of �data mule� and its improvement, whi
h
ombines multi-hop 
ommuni
ation for those nodes that are far from the sink,are both 
ontrolled. Sin
e the �data mule� �rst 
olle
ts the data from the rootnodes 
losest to the sink and later transfers all the data to the sink, it is not
ommuni
ate dire
tly to the sink. Yet, the data mule approa
h in
urs long laten-
ies and is generally not appli
able in time-sensitive WSNs. Almost all mobileenabled multi-hop WSNs mentioned above use the shortest path routing ex
eptsome additional modi�
ation in [14, 21℄.In [23, 15, 13℄, the movement of a sink is abstra
ted as a sequen
e of a stati
sink pla
ements assuming that the time s
ale of sink mobility is mu
h largerthan that of data delivery; we follow this assumption in our work. Followingsimilar geometri
 arguments, [13℄ fo
uses on minimizing the average distan
ebetween sink and assigned sensor nodes. The reasonable assumption is that in amulti-hop network, the energy 
ost of transmitting a message from the node tothe sink is linearly proportional to the Eu
lidean distan
e between them. Su
h adistan
e-related assumption is also at the heart of our work but with additional
onsideration of the message transfer delay, whi
h is why we set out to minimizethe maximum distan
e.3 Network Model and Problem StatementIn this se
tion, we �rst provide our network model along with some basi
 as-sumptions and, next, state the problem of planning sink traje
tories for multiplemobile sinks as a multi-obje
tive optimization problem. Here, the intention isto shed light on its basi
 mathemati
al stru
ture without providing a solutionapproa
h yet.



3.1 Network Model
V is the set of sensor nodes with |V | = N ; S is the set of sinks with |S| = K.We model the WSN as a dire
ted graph, G = (V , E), where V = V ∪ S. For all
a, b ∈ V , ∃(a, b) ∈ E if and only if a and b are within a dis
-based transmissionrange rtx.� We assume that the sinks' movement is syn
hronous, i.e., all sinks move atthe same time. Further, sink movement takes pla
es on relatively long time-s
ales (e.g., on
e a day), mu
h larger than the time-s
ale of the messagetransfer delay from sensors to sinks (e.g., on the order of se
onds). Therefore,we negle
t the time periods when the sinks are a
tually moving (or beingmoved) and the sink mobility is abstra
ted as a sequen
e of sinks' lo
ations.At ea
h lo
ation the sinks stay for an equal amount of time, further on 
alledepo
h n = 0, 1, 2, . . . In parti
ular, we also assume that all data is �ushedfrom the WSN before a sink movement takes pla
e, i.e., there is no datadependen
y between epo
hs.� The sensor nodes are assumed to be homogeneous: They send L(n) datapa
kets in ea
h epo
h n and have the same initial energy budget E available.We fo
us on the energy 
onsumption for transmitting and re
eiving data,sin
e the energy 
onsumption by other units is relatively the same for allnodes and, as su
h, 
an be taken as a 
onstant. Also, the sensor nodes arestationary.� We de�ne the lo
ations of sink s in epo
h n as ls(n) ∈ R

2, and by l(n) ∈
R

2×K we denote the sinks' pla
ement in epo
h n.� For node to sink assignment, we de�ne xv,s(n) as a binary variable whi
h isset to 1 if node v is allo
ated to sink s in epo
h n and 0 otherwise. Hen
e,the overall assignment X(n) in epo
h n is a binary matrix:
X(n) := (xv,s(n))v∈V,s∈S ∈ {0, 1}N×K.� For a 
ertain assignment X(n) we 
an de�ne a routing as follows:

PX(n) :=
⋃

v∈V,s∈S : xv,s(n)=1

Pv,swhere, Pv,s is a path from node v to sink s whi
h is des
ribed as the set ofedges lying on this path under the assumption of multi-hop 
ommuni
ation.� We 
all a sequen
e of triples
(

l(n), X(n), PX(n)

)

n∈N =: Sna strategy.� We de�ne the network lifetime by the timespan until the �rst node dies dueto battery depletion.3.2 Optimal Sink Traje
tory: Problem StatementBased on these de�nitions, we formulate the optimization problem of �ndingsink traje
tories for multiple sinks in a WSN with the aim of minimizing the



maximum delay and maximizing the network lifetime T of the network:
min
Sn

max
v∈V, n∈N

Dv(n)

max
Sn

Tsubje
t to: ∀n ∈ N, ∀v ∈ V , ∀s ∈ S

∑

e∈δ−(v)

fn(e) −
∑

e∈δ+(v)

fn(e) = L (1)
∑

e∈δ+(s)

fn(e) = L(n)
∑

v∈V

xv,s(n) (2)
∑

s∈S

xv,s(n) = 1 (3)
T

∑

n=0





∑

e∈δ−(v)

Etx(e, fn(e)) +
∑

e∈δ+(v)

Ercv(e, fn(e))



 ≤ E (4)where δ−(v) = {e ∈ E|e = (v, n), n ∈ V} and δ+(v) = {e ∈ E|e = (n, v), n ∈ V}.The fun
tion fn : E → R
+ des
ribes the amount of data sent over an edgein epo
h n. Equations (1) and (2) are �ow balan
e equations to ensure thatno additional data is produ
ed or any data is lost at the nodes. Equation (3)enfor
es that a sensor node is assigned to exa
tly one sink in epo
h n. The energy
onstraint for ea
h node v ∈ V is de�ned in Equation (4); here, the total energy
onsumption for re
eption Ercv(e, fn(e)) and transmission Etx(e, fn(e)) up toepo
h T , the lifetime of the WSN, must not ex
eed the initial energy E for anynodes.The delay fun
tion Dv(n) represents the end-to-end delay 
hara
teristi
s forthe message transfer from node v to its assigned sink in epo
h n. At this point,we still remain abstra
t about whether, e.g., an average delay over an epo
h orthe maximum delay experien
ed is taken. However, later on (in the simulationsas presented in Subse
tion 6.4), based on sensor network 
al
ulus [16℄, we use abound on the maximum end-to-end delay to instantiate Dv(n). In any 
ase, thedelay fun
tion Dv(n) is a very 
omplex fun
tion, whi
h does not only depend onthe path from the node v to its sink, but also on all other paths interfering with it.Hen
e, di�eren
es in 
hoosing a path for just one node-sink pair, in general, a�e
tmultiple end-to-end delays. Similarly, we also remain abstra
t about the energyfun
tions Ercv and Etx, whi
h are also 
omplex fun
tions, thus aggravating theproblem further. A last but not least hardness of the problem stems from thetwo obje
tive fun
tions and their 
on�i
ting nature.4 Geometri
 Sink Traje
tory (GST)Due to its fundamental hardness, we relax the OST problem, whi
h is basi
allya graph problem, into a geometri
 one, 
alled the Geometri
 Sink Traje
tory(GST) problem. Basing on the assumption of a large-s
ale WSN with a more orless uniform node distribution we abstra
t from nodes as su
h. For the geometri




shape of the sensor �eld we assume it to be a 
ir
le, a somewhat arguable, butoften made assumption on this level of abstra
tion [13℄. We brie�y 
ome ba
k toa dis
ussion about the 
ir
ular shape in Se
tion 7.Under these abstra
tions for the GST, the obje
tive of minimizing the max-imum delay is redu
ed to the obje
tive of minimizing the maximum Eu
lideandistan
e dv,s(n) = ‖ls(n) − pos(v)‖2 from sink s ∈ S to node v ∈ V in epo
h n;here, pos(v) refers to the position of sensor node v in the Eu
lidean spa
e. Some-what more indire
tly, we 
ater for the lifetime maximization by partitioning thesensor �eld into areas of similar size (per epo
h), ea
h of whi
h is under the re-sponsibility of a single sink. The rationale of this being that ea
h sink is roughlyassigned a similar number of sensors thus leading towards a good balan
ing ofthe forwarding load between areas.Interestingly, for the single sink 
ase, we remark that by simply substitutingthe delay fun
tion by the Eu
lidean distan
e, and negle
ting the energy issues,the OST problem be
omes a well-known minimum en
losing 
ir
le problem [18℄(we point out, though, that with K 
ir
les the problem remains hard). Thisproblem and its solution by a minimum en
losing 
ir
le is illustrated in Figure1. The 
enter of su
h a 
ir
le is the optimal pla
ement for a sink in terms ofminimizing the maximum distan
e between sink and sensor nodes. We re
ur tothis basi
 insight several times further on, when we look for optimal positions ofsinks in their respe
tive area.
Fig. 1. An example of a minimum en
losing 
ir
le.Our framework to 
onstru
t sink traje
tories l(n) based on solutions to theGST 
onsists of the following steps:1. We assign areas of similar sizes to the sinks (→lifetime maximization). Infa
t, there are di�erent possibilities to a
hieve this and we dis
uss them inthe following subse
tion.2. After that we 
al
ulate the optimal pla
ement of the sinks, su
h that themaximal distan
e of any point in these areas to its sink is minimized (→delayminimization).3. Finally we de�ne the sink traje
tory for ea
h sink by spe
ifying its movementto the next position.



4.1 The Area Assignment ProblemThe area assignment problem is: How to partition a 
ir
ular network of radius
R in order to a
hieve areas of similar size with respe
t to a given number ofsinks K? A �rst and exa
t solution is an equal se
torization whi
h has a ni
es
alability property in terms of handling an in
reasing number of sinksK without
ompromising the equal size of ea
h se
tor. No matter how large K is, equalse
torization a
hieves equally sized areas by 
al
ulating the 
enter angle of ea
hse
tor as Φ = 2π

K
. Figure 2(a) shows an example of equal se
torization for a 14sinks network. Due to its symmetri
al nature, it is su�
ient to �nd a minimumen
losing 
ir
le for one of the 
ir
ular se
tors. Although, the equal se
torizationa
hieves bene�
ial properties like s
alability, 
ongruity, and simpli
ity, the areaof ea
h 
ir
ular se
tor be
omes in
reasingly narrower for a growing number ofsinks K, whi
h results in relatively large maximum distan
es to a sink. In fa
t,the maximum distan
e for a point to its sink in a 
ir
ular se
tor is boundedfrom below by R
2 . This implies that the delay performan
e does not improvesigni�
antly any more after a 
ertain number of sinks is rea
hed even if moresinks are available.

(a) (b)Fig. 2. Sinks assignment in (a) an equal se
torization, and (b) a polar grid.Therefore, we introdu
e an alternative way of partitioning the sensor �eld,whi
h is designed to improve on minimizing the maximum distan
e for a growingnumber of sinks K. The idea is to have two 
on
entri
 
ir
les of radii r and R,as illustrated in Figure 2(b). By dividing the 
ir
le into two di�erent parts, themaximum distan
e between any point to its sink 
an be redu
ed e�e
tively andthe resulting s
heme still 
an a
hieve a balan
ed area assignment. The resultingpartition is usually 
alled a polar grid. The following se
tion des
ribes how to�nd the optimal sink distribution in a polar grid, i.e., how many of the sinksto pla
e in the outer ring together with the optimal value for the radius of theinner 
ir
le r.4.2 Optimization of the Polar Grid Area AssignmentAs shown in Figure 2(b), sinks are assigned in the inner 
ir
le and in the annulusof the outer 
ir
le to 
reate a polar grid. We de�ne Kin and Kout as the number ofsinks for the inner 
ir
le and the annulus of the outer 
ir
le, respe
tively. Figure



2(b) provides an example for 14 sinks with Kin = 4 and Kout = 10. Let us de�ne
din and dout as the minimal radii of en
losing 
ir
les for the se
tor and annularsegments, respe
tively, given r, Kin and Kout. Then, the polar grid-based areaassignment problem 
an be formulated as follows:

min
0<Kin≤K

min
0≤r≤R

max {din, dout} (5)We 
al
ulate din and dout from the 
orresponding minimum en
losing 
ir
les.In the following we assume Kin, Kout ≥ 3 to avoid degenerate 
ases.Formulation of din and dout There are two types of 
ells in the polar grid-based assignment s
heme: a se
tor in the inner 
ir
le and an annular segment inthe annulus of the outer 
ir
le. The optimal values of Kin and Kout are likelyto be unequal in general, whi
h implies two di�erent 
enter angles θ1 and θ2 forse
tor and annular segment, respe
tively. This is also illustrated in Figure 3(a)and (b).

(a) (b)Fig. 3. Cir
ums
ribed 
ir
les of polar grid 
ells: (a) a se
tor in the inner 
ir
le, and (b)an annular segment in the annulus.We �nd the minimum en
losing 
ir
le and its radius by approximating ea
hpolar grid 
ell by an easier shape. In parti
ular, we determine the minimumen
losing 
ir
les for the isos
eles triangle and isos
eles trapezoid for the respe
-tive polar grid 
ells. In Figure 3(a) and (b), the minimum en
losing 
ir
les forthe isos
eles triangle △ABO and the isos
eles trapezoid ABDE are depi
ted,whi
h, in this 
ase, are the 
ir
ums
ribing 
ir
les of the triangle and trapezoid,respe
tively. In the following we denote by h the height in the triangle △ABOand by x the distan
e between the point E of the trapezoid and the 
enter ofthe line AB.The minimal distan
es din and dout are 
al
ulated from the respe
tive 
ir-
ums
ribed 
ir
les formulation. Given r, R, α and β (see Figure 3 and 4), the



following equations 
hara
terize din and dout:
din =

{

r
2 sin β

for |AB|
2 ≤ h

r cosβ for |AB|
2 ≥ h

(6)
dout =

{
√

(R−r)2+4rR cos2 α

2 sin α
for |AB|

2 ≤ x

R cosα for |AB|
2 ≥ x

(7)

(a) Se
tor Segment (b) Annular SegmentFig. 4. Optimal sink pla
ement inside a se
tor and an annular segment with large |AB|
2

.Note that for angles 0 ≥ θ1, θ2 ≥ π
2 we always have to 
onsider the �rst 
asesof Equations (6) and (7).The following proofs show the 
orre
tness of Equations (6) and (7).Claim 1: For |AB|

2 ≤ h, the 
enter of the 
ir
ums
ribed 
ir
le of the isos
e-les triangle △ABO minimizes the maximum distan
e of the se
tor ABO (referFigure 3(a)).Proof: Denote the 
enter of the 
ir
ums
ribing 
ir
le by C, its radius by dand the 
ir
le itself by Cd. Sin
e |AB|
2 ≤ h the minimum en
losing 
ir
le is Cd.Sin
e △ABO is a subset of the se
tor, this means that the minimum en
losing
ir
le for the se
tor has at least radius d. Hen
e it is su�
ient to show that these
tor lies inside the 
ir
le Cd. Again from |AB|

2 ≤ h we know that C lies insidethe triangle, so d ≤ r. Obviously C 6= A, B and by this even d < r holds. Denotenow by ABO the ar
 between A and B with its 
enter in O. It is su�
ient toshow that any point lying on this ar
 has distan
e not bigger than d to C. Denoteby D the interse
tion between the ar
 ABO and the line through O and C (seeFigure 3(a)). Then by the triangle-inequality (for the triangle △ACO) holds:
2d ≥ r = |OD| = |OC| + |CD| = d + |CD|



leading to:
d ≥ |CD|Suppose now there would exist a point D′ on ABO with d < |CD′|. This wouldonly be possible if there exists a point D′′ on the ar
 ABO whi
h also lies on Cd.Together with A and B this point would be a third interse
tion point betweenthe 
ir
les Cd and Or, leading to the equality of the two 
ir
les, espe
ially to

d = r, whi
h is a 
ontradi
tion to the already established inequality d < r. Hen
eall points of the ar
, and by this the whole se
tor, lie inside the 
ir
le Cd .Claim 2: For |AB|
2 ≤ x, the 
enter of the 
ir
ums
ribed 
ir
le of the isos
e-les trapezoid ABDE minimizes the maximum distan
e of the annular segment

ABDE (refer Figure 3(b)).Proof: As in the previous proof we know, by the assumption that |AB|
2 ≤ x,that the 
ir
ums
ribing 
ir
le Cd of the trapezoid is the minimum en
losing 
ir
leof the trapezoid and its 
enter lies in the trapezoid. We pro
eed in the same wayas in the previous proof, however here it is not as easy to see that the radius dof the minimum en
losing 
ir
le of the trapezoid is smaller than R. For that wedenote by F the interse
tion of the angle bise
tor of θ2 with the line |DE| (seeFigure 3(b)). The triangle △AFO has its largest angle at F , whi
h is for r < Rlarger than π

2 hen
e:
R = |OA| > |AF |A similar argument leads to |AF | > |DF | = |EF |, hen
e we 
an �nd an en
losing
ir
le for the trapezoid around F with radius |AF | < R and by this the minimumen
losing 
ir
le also has a radius d smaller than R. Now denote again by ABOthe ar
 between A and B with 
enter in O and by G the interse
tion between thisar
 and the line through O and C, where C denotes the 
enter of the minimumen
losing 
ir
le. Then again by the triangle inequality:

|OC| + |CA| = |OC| + d ≥ R = |OC| + |CG|hen
e:
d ≥ |CG|By the same 
ontradi
tion as in the previous proof, one 
an show that the 
om-plete ar
 ABO lies inside the minimum en
losing 
ir
le of the trapezoid.Claim 3: For |AB|

2 ≥ h, the line segment AB of the triangle △ABO is thediameter of the minimum en
losing 
ir
le (refer Figure 4(a)).Proof: In the triangle △ACO we have at C a right angle, hen
e: d < r.Denote again by D the interse
tion of the ar
 ABO and the line through O and
C, then by the triangle inequality we have:

|OD| = |OC| + |CD| ≤ |OC| + |CA|Knowing that |CD| ≤ |CA| = d we 
an 
onstru
t the same 
ontradi
tion as inthe previous proofs to see that the whole ar
 ABO lies inside Cd. By this weknow that Cd is an en
losing 
ir
le. Sin
e |AB| = 2d we also know that anyen
losing 
ir
le has at least radius d, thus Cd is a minimum en
losing 
ir
le.



Claim 4: For |AB|
2 ≥ x, the line segment AB of the trapezoid ABDE is thediameter of the minimum en
losing 
ir
le (refer Figure 4(b)).Proof: The proof works like the previous one repla
ing r by R and G takingthe role of D.Optimal r and sink distribution Kin vs. Kout Based on the mathemati
alformulations for din and dout, we are able to evaluate expression (5). One seesthat for a �xed Kin and Kout din is a stri
tly in
reasing fun
tion in r and

dout is a de
reasing fun
tion in r. So we have to 
ompute the interse
tion ofthe two fun
tions din and dout, whi
h gives us the optimal value for r, given a
ombination of Kin and Kout. The global minimum of dout is equal to R cosαand is a
hieved at all r ≥ R − 2R cos2 α. So to �nd the interse
tion of din and
dout we need to know, where the fun
tion din interse
ts with the fun
tion givenin the �rst 
ase of Equation (7). The ne
essary 
omputations for the 
ase we usethe �rst 
ase of Equation (6) for din are as follows:

r

2 sinβ
=

√

(R − r)
2

+ 4rR cos2 α

2 sinα

⇒ r1, r2 =
−b ±

√
b2 − 4ac

2awhere
a =sin2 α − sin2 β,

b =2R sin2 β(1 − 2 cos2 α),

c = − R2 sin2 β.By evaluating max{din, dout} at the minimum of the points [r0]+, r1 and r2 we
an �nd the minimum for this 
ase.For the 
ase where we use the se
ond 
ase of Equation (6) we pro
eed simi-larly:
r1, r2 =

−e ±
√

e2 − 4df

2d

r0 = R − 2R cos2 α,where
d =4 sin2 α cos2 β − 1,

e =2R − 4R cos2 α,

f = − R2.Again by evaluating max{din, dout} at the minimum of the points [r0]+, r1 and
r2 we 
an �nd the minimum of max{din, dout}.For a given K and R, we 
an now exhaustively sear
h for the optimal valuesof r trying all possible 
ombinations of Kin and Kout (the size of the sear
hspa
e is just K − 1). Among all 
ombinations, we sele
t the best 
on�gurationof Kin and Kout with respe
t to the minimum distan
e of din and dout (usingthe best r), thus implementing Equation (5).



4.3 Designing the Sinks' Traje
toriesNow, we know the optimal points (i.e., the 
enters of the minimum en
losing
ir
les for se
tor and annular segments) whi
h produ
e the optimal din and dout.Based on these points, we design 
ir
ular mobile sink traje
tories. Let rin and
rout denote the distan
es from the 
enter of the network to the 
enter of theminimum en
losing 
ir
les for the se
tor and annular segment, respe
tively, asillustrated in Figure 5. The formulas for determining rin and rout look like thefollows:

rin =

{

r
2 sin β

for 0 ≤ θ1 ≤ π
2

r sin β for π
2 ≤ θ1 ≤ π

(8)
rout =

{
√

(R−r)2+4rR cos2 α

4 sin2 α
− r2 cos2 α + r sin α. for r ≤ R − 2Rcos2α

R sin α. for r ≥ R − 2Rcos2α
(9)

Fig. 5. An example of polar grid_based traje
tory for a 14 sinks network.The traje
tories of the sinks basi
ally result from rotating the whole polargrid in an attempt to keep both, message transfer delay and load per sink,balan
ed. Clearly, an interesting parameter is how far we rotate the polar grid,i.e., whi
h step size we use for ea
h sink when going from one epo
h to theother. Results 
on
erning this step size and a deeper dis
ussion of its in�uen
eare provided in Se
tion 6.4.4 Analyti
al Evaluation of the Geometri
 Sink Traje
toryBefore we delve into a detailed simulative study of our approa
h, we �rst ana-lyti
ally 
ompare the equal se
torization and polar grid-based area assignments
hemes with ea
h other. Figure 6(a) and (b) show the maximum distan
e dis-tributions of an equal se
torization- and a polar grid-based area assignment for
R = 100 m and a varying number of sinks K up to 30. Apparently, a polar grid
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(a) (b)Fig. 6. The maximum Eu
lidean distan
es distribution of (a) an equal se
torization,and (b) a polar grid-based area assignment s
hemes.area assignment e�e
tively redu
es the maximum distan
e as K grows. Notethat for K ≤ 8 the equal se
torization is in fa
t superior to the polar grid. Thereason lies in the restri
tion of having Kin, Kout ≥ 3, otherwise the polar gridshould always be superior, sin
e equal se
torization 
an be 
onsidered a spe
ial
ase of a polar grid (with Kout = 0 and r = R). The results are based on theoptimal 
hoi
e for r and the optimal sinks distribution for Kin and Kout.We further show the 
orresponding optimal sink distribution Kin and Koutin Figure 7.
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Starting from K = 13, the value of Kin is ⌊

K
3

⌋ and 
onsequently the value of
Kout be
omes ⌈

2K
3

⌉. Therefore, the optimal ratio of Kin

Kout
be
omes 1

2 . In general,the optimal sink distribution is about one third of the sinks for the inner 
ir
leand about two-thirds for the annulus. Furthermore, the 
al
ulation shows thatthe optimal r is 
onverging to half of the radius R.We remark that, in general, the polar grid does not a
hieve a perfe
tly equalarea assignment. Nevertheless, the di�eren
es are not too large and as dis
ussedin the following se
tion the polar grid performs favorably with respe
t to bothobje
tives, lifetime maximization and delay minimization.A

ordingly, the optimal rin and rout are shown in Figure 8(a). Figure 8(b)shows the 
orresponding optimal r distribution for Figure 6(b).
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(a) (b)Fig. 8. (a) An optimal distribution of rin and rout, and (b) The optimal radius rdistribution.5 Energy ModelA sensor node is 
omposed of a sensing unit, a pro
essing unit, a trans
eiver unit,and a power unit. Ea
h unit 
onsumes a di�erent energy level. Usually, the main
onsumers of energy are the trans
eiver unit and the pro
essing unit. The sensingunit 
onsumes energy for a variety of sensors and for ADC 
onverters. Thepro
essing unit requires energy to aggregate data, 
ompute routing, and maintainse
urity, et
. Sin
e the purpose of the trans
eiver unit is to both transmit andre
eive data, it is no doubt that it 
onsumes quite a lot of energy. If a WSN allowsdire
t 
ommuni
ation from a node to a sink, then this will be very expensive.For this reason, we 
onsider multi-hop 
ommuni
ation in WSNs, and thus energy
onsumption by transmitting and re
eiving a message has to be analyzed basedon a hop-by-hop 
ommuni
ation s
heme.



In fa
t, a highly a

urate energy estimation is desirable. However, this wouldneed to be investigated starting from the transistor level, taking into 
onsidera-tion leakage, et
. We take a more abstra
t view and de�ne a simple energy modelfor the assessment and performan
e 
omparison of sink traje
tory in WSNs.We make assumptions that the model mainly highlights the energy 
onsump-tion of the trans
eiver unit, sin
e the energy 
onsumption of the pro
essing unitis relatively the same for all nodes and, as su
h, 
an be taken as a 
onstant. Thus,energy 
onsumption for se
urity, routing, and data aggregation is not taken intoa

ount. Wireless signal propagation should be aware of a path loss. Typi
ally,the path loss exponent, τ , varies from 2 to 6. If the environment is a free spa
e,then τ = 2 is 
onsidered based on the Friis free spa
e model. Otherwise τ = 5to6
an be 
onsidered for shadowed areas and obstru
ted indoor s
enarios [12℄.The model 
on
erns total energy 
onsumption of a data pa
ket sent from allnodes to their nearest sinks whenever the sinks move to the next position. Ashas been mentioned in Subse
tion 3.1, we de�ne the lifetime of the WSN as thetime span until the �rst sensor node depletes its battery. In order to 
apturethis event we need to keep tra
k of the battery levels of ea
h sensor node. Tothat end, we de�ne a simple, yet fairly realisti
 model mimi
king the energy
onsumption of MICAz motes [2℄. We fo
us on the energy 
onsumption of thetrans
eiver unit. The formulation of the total energy 
onsumption for all datatransmissions from the nodes to their assigned sinks up to epo
h n, is denotedby En
total; it is the sum of total energy 
onsumption of all nodes:

En
total =

∑

v∈V

En
v (10)where the energy 
onsumption for a node v in epo
h n, En

v , is given in a

ordan
eto Equation (4) as:
En

v =
∑

e∈δ−(v)

Etx(e, fn(e)) +
∑

e∈δ+(v)

Ercv(e, fn(e)),with
Ercv(e, fn(e)) =Ercv(fn(e)) = Prcv · trcv(fn(e)), (11)
Etx(e, fn(e)) =Ptx(e) · ttx(fn(e)). (12)In (11), we see that the energy 
onsumption for re
eiving the data fn(e) is justthe time needed to re
eive the data trcv(fn(e)) multiplied by the power 
on-sumption Prcv of the re
eiving unit; this is independent of the distan
e betweenthe sending and re
eiving node. In (12), the energy 
onsumption for sendingdata is again the time needed to send the data ttx(fn(e) times the power 
on-sumption of the sending unit Ptx(e), whi
h, however, now is dependent on thedistan
e between the 
ommuni
ating nodes. Taking the values from the MICAzdata sheet [2℄, we 
an 
al
ulate the power 
onsumed by the re
eiver ele
tron-i
s Prcv. Basi
ally, Ptx depends on the transmitted output power setting whi
hagain depends on the distan
e and the sele
ted modulation s
heme. There aretwo 
omponents that 
onsume energy in the transmitter part. The formula is



des
ribed in Equation (13). The �rst part represents power used in transmitterele
troni
s, PtxElec, while the remaining part is expressed as transmission powerof RF signal generation, Pamp.
Ptx = (PtxElec + Pamp) (13)

Pamp = V · Itx (14)Basi
ally, PtxElec 
an be assumed as a 
onstant, whereas we de�ne Pamp inEquation (14). Let us dis
uss the se
ond 
omponent in detail. Although it lookssimple, the 
hoi
e of a 
urrent 
onsumption depends on the transmitted outputpower setting that relies on the distan
e and the sele
ted modulation s
heme. Itis impossible to dire
tly use a typi
al 
urrent be
ause with MICAz it does notreport a 
onne
tion between them. Therefore, we must 
he
k the relationship(in dB) between RF power, Ptx, and the re
eived signal power at distan
e d, Pd.We express the transmission model that is based on the spe
i�
ations ofthe CC2420 RF trans
eiver of a MICAz mote [1℄ using referen
e [19℄. First, westudy the e�e
t of a path loss variation over distan
e between two nodes. Thepath loss o

urs due to the dissipated power at transmitter op-amp and 
hannelpropagation. For general analysis of the system design, the transmission poweris built upon the mean path loss whi
h is measured in dB, as shown in Equation(15). The mean path loss, PL(d) 
an be 
omputed using the mean path loss atreferen
e distan
e d0, PL(d0), and the path loss exponent,τ1.
PL(d) = PL(d0) + 10τlog10(

d

d0
) (15)Based on a free spa
e radio propagation environment, Equation (16) is usedto 
ompute the value of PL(d0).

PL(d0) = 20log10(
4πd0

λ
) (16)where,

λ = c/f

c := speed of light
f := frequency of the transmitted signal.We now 
ompute the re
eived signal power at a distan
e d based on thetransmitted signal in dB with the following Equation (17).

P (d) = Ptx − PL(d) + σ (17)Based on the above equation, a distan
e-dependent 
orresponding power levelfor MICAz mote is introdu
ed to 
he
k a satisfa
tory power level for a givendistan
e, d, in [19℄. By referring to the Chip
on CC2420 output power settingfor the MICAz mote, we get the typi
al 
urrent 
onsumption, and thus Pamp.
P (d) =

{

Ptx − 40.2 − 20log10(d), d < 8m

Ptx − 58.5 − 33log10(
d
8 ), d > 8m

(18)1 A wide range of 1km is 
onsidered for 
ellular system and a short range of 1m is
onsidered for WLANs [12℄.



Note that transmitting uses less energy than re
eiving even at the highestoutput power of the trans
eiver 
hip. The reason is that the re
eiver 
onsumesa 
onsiderable amount of power due to idling in the re
eive mode. So, a duty
y
le is a good way to 
ontrol energy 
onsumption of a re
eiver.6 Performan
e EvaluationIn this se
tion, using dis
rete event simulations, we evaluate the performan
eof the polar grid-based solution to the GST under the assumptions of the orig-inal OST problem formulation. In parti
ular, we 
ompare it to a number ofalternative sink traje
tories with respe
t to delay and lifetime performan
e. Fur-thermore, we analyze fa
tors like the number of sensor nodes, the number ofsinks, and the movement step sizes of the sinks.6.1 Competitors
(a) (b) (
) (d)Fig. 9. Competitors: (a) a random walk, (b) an outer periphery, (
) a star, and (d) anequal se
torization traje
tory.We sele
ted four 
ompeting sink traje
tories whi
h are illustrated in Figure9(a), (b), (
), and (d). Supposedly as a lower bound among the traje
tories, usinga random walk (with a �xed step size) for ea
h of initially randomly pla
ed sinksis sele
ted. Clearly, this is a very simple strategy whi
h shall serve as a referen
ein how far investing more e�ort in the planning of sink traje
tories is justi�ed.The next 
ompetitor is based on an insight by Luo for the single sink 
ase(see Claim 7 in his thesis [13℄): using the outer periphery for the sink is a
tuallyoptimal with respe
t to lifetime (under mild assumptions about the symmetryof the traje
tory). We simply extend this into having multiple sinks 
ir
ulatingin equal distan
es from ea
h other in the outer periphery.We 
onstru
t a star like traje
tory as presented in Figure 9 (
). The detail ofstar traje
tory 
an be seen in the Algorithm 1. In the �rst step, the network isequally se
torized by the number of sinks. In the se
ond step, we 
ompute λ tode
ide whi
h verti
es are 
onne
ted to form a star like traje
tory. (For example,in a K = 6 sinks network, λ = K

2 − 1 = 6
2 − 1 = 2 then every 2 hops verti
es are
onne
ted to form a line traje
tory.) After that, we initialize the sink for ea
htraje
tory. To be able to balan
e the load and minimize the worst 
ase delay,



Algorithm 1 Constru
ting a star traje
tory.Given: Number of sinks to be pla
ed |S| = K, a 
ir
ular network COR �eld of radius
R, step size ω1. The network is equally se
torized by K2. Compute λ to de
ide whi
h verti
es are 
onne
ted for the line traje
toryif((K%2) == 1) {λ = K

2
}else {λ = K

2
− 1}3. Initialize the sinks for the 
orresponding traje
toriesfor all sinks j ∈ S,
ase 1: pla
e sink sj = (xj , yj) at periphery, where j%2==0
ase 2: pla
e sink sj = mid (sj , sj+λ) at periphery, where j%2==14. Perform the task5. Compute the next sinks' positionsfor(j=0; j<K; j++) {while( sj∈ COR) {
ompute sj = (xj , yj) by in
reasing step size ω along the traje
toryrepeat 4 and 5}go to 3}6. Repeat 5 until the network diessome sinks are initialized at the periphery while others are put at the middle ofthe assigned traje
tory.As a last 
ompetitor, Figure 9(d) illustrates an equal se
torization traje
torywhi
h, in fa
t, is 
onstru
ted exa
tly as the inner 
ir
le of the polar grid-basedtraje
tory mentioned in Figure 5.Apart from the random walk traje
tory, all other traje
tories are prede�nedso that the sinks move along the 
orresponding traje
tory repeatedly until thenetwork dies. We investigate the performan
e of the polar grid traje
tory andother 
ompetitors under worst 
ase delay and lifetime.6.2 Delay Performan
eWhile an average delay analysis is 
ertainly useful for some WSN appli
ations,for time-sensitive WSNs being able to bound the worst-
ase delay is generallymore important. To that end, we evaluate the delay performan
e of the thedi�erent sink traje
tories using the framework of sensor network 
al
ulus (SNC)[16℄. This requires to spe
ify bounds on the arrival and servi
e pro
esses, 
alledarrival and servi
e 
urves, their a
tual settings are given in Subse
tion 6.4.6.3 Lifetime Performan
eThe Algorithm 2 shows the evaluation of lifetime for a given sink traje
torywith respe
t to total number of epo
hs until the �rst node dies. In our model,ea
h node has the initial energy of E joule and sends a data pa
ket to its near-est sink along the shortest path whenever the sinks move to the next epo
hs



syn
hronously. In ea
h epo
h, the algorithm keeps tra
k of the battery levels ofea
h sensor node and update the total epo
hs whi
h has been traversed so far.The algorithm terminates if one of N nodes depletes its energy and returns thelifetime as m epo
hs.Algorithm 2 Lifetime evaluation for a given sink traje
tory.Given: Sensor nodes |V | = N , sinks |S| = KInitialization: Set initial energy, ev
residual = E for all v ∈ V and initial epo
h m = 0loop: In ea
h epo
h, ∀v, v′ ∈ V ,while (ev

residual >0 || ev′

residual >0) {1. 
ompute the shortest path P m
v =

S

1≤k≤l
ek(v, v′),

∀v ∈ V , v′ ∈ V ∪ S, l :=#hops in Pv
ase 1: ek(v, v′) = ev
tx + ev′

rec, where v′ /∈ S
ase 2: ek(v, v′) = ev
tx, where v′ ∈ S2. update ev

residual− = ev
txwhile (v′ /∈ S) {update ev′

residual− = ev′

rec }3. update the number of epo
hs m + +and go to loop}return m6.4 ResultsThe primary fa
tors in our simulative experiments are: the number of nodes,the number of sinks, and the step sizes (i.e., the Eu
lidean distan
e betweentwo 
onse
utive epo
hs). In all s
enarios, nodes are uniformly distributed overa 
ir
ular �eld with radius R. The respe
tive network radii are 
hosen su
hthat a node density of 1
50 m2 is a
hieved. A 16 m dis
-based transmission range isused. Furthermore, sink assignment is done a

ording to the minimum Eu
lideandistan
e between nodes and sinks, whereas shortest path routing is used forpath sele
tion. For all experiments, we performed 10 repli
ations for ea
h fa
tor
ombination and present the average results from these. For the large majorityof results, we obtained non-overlapping 95% 
on�den
e intervals, so we do notshow these in the graphs for reasons of legibility.For the SNC 
omputations, the popular token-bu
ket arrival 
urve and rate-laten
y servi
e 
urves are used. In parti
ular, for the servi
e 
urve we use arate-laten
y fun
tion that 
orresponds to a duty 
y
le of 1%. For the 1% duty
y
le, it takes 5 ms time on duty with a 500 ms 
y
le length whi
h results in alaten
y of 0.495 s2. The 
orresponding forwarding rate be
omes 2500 bps.For the lifetime evaluation, the nodes are set to an initial battery level of

0.1 joule. The pa
ket size is assumed to be 100 bytes. Based on τ = 2 for thefree spa
e propagation, we apply Equation (18) in order to get the 
urrent 
on-sumption. In all s
enarios a pa
ket transmission in
urs a 
urrent 
onsumptionof 8.5 mA with−25 dBm for distan
es up to 12.5 m, and 9.9 mA for distan
es2 The values are 
al
ulated based on the TinyOS �les CC2420A
kLpl.h andCC2420A
kLplP.n
.



between 12.5 m and 23 m with −20 dBm. Here, a transmission data rate of
250 Kbps is used, whi
h takes ttx = 3.2 ms for a 100 byte pa
ket. A 
onstant volt-age of 3 V is used to transmit and re
eive modes. We use a 
urrent of 19.7 mAfor the 
onsumed power by the re
eiver ele
troni
s with a 1 % duty 
y
le forre
eiving a data pa
ket. With these assumptions, we apply Equations (10) to(18).Experiment 1: Varying the number of nodes and sinks under a �xedstep size The simulation results of the worst-
ase delay for the di�erent 
om-petitors over 20 epo
hs are shown in Figure 10(a) and (b) for a 200-nodes-10-sinks and 500-nodes-20-sinks WSN, respe
tively. Here, the step size of the equalse
torization traje
tory resulting from a movement by a 
enter angle of 10 de-grees is used as a referen
e for the step sizes in the polar grid, outer periphery,star, and random walk traje
tories.In both s
enarios, the polar grid traje
tory a
hieves signi�
antly lower worst-
ase delays than its 
ompetitors (espe
ially in the 500 node network). On average,the polar grid a
hieves about 50 % lower delays than the random walk and theouter periphery and roughly 20 % lower delay than the equal se
torization andthe star. As we expe
ted, the random walk traje
tory provides a high worst-
asedelay. At �rst glan
e surprisingly, the outer periphery performed even worsethan the random walk, though, due to the fa
t that the sinks are rather far awayfrom some of the nodes this is not unreasonable. The star traje
tory produ
es abetter delay bound than the equal se
torization for the growing amount of nodesand sinks. An interesting thing is the star traje
tory 
an 
ompete the polar gridat some epo
hs of the traje
tory. The equal se
torization produ
es fairly gooddelays in the smaller network but 
annot stay 
lose to the polar grid in the largerone. So we validated its lesser s
alability in terms of delay performan
e as it wasalready indi
ated in the analyti
al evaluation in Subse
tion 4.4.
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(a) (b)Fig. 10. The worst-
ase delay 
omparisons of (a) 200 nodes with 10 sinks network, and(b) 500 nodes with 20 sinks network.
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(a) (b)Fig. 11. The lifetime 
omparisons of (a) 200 nodes with 10 sinks network, and (b) 500nodes with 20 sinks network.The results for the lifetimes of the �ve 
ompetitors are shown in Figure 11(a)and (b). Here, the x-axis represents the lifetime of the WSN (in number ofepo
hs). The y-axis indi
ates the per
entage of the total energy 
onsumption ofthe whole network during the lifetime of the WSN. As 
an be observed, the polargrid traje
tory strongly outperforms the other traje
tories in both s
enarios. Onaverage, the polar grid a
hieves a 440 %, 450 %, 100 %, and 330 % higher lifetimethan the random walk, outer periphery, star, and equal se
torization traje
tories,respe
tively. From Figure 11 it be
omes 
lear that this is mainly for two reasons:(1) it requires less total energy per epo
h and (2) it drains the energy fromthe sensor �eld in a more balan
ed fashion (indi
ated by having a higher totalenergy 
onsumption when the network dies). We 
an see su
h e�e
ts in the startraje
tory although it a
hieves 50 % lifetime of the polar grid traje
tory. It maybe noteworthy that the equal se
torization a
tually performs worse than therandom walk in the 500 node network indi
ating that it does not s
ale well withrespe
t to lifetime due to a high energy 
onsumption per epo
h as well as notbeing su

essful in avoiding hot-spot problems. Similarly, the outer peripheryperforms worse than the random walk in the 500 node network. This is evena bit more surprising than its inferior delay performan
e, as single sink outerperiphery traje
tory maximizes lifetime. So, this indi
ates that the multiple sinkstraje
tory problem is quite di�erent from its single sink 
ounterpart.Experiment 2: Varying sinks under the same network In the next exper-iment, the e�e
t of the number of sinks for ea
h of the 
ompetitors is evaluated.Apart from varying the number of sinks, we use the same settings as for Ex-periment 1. Figure 12 provides the results for the delay bounds under di�erentnumber of sinks in a 500 node network. As 
an be seen, the traje
tories that arereally able to exploit a growing number of sinks to redu
e the delay signi�
antlyare the polar grid and the star; the outer periphery and the equal se
torizationare a
tually quite insensitive to it, the random walk exhibits a rather 
haoti
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Fig. 12. Delay bound 
omparison under di�erent numbers of sinks in a 500 node net-work.behavior (20 sinks are worse than 10 sinks). You may note that in the 6 sinks
ase the equal se
torization outperforms the polar grid. In this s
enario, the startraje
tory is even better than polar grid traje
tory. For the growing amount ofsinks, the delay bounds of equal se
torization traje
tory do not di�er too mu
hand the polar grid is signi�
antly better than others. This, as already dis
ussedin Subse
tion 4.4, is due to the artefa
t that Kin, Kout ≥ 3 disables an e�e
-tive optimization of the polar grid traje
tory for this small number of sinks.In a 
ertain sense it shows that an unoptimized polar grid 
an also performunfavorably.Experiment 3: Varying step sizes under the same network From Exper-iment 1 and 2, we 
an 
learly see that the polar grid traje
tory is a promisingheuristi
 for minimizing the worst-
ase delay and maximizing the lifetime oflarge-s
ale WSNs. In this last experiment, we now investigate the e�e
t of vary-ing the step size of the polar grid traje
tory. For this, we fo
us on the lifetimeperforman
e for di�erent step sizes as the delay performan
e is not parti
ularlysensitive to these. Figure 13(a) and (b) show the lifetimes of the polar grid tra-je
tory for di�erent step sizes in a 200 node network with 10 sinks (here (b)provides a zoom-in for an interesting range of (a)). The 
orresponding total en-ergy 
onsumption of Figure 13(a) is presented in Figure13(
). The interpretationof the x-axis for Figure 13(a) and (
) is as follows: based on the 
enter angleof an annular segment θ2 = 2π
Kout

, the di�erent step sizes are 
omputed as θ2

n
,where n represents the value of the x-axis; this means the x-axis runs from largestep sizes to very small ones. More spe
i�
ally, the optimal value of Kout in thisexperiment is 7 (out of 10 sinks) and thus θ2 = 2π

7 and the step size is varied byletting n = 2k for k = 0, ..., 9.



From this experiment, we 
an see that the step size has a signi�
ant e�e
tin prolonging the lifetime. In parti
ular, it is neither good to move too mu
h ortoo little, but there is a step size that optimizes the lifetime. For 
omparison,we also show the performan
e of a stati
 polar grid-based sink pla
ement, whi
hbasi
ally provides the baseline lifetime performan
e. Hen
e, this shows anothertime that sinks mobility pays o�, but most if the traje
tory is designed 
arefully(in fa
t, random walk and equal se
torization performed worse than the stati
polar grid). A zoom-in for the interesting range of n between 8 and 32, wherethe optimum step size lies for this experiment, is shown in Figure 13(b). As 
anbe observed, the lifetime behavior is rather 
haoti
 in this range, whi
h hints atthe di�
ulty of obtaining a 
losed form for the optimal step size under the polargrid, whi
h we leave for future work.
0

50
10

0
15

0

steps

lif
et

im
e 

(in
 n

um
be

r 
of

 e
po

ch
s)

1 2 4 8 16 32 64 128 256 512

Polar Grid Trajectory
Polar Grid Static Sink Placement

0
50

10
0

15
0

steps

lif
et

im
e 

(in
 n

um
be

r 
of

 e
po

ch
s)

8 10 12 14 16 18 20 22 24 26 28 30 32

Polar Grid Trajectory(a) (b)

0
10

20
30

40
50

steps

en
er

gy
 c

on
su

m
pt

io
n 

(%
)

1 2 4 8 16 32 64 128 256 512

Polar Grid

(
)Fig. 13. Lifetime 
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Scenario 1 Scenario 2 Scenario 3

de
la

y 
bo

un
d 

(s
)

0
1

2
3

4
5

Polar Grid

Fig. 14. Delay bounds under three s
enarios of di�erent step sizes in 500 nodes with
10 sinks network.Varying step size does not di�er too mu
h for the issue of minimizing themaximum delay as presented in Figure 14. The �gure shows the delay bound of
500 nodes with 10 sinks network under three s
enarios: (1) step size equivalent tothe 
enter angle 5 degree, (2) step size equivalent to the 
enter angle 12 degree,and (3) step size equivalent to the 
enter angle 16 degree. As shown in Figure14, the delay performan
e is not sensitive under varying step size and the resultremains the same for too mu
h or too little step sizes.7 Con
lusionIn this report, we addressed the problem of �nding good traje
tories for multiplemobile sinks in WSNs with respe
t to both, minimizing worst-
ase delay andmaximizing the lifetime of the network. Due to its fundamental hardness, weresorted to a geometri
 interpretation of the problem for whi
h we introdu
edand optimized a polar grid traje
tory. The simulation results exhibited a verypromising delay and lifetime performan
e for the polar grid traje
tory when
ompared to other traje
tories.As the design spa
e for possible sink traje
tories is huge it is tempting to
ontemplate a bit about extensions as well alternatives to the polar grid traje
-tory. An obvious extension of the two orbit model used by our polar grid is touse n orbits. Going to n orbits, however, will be harder to optimize by enumera-tion as the sear
h spa
e for distributing K sinks over n orbits grows as (

K−n−1
n−1

)(allowing orbits to be empty). Apart from applying heuristi
s for that sear
h,one 
ould strive for a 
losed-form expression over the maximal distan
es in the
n-orbit polar grid to avoid this 
ombinatorial explosion. While this seems hardit would 
onstitute an important step in the general understanding of 
on
entri
traje
tories.



Non-
on
entri
, but still periodi
 (following a 
losed 
ir
uit) strategies areimaginable, for example a star shaped traje
tory. As a generalization of the
on
entri
 
lass of strategies one may hope for further improvement under theassumption of a su

essful optimization. In fa
t, we have experimented with aspe
i�
 (unoptimized) star-shaped traje
tory, yet it was inferior to the polar gridtraje
tory.Even for non-periodi
 traje
tories, like the random walk, one may see a 
aseif suitably enhan
ed. For example, a biased random walk whi
h tries to avoidareas of low energy 
ould perform well with respe
t to lifetime maximization,though this involves a 
ertain state-dependen
e whi
h may be undesirable inlarge-s
ale WSNs.At last, we brie�y want to dis
uss how to possibly relax 
ertain assumptionswe made throughout the report leading to further future work items. Dispensingwith the assumption of a 
ir
ular �eld 
ould 
ertainly be interesting. One dire
tway may be to go for an ellipsoid shape, whi
h would probably still allow for asimilar approa
h to the one presented in this report, based on a suitably gen-eralized polar grid (probably with segments of unequal size within one orbit).Similarly, we have made assumptions on node homogeneity and uniform distri-bution of nodes. Both of these may be relaxed by going to a three-dimensionalgeometri
 interpretation of the original problem where the third dimension 
ould
apture, e.g., nodes with (initially) higher battery levels or areas of higher nodedensity. Clearly, the problem will not be
ome simpler, but based on the good ex-perien
e we made with the geometri
 interpretation of the underlying problem,we believe that this 
ould be a winning strategy also for su
h advan
ed problemsettings.Referen
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