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Abstract. For smaller scale wireless sensor networks (WSN) it has been
clearly shown that a single mobile sink can be very beneficial with re-
spect to the network lifetime. Yet, how to plan the trajectories of many
mobile sinks in very large WSNs in order to simultaneously achieve life-
time and delay goals has not been treated so far. In this report, we delve
into this difficult problem and propose a heuristic framework using multi-
ple orbits for the sinks’ trajectories. The framework is carefully designed
based on geometric arguments to achieve both, high lifetime and low
delay. In simulations, we compare two different instances of our frame-
work, one conceived based on a load balancing argument and one based
on a distance minimization argument, with a set of different competitors
spanning from statically placed sinks to battery-state aware strategies.
We find our heuristics to perform very favorably: both instances out-
perform the competitors in both, lifetime and delay. Furthermore, and
probably even more importantly, the heuristic, while keeping its good
delay and lifetime performance, scales well with an increasing number of
sinks.
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1 Introduction

There is a growing trend for ever larger wireless sensor networks (WSN) consist-
ing of thousands or tens of thousands of sensor nodes. For example, the WSN
built by the GreenOrbs project at Zhejiang Forestry University for forest surveil-
lance [10] employs 1000+ nodes. We believe this trend will continue and thus
scalability plays a crucial role in all protocols and mechanisms for WSNs. An-
other trend in many modern WSN applications is the sensitivity to the delay
for the information transfer from sensors to sinks. In particular, WSNs are a
central part of the vision of cyber-physical systems and as these are basically
closed-loop systems many WSN applications will have to operate under stringent
timing requirements. Hence, information transfer delays need to be controlled.
On the other hand, since most WSNs are still based on battery-operated nodes,
energy-efficiency clearly remains another premier goal in order to keep network
lifetime high. How to achieve a lifetime prolongation by using mobile sink(s) to
collect the data of a WSNs has already been investigated in many works (e.g.,
[12, 2, 29, 24]). All of these leverage on the effect that the burden of being close



to a sink is shared over time among all the nodes in the field. This alleviates the
typical hot-spot problem, where nodes near the sink drain their battery much
faster than others since they have to relay many data packets for other nodes.
However, by using mobile sinks, in general, the information transfer delay from
sensors to sinks increases. This is simply due to the fact that there is always
a delay-optimal placement of the sinks and leaving it the message transfer de-
lay becomes worse. This conflict between lifetime and delay shows that these
two goals have to be carefully traded off against each other when planning the
trajectories of multiple mobile sinks.
The contributions of our report are:

— To the best of our knowledge, we are the first to tackle the trajectory plan-
ning problem for multiple mobile sinks in very large WSNs under lifetime
and delay goals.

— We derive a heuristic framework that keeps up its delay and lifetime per-
formance in very large WSNs as long as a constant node to sink ratio is
retained. (—Section 4)

— A thorough simulative investigation and comprehensive comparison with al-
ternative approaches inspired by literature is presented. (—Section 5)

Our work is based on using multiple orbital trajectories for the mobile sinks
and segment the sensor field into a so-called polar grid. In each orbit the sinks
are moved synchronously (e.g., once a day), following a slow mobility approach
[13]. For the case of very large WSNs with many mobile sinks (say hundreds)
this n-orbit model generalizes recent previous work of ours using only 2 orbits
[19]. While we base on this work with respect to giving the problem a geomet-
ric interpretation, we remark that the n-orbit case is significantly harder. Most
severely, the distribution of K sinks over n orbits leads to a combinatorial ex-
plosion of the search space for the values of K that we require in very large
WSNs. Similarly, the optimal choice of the number of orbits n as well as the
sizing of their radii become very difficult questions. We address these questions
with a heuristic framework. It is built on a geometric reduction of the problem,
where the two performance characteristics, delay and lifetime, are amalgamated
into minimizing the Euclidean distance between nodes and sinks. The intuition
behind this is that both, delay and lifetime, benefit from nodes being closer in
terms of Euclidean distance to their assigned sinks.

2 Related Work

In literature, a considerable number of works advocate for using a single or
multiple mobile sinks [2, 3, 4, 23, 12, 14, 16, 29, 5, 19, 27, 28, 6, 24, 9]. The
majority of these deal with single sinks [2, 12, 16, 29, 17, 27, 24, 30, 9] and all
of them focus on prolonging lifetimes. The effects on information transfer delay
are either completely neglected or simply observed without taking actions to
establish delay as an objective of equal importance to lifetime maximization.
Clearly, the single mobile sink studies were not conceived with very large WSNs
in mind; however, even the works on multiple mobile sinks usually considered a
rather low number of sinks and nodes and did not investigate the scalability of
the proposed mechanisms. In our work, we target very large WSNs and strive for



high lifetime and low delay simultaneously, which sets us apart from the current
state-of-the-art. Having said that, many of the previous works have inspired our
work and we discuss them now separately:

Sink trajectories can be categorized into random, state-dependent, and pre-
defined. Usage of a random trajectory can, e.g., be found in [4] where mobile
sinks perform a random walk and collect the data from the sensors of their
assigned clusters trying to achieve a load balancing and lifetime maximization.

Recently, [2, 27, 16] address state-dependent sink mobility for maximizing
the lifetime of WSNs. In their approaches, the sink trajectory is a function of a
particular network variable, such as, e.g., the state of nodes’ batteries. Though
the lifetime performance of such trajectories is good, the methods assume knowl-
edge of global and dynamic information for determining the optimal paths and
sojourn times, which is a strong assumption in very large WSNs.

[6, 26] propose a predefined single sink trajectory independent of any network
state such that the sink appears on the same path periodically. [15] also pro-
poses a geometrically motivated pre-defined trajectory for multiple sinks where
the sinks move on the perimeters of a hexagonal tiling. This is shown to be
beneficial for lifetime prolongation. Like us they require no a priori knowledge
of node locations which is desirable for very large WSNs, yet they do not con-
sider delay performance. In contrast to a periodical movement, the work in [11]
proposes a predefined sink trajectory where the sink only appears once at each
position along the trajectory. The author studied the improvement of lifetime
prolongation by using a joint sink mobility and routing scheme similar to [17].

In our work, we tackle the problem of finding good trajectories for multiple
mobile sinks such that we keep the maximum message delay low and still achieve
a long lifetime. So, delay and energy are traded off against each other. Along
similar lines, [27] optimizes this trade-off, too, designing a trajectory for a “data
mule” which collects the data from each sensor node directly [23]. Yet, the data
mule approach incurs long latencies and is generally not applicable in delay-
sensitive WSNs. In [29, 17, 11], the movement of a sink is abstracted as a sequence
of a static sink placements assuming that the time scale of sink mobility is much
larger than that of data delivery; we also follow this assumption of slow mobility
(as it has been coined in [13]) in our work.

3 Network Model and Problem Statement

Let V' be the set of sensor nodes with |V| = N; S is the set of sinks with
|S| = K. For both, N and K we assume large scales with N being on the
order of thousands and K up to the order of hundreds. The reachability between
nodes is modelled as a directed graph, G = (V,€), where ¥V = V U S. For all
a, b €V, the edge (a,b) € £ exists if and only if @ and b are within a disc-based
transmission range ry;,. The sensor field is assumed to be a circular area with
radius R.

3.1 The Nodes

The nodes are i.i.d. uniformly distributed over the sensor field. We assume the
node density (governed by the parameters R and N) to be high enough to ensure



connectivity with high probability (see also Section 5.4). The nodes are homo-
geneous with respect to their initial energy E and their transmission range ry,.
Also, the costs for sending and receiving messages do not differ from node to
node. The amount of data produced by each of the nodes is the same and follows
the same traffic pattern, e.g., a periodic data generation. The energy consump-
tion for operations other than receiving or transmitting can be neglected, since
for homogenous nodes they consume the same amount of energy. The nodes are
stationary and use multi-hop-communication to send their data to their assigned
sink. This means the routing topology is actually a forest of sink trees embedded
in the reachability graph G. The assignment of nodes to sinks is further discussed
in Section 4.

3.2 The Sinks

The sinks are assumed to have no energy constraints. We assume that the sinks’
movement is synchronous, i.e., all sinks move at the same time. Further, sink
movement takes places on relatively long time-scales (e.g., once a day), much
larger than the time-scale of the message transfer delay from sensors to sinks
(e.g., on the order of seconds). Therefore, we neglect the time periods when the
sinks are actually moving (or being moved) and the sink mobility is abstracted
as a sequence of sinks’ locations. At each location the sinks stay for an equal
amount of time, further on called epochs. In particular, we also assume that all
data is flushed from the WSN before a sink movement takes place, i.e., there is
no data dependency between epochs.

3.3 The Problem Statement

In this setting, we want to simultaneously achieve a low information transfer
delay and a long lifetime. Here, we define lifetime as the time until the first
node of the network “dies”, i.e., its battery is depleted. For the delay, we consider
the worst-case message transfer delay for the whole network. To that end, we
use sensor network calculus [20] to compute the worst-case delays for each data
stream from a node to its sinks and take the largest of these worst-case delays
as the worst-case delay for the whole network.

To solve this dual-objective problem one basically has to answer three ques-
tions in each epoch:

1. Sink Trajectories: where should the sinks be positioned?
2. Sink Selection: which sink does a node choose to send its data to?
3. Sink-Tree Routing: which route is the data sent to the sink?

In this report, we focus on the planning of the sink trajectories and “hard-code”
the other two questions: for sink selection, each node chooses its nearest sink with
respect to Euclidean distance (within the same orbit, more details are given in
Section 4); for the routing we assume shortest path routing in the reachability
graph G, mainly because it is a frequent case. Yet, even under these restrictions,
the problem is still a very hard one (even strong reductions of it are NP-hard,
see also [19] for a discussion of this). The main complexity has its roots in the
conflicting objectives delay and lifetime. The end-to-end delay, as well as the



energy consumption, is dependent on the path between nodes and their sink, as
well as any other path interfering with this one. Hence there is a dependency
structure between the end-to-end delays which is very hard to untangle.

4 Heuristic Framework

In this section, we present our heuristic framework for planning the sink trajec-
tories in very large WSNs with delay and lifetime goals. Due to the complexity
of the problem, we reduce it to a geometric problem. This abstraction is justi-
fiable by the large scale of the WSN as we target it in our work. The rationale
behind it is that the delay (mainly governed by the number of hops) needed to
reach a sink is proportional to the Euclidean distance from the nodes to their
sinks. On the other hand, per epoch, we divide the network area in a number of
cells (using a polar grid segmentation of the circular sensor field), correspond-
ing to the number of sinks. In each epoch, each node is assigned to the sink
of its currently corresponding cell. Thus, we can abstract the load assigned to
a single sink as the area of its cell. This geometric interpretation of load and
delay is instrumental in constructing good sink trajectories, because instead of
complex delay and energy functions we can now formulate the problem in terms
of the size of cells and Euclidean distances between nodes and sinks, which are
considerably simpler measures.

4.1 Orbital Sink Trajectories

Table 1. Notations for the orbit model.

Radius of the network area.

Number of nodes used.

Number of sinks used.

Leftover sinks.

Number of orbits used.

i; ¢ € {1,...,n}|Number of sinks placed in the i-th orbit.
R;; i€ {1,...,n} |Radius of the i-th circle,

constructing the polar grid.

di; i € {1,...,n} |Maximal distance of one point in a cell

of the i-th orbit, to the corresponding sink.
a;; i € {1,...,n} |The area of one cell in the i-th orbit.

0 Movement angle of the sinks between epochs.
v € [1,2] For v = 1 we get the MD-approach,

for v = 2 the EA-approach.

=TSRz ™

Our heuristic framework is based on an orbital model for the sink trajec-
tories in order to achieve a small distance between nodes and their sinks, as
well as a balanced division of the network area into cells [19]. In a nutshell, it
works like this: we conceive several circles around the center of the sensor field,



with different radii, called orbits; the sinks are placed on these orbits with reg-
ular interspaces and revolve around the center, like satellites move around the
earth (see Figure 1). For a more detailed presentation of this n-orbit model, we
introduce some definitions and notations (see also Table 1):

— We call the innermost orbit the first orbit and the outermost orbit the last
or n-th orbit.

— By a sink distribution we refer to how many sinks are placed in each of the
orbits; we denote the number of sinks placed in the i-th orbit by K.

— The orbits and their sinks divide the network area in a polar grid as illus-
trated in Figure 1. The cells within the same orbit have the same shape and
size. The sinks are located in the center of their cells, such that they mini-
mize the maximal Euclidean distance of any point of this cell to themselves.
This center can be calculated by replacing the cell by a trapezoid (or trian-
gle, in the case of the first orbit) sharing the same corner points as the cell
and determining the center of the minimal enclosing circle of this trapezoid.
A formal proof for the correctness of this intuitive statement can be found

in [18].
— The polar grid consists of n concentric circles segmenting the sensor field
into circular segments as well as ring segments. By R; (i € {1,...,n}) we

denote the radii of the concentric circles, where Ry describes the radius of
the circular segments. The ring segments in the ¢-th orbit have an outer
radius of R; and an inner radius of R;_1. The choice of R; affects both, the
number of nodes in a cell and the maximal distance from any point in the
cell to the sink.

— By d;, we denote the maximal distance of a point within a cell of the i-th
orbit to its corresponding sink. Further, by a;, we denote the area of a cell
in the ith orbit.

— To preserve the polar grid structure, after each epoch, the trajectories are
constructed by rotating all the sinks by the same angle 6 around the center
(thus a 6 of 0° or 360° would result in no movement at all). More complicated
trajectories are conceivable: the angles by which a single sink moves may be
different from other sinks, even if they are in the same orbit and could
change from epoch to epoch. Such trajectories would, however, not preserve
the polar grid structure and be difficult to analyze. Since we are considering
very large networks, there might be a practical upper bound on the angle
f the sink can move between epochs, simply by the limited distance a real
mobile sink may move between epochs.

The orbit model is flexible, since one can choose different sink distributions
and number of orbits and also form the cells by varying the radii R;. Through
this flexibility we are able to adress different goals like minimizing the overall
Euclidean distance from any node to its sink or keeping the cells equally sized.
Also the model scales naturally for an increasing number of sinks by simply
increasing the number of orbits.

In the following we present two particular orbit models. The first has the goal
of minimizing the maximum Euclidean distance from the nodes to their sink.
The second has the goal of keeping the cells equally sized, while reducing the
Euclidean distances as much as possible. Before we delve into the construction
of these two orbit models we provide an overview about their construction. In



Fig. 1. The n-orbit model.

a first step we found, by systematically searching the possible sink distributions
and radii R;, that these follow rather simple rules. In a second step, we search for
the number of orbits, which results in the smallest maximal Euclidean distance.
Up to this point, however, we handle the sinks, as if we could split them up
and place them over several orbits, which is, of course, not possible. Hence in
the last step, we distribute the sinks in such a way, that they get close to the
formulations found in the first and second steps.

4.2 Two strategies rising the parameter gamma

At first, we assume the number of orbits to be given and discuss the distribution
of the sinks over the orbits (setting the K;) and sizing the radii of the polar grid
(setting the R;). Based on this we compute the optimal number of orbits in the
following subsection.

Minimzing the Euclidean distance

As mentioned above, we derive two types of orbital sink trajectories. The first
has the goal of keeping the maximal Euclidean distance small. This goal however
is hard to achieve, due to a very complex goal function and a large number of
variables. The optimization problem can be formulated as follows:

: : d
{K:K1+r.r.1.1£Kn:K} 0<RiZR {1??5%{ it}

with:
Rycosfp if K1 =3
" { o | )
WLKL& if K1 >3
and for ¢ > 1:
R; cos o if Rjcosa; >
d; = \/(Ri—Ri—1)2+4R¢R¢,1 cos? %_KLl (2)

if R;cosa; < x

2sin(%7KLi)

where «;, respectively 3, is the angle at A in the triangle AABO and z is the
distance between D and the midpoint on the line between A and B (see Figure



2). For the construction of dy and d;, please refer for more details to [19]. To
solve this problem, we have thoroughly explored the respective search spaces
systematically, to find the best sink distribution and radii R;. Due to the high-
dimensional search space and a fine-grained sub-sampling of it this exploration
involved a considerable amount of computational effort (several weeks of run-
time on high-end PCs). The search does not only consists of the continuous
parameters R; which lie in [0, R;41] (with R, € [0, R]), but also one has to con-
sider a combinatorially growing amount of possible sink distributions (assuming

orbits can be empty there are (*"") distributions).

%
0

Fig. 2. Illustration of the distance calculation.

By sampling we have found that the distribution of sinks, which minimizes
the maximal distance in the polar grid, follows roughly the following equations:

2K

KZ':ZKlzK]‘f'(Z—].)Kl; Klzm

Equal-sized areas
So far we have thought about keeping the areas similar sized and then minimized
the overall maximum distance, resulting in this distance being equal in each cell.
In the second type of orbital sink trajectory, we want to keep the cells equally
sized and then minimize the overall maximum distance.
We will denote the sink distribution in a vector, such that K = K; + ...+
K, =|[(K,...,K,)|1 - The following Theorem 1 gives a constructive way, how
to choose the radii, such that the cells have equal areas.

Theorem 1. If

R
2 1 .
k=1
and )
R°‘K
2 1

when all cells have equal area.



Proof. Let 2 < i < n be arbitrary, when the area of a cell in the k£ -th orbit is
given by:

:W(Riz - Rzz—l) _ WKflR%(ZZ:1 Ky, — ;;:11 Ki)

A;

Where A; is the area of a cell of the first orbit. Further one sees easily that
R,=R.

Under the same polar grid area assignment, the maximum distances for the
triangle d; and for the trapezoid d; can be computed according to the Equation
1 and 2.

However, it is still unclear how to distribute the sinks optimally, such that a
low maximal Euclidean distance is achieved. So we still have to deal with the
combinatorial explosion of possible sink distributions. Also for this approach
we decided to search systematically for the best solution. Having a closed form
of radii distribution under the equal-sized area, sampling can be done much
faster. Based on the results by sampling, the sinks distribution K; can be derived
roughly as the following;:

K
KZ:K1+2(Z—1)K]_, Kl:iZ
n

Table 2. Comparison of MD and EA Methods.

‘Minimum Euclidean Distance‘ Equal Sized Area

Sink K1 K _ 1
distribution it Ky 2l
Orbits’ radii R;=i-& Ri=i-&
Relationship n n
of K, K1,and K=K i K=Ky 2i—1

n i=1 i=1

Comparing the two strategies
The results of these computations for four orbits (for other numbers of orbits
the results look similar) can be found in Figure 3. One can observe in the first
figure that the radii converge to R; =i - %. As seen in Figure 3 the difference
between the two approaches lies mainly in the sink distribution. They follow the
rules presented in Table 2, the dashed lines in the figures represent how the sink
distribution, for 100 sinks, would have to look like, if one applies the rule.
Both strategies have in common that the radii are converging to the same
values R; = z% , which can be seen esspecailly for low n . Also they share the
linear increasement of sinks in the orbtis, but with different rates. One could see



Four Orbits’ Radii Distribution (MD vs. EA)
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Fig. 3. Radii and Sink distributions for MD and EA.

the two strategies as special cases of an more general approach which distributes
the sinks in the following way:

2K
n(ny —y+2)

For v = 1 this results in the approach of minimizing the maximal distance
(further called MD) and for v = 2 we get the equally sized area approach (further
called EA). (For v = 0 one gets an euqal distribution of sinks over the orbits.)
There are other values for v imaginable, resulting in hybrid approaches, however,
we will not consider other values for v in this report. For the rest of the report
we set R, =1 - % to make further steps tractable.

We hope to see that equally sized cells are performing better in terms of
energy and the strategy which concentrates on minimizing the maximal distance
is doing better in terms of delay. Further for values of v between 1 and 2 we
hope to see how the tradeoff between energy and delay developes.

K,’ZKl —|—’7(’L—1)K1, Kl = (1)

4.3 Choosing the Right Number of Orbits

Clearly, choosing the right number of orbits is an important factor. In the smaller
scale setting of our previous work [19] we found significant gains when going from



a single orbit to a two-orbit trajectory. Hence, in the very large-scale WSNs
that we target in this work, we have to find out which number of orbits is
optimal. For this purpose, we compute for different number of sinks the optimal
number of orbits by checking through all numbers of orbits from 1 up to 100
for both, MD and EA. How this computation was performed for a given number
of sinks is shown in Algorithm 1. The algorithm takes as inputs, the number of
sinks and the value of v and outputs the number of orbits, which results in the
smallest maximal Euclidean distance between any point and its allocated sink.
The alert reader may notice that the algorithm takes only the first and last orbit
into account for calculating the maximal Euclidean distance. This is due to the
following lemma:

Lemma 1. Let K and n be such that 3n(ny—~+2) < 2K, then d; is increasing
in i for all i > 2.

Proof. Let K sinks be given and let n > 1 such that 3(ny—~v+2)n < 2K . Then
define as before: R

R;=1i—
n

For the sink distribution we have to think about, what happens, when the total
number of sinks is not such a multiple of K; that (1) is fullfilled. We start by
defining

2K ;
= |y e Kem Ut

and denote the rest of the sinks by L :

L=K-) K,
i=1
Lemma 2. The chosen distribution fulfills:
S H-k
Proof.

YK=Y iKi+li=L+)» iKi=K

Lemma 3. It holds K; > 3

Proof. Since 3(yn — v + 2)n < 2K we have

K
L) 23 -

’I’L(’Y’ff% Z 3 5 from which follows

For calculating the maximal distance d(n) in the polar grid, we would need
to calculate the distances in the orbits d;(n) . To calculate these distances we
need to know, if we are considering "short" trapezoids or "long" trapezoids. The
following theorem shows, that we have to consider only "short" trapezoids in all
orbits, which makes the upfollowing calculations much easier.



Theorem 2. For all orbits holds that the resulting trapezoids are short, i.e.

| AB |

5 <7 (3)
Proof. Fix some i and assume first that L = 0 , then
[AB] _ ’LE sin(—7T )
2 n (vi—~v+1)K;
and
2 2 o2 4 .2 4 2
z° = R;sin®(————————) — 2R, R,_1sin“(—————) + R;_
((m—wrl)Kl) ! ((72—7+1)K1) !
Hence (3) is equivalent to the condition that:
™
2R;R;_1sin®(————————) < R2_
' ((72—7+1)K1)* '

Which is, by inserting values for the radii, equivalent to the condition:

Vs
i—1>2isin?(—
- ((71*7+1)K1
T 27
1<i(1—2sin?(— ) =jcos(—
<l ((71—7+1)K1) ((72—7+1)K1)

This is fulfilled for all ¢ > 2 and all K3 >3 ,~v€[1,2] .
To give the maximal distance in the whole polar grid, it suffices to calculate
the maximal distance in the n -th orbit, if L =0 :

Theorem 3. d;(n) is an increasing function in i > 2 for all v € [1,2] .

Proof. We know that:

4 = R(1+4(i = 1)icos(§ — z=2mr))®
‘ QTLSIH(% — m)
R 1 T m 1
= = (— + (i = icot? (5 — —————7))7
n(4sm2(g — m) ( ) (2 (’yzf’erl)Kl))

Since d;(n) is positive, it is sufficient to show that (d;(n))? has positive derivative,
which is given by:

—cos(§ — W) sin(5 (’Yi*’Yll)Kl )(('yi*'y’fl)zf(l)

2sin’(

Dy(df(n)) = E—
2 (yi—y+DK:

s

. T T 2 s
(4i — 2) cos*( — m)sm (3 - m)

_|_

4w us
2sin’(5 — mimFoR)
) . (T ™ Gn2( T s s
4(i* — i) cos(§ — m)ﬁn (5 — (»yi—'y+1)K1)(('7i—”/11)2K1)

4w ™
280 (3 — iR



Since the denominator is larger zero for all ¢ > 2, K1 > 3 and v € [1, 2] we can
concentrate on the numerator. Note that we can factor out:

(:os(7T T )s'n(ﬂ T ) L sin( 21 )>0
o " Nein(to— "y Zip(r— T
2 (yi-v+1)Ky 2 (yi—v+1EK" 2 (yi—y+ 1K~
Hence we have to prove:
) . 2m T 9 N . T m
2i—1) sin(m—-— > - 4(1°—3)sin(=————)+1
(2i=1) in{ ("/Z_'Y“"I)Kl) (72—7+1)2K1(( Jsin( (w—’y+1()f)<1) )
4

We start with the left side of (4). Using Taylor-Expansion around 7 we have:

2 27 27 1
2i—1) sin(r— ———————) > (2i—1 _ —(— 4
@iVt > ) (o~ e T)

the right side of (4) will be also treated by a Taylor-Expansion around 7 ::

T 0 s

(vi—7+ 1)2K, (45" — ) sin(5 = (yi—y+ 1)K1) 1)

vy . T 73

< (40— i) (— + o
_(72—7+1)2K1(( )((72—7+1)K1 3l(yi — v+ 1)°KY

)+ 1)

Comparing these two expressions we need to show:

3
v
2i — 1)(2(~i — 1) —
3
v Vi
>4~(i% — i , + - +
= )((w—erl)Kl 3!(72—7+1)3Kf) 7

Next we will eliminate the parameter v by noting that v € [1,2] and hence
(vi—~+1) € [i,2i — 1] . The expressions (3) and (4) can hence be bounded and
we can simplify the inequality further:

3 3

> 8(i2 s ™

™
2% — 1)(2 — —— (T
Qi1 - 5 2 VG 3eKs

)+2

Multiplying this by 3i2K3 the inequality can be rewritten into a multinomial in
Kiandi:

120 K3 — 3(6K3 4 24w K?) + i? (241 K26 K3) — 6im® + 57° > 0

With standard methods of analysis one can show, that this inequality is fulfilled
for each K; > 3 and ¢ > 2 (see also the next part). Hence (4) is fulfilled for all
v € [1,2] and by this the derivative D;(d?(n)) is positive.

Then, d; can be given by:

1
di =—

+
n <4sm2(g

- )
(vi—y+1)K1
1/2
- /

(i — 1)icot2(§—m)>



Algorithm 1 Computing the optimal number of orbits.
Inputs: The number of sinks K, the network radius R, and
1 for MD

2 for EA

the parameter v =

for n =1 to 100 do
1. Compute K; = ﬁ
2.if (K; > 3)

WILL) for K1 >3
2.1. Compute d; = 2 K

%cos(g - Kil) for K1 =3

2.2. Compute
dn = sy L+ A = Dncos (3 — )

yn—y+2
2.3. Compute D}, ., = maz{di,dn}
endfor

return orbit j such that D,,, = min;<ij<n D ..

Since d; is positive, it is sufficient to show that d? has a positive derivative, after
factoring out

cos( 5 — TR )sin( 3 — 7@1.7711)[(1) > 0, its numerator (the denominator is
positive) can be given by

(2i = 1)sin (7 — 52y, )

s -2 N\ i (T s
*m (4(Z — Z) SIH(§ - m) + 1) .

using a Taylor-Expansion around 7 for the first sum and using that sin(z) <1
for all z, we know that the above expression is larger than zero, if

273 <
3i2K3 —

which is true for all 4+ > 2 and K; > 3, which is the case by our assumptions on
K and n.

The condition of the lemma is not restrictive, as, for sink distributions ac-
cording to Table 2, it translates to having at least three sinks per orbit. Having
two or less sinks in one orbit would mean to place them in the center of the
whole sensor field as this minmizes the Euclidean distance, effectively wasting a
complete orbit. Hence, excluding such cases does not influence the best selection
of orbits. The optimal number of orbits for different number of sinks (up to 200)
and the different approaches are displayed in Table 3.

4.4 Distribution of Leftover Sinks

In our rules for the sink distribution we handle the sinks as real numbers. Of
course, they are integral and thus we simply use the following sink distribution:

Ky = {WJ ; K= [Ki+~(i—1)K]



Table 3. The optimal number of orbits for MD and EA.

[MD(#sinks) [EA (#sinks)[#orbits|

3-8 3-11 1
9-18 12-29 2
19-35 30-59 3
36-59 60-98 4
60-90 99-146 5

91-127 147-200 6
128-170 - 7
171-200 - 8

Algorithm 2 Handling of leftover nodes for MD and EA.

Inputs: The number of sinks K, the number of orbit n, the network radius R and the

1 for MD
parameter v = .

2 for FA
Begin:
1. Compute K1 = {n(’vif}(’v-ﬂ)J and

2. Compute the leftover nodes L =K — " | K;
3. while(L # 0) do
3.1.if (v = 1) do
3.1.1. Find orbit j such that d; = maxi<i<n d;
3.1.2. K;++ and L- -
end if
3.2.if (y=2) do
3.2.1. Find orbit j such that a; = maxi<i<n as
3.2.2. K;++ and L- -
end if
end while loop
return K; where ¢ =1,...,n such that K = > | K;

To run the experiments we choose different distributions of the sinks by the

above formula for differing v . However the fraction —=25__ is not an integer
n(ny—v+2)

for every n . In this cases we consider | and get an distribution which

w777
consists of K’ < K sinks. The remaining K — K’ have to be distributed in some
fashion which approximates the real values of K; . Let L = K — > " | K; #
0 is the number of leftover sinks. We deal with this leftover sinks simply by
distributing them over the orbits, in a greedy fashion, according to the goal of
the respective approach. In the MD case, we place one sink at a time in the
orbit which currently exhibits the maximal Euclidean distance, whereas in the
EA case we place the sink in the orbit which contains the cells with the largest
area. Algorithm 2 illustrates this procedure.



5 Performance Evaluation

In discrete-event simulations, we evaluate the delay and the lifetime performance
of our heuristic framework by comparing it to three different mobile sink trajec-
tories and two static sink placement strategies.

5.1 Delay Performance

With the help of sensor network calculus (SNC) [20], we evaluate the worst-case
delay performance. To apply the SNC, the network traffic has to be described in
terms of arrival curves «; for each node. An arrival curve defines an upper bound
for the input traffic of a node. To calculate the outputs of the nodes service curves
B; are used. The service curve specifies the worst-case forwarding capabilities
of a node. Based on arrival and service curves, we use the Pay Multiplexing
Only Once (PMOO) analysis described in [22] for the end-to-end delay bound
computation. A tool called DISCO Network Calculator [21] provides us with an
automated way of doing so.

5.2 Lifetime Performance

We define the lifetime as the number of epochs until the first sensor node depletes
its battery. The energy consumption for transmitting and receiving are taken
into account using an energy model based on MICAz motes [1]. The model
computes the energy level E7' of each sensor node v in epoch n using the following
equations:

By = Z Eio(w, fn(w)) + Z Erep(w, fo(w)), (5)

weTN WERY
with
Ereo(w, fo(w)) =Erey(frn(w)) = Prev - trew(fa(w)), (6)
B (w, fn(w)) =Piz(w) - tra(fn(w)). (7)

Here, 7, and R; denote the set of nodes to send to and receive from for v in
epoch n. In (6), we see that the energy consumption for receiving f,(w), the
amount of data from node w in epoch n, is just the time needed to receive the
data t,¢, (fn(w)) multiplied by the power consumption P,., of the receiving unit;
this is independent of the distance between the sending and receiving node. In
(7), the energy consumption for sending data is again the time needed to send
the data t:,(f,(w)) times the power consumption of the sending unit Py, (w),
which, however, now is dependent on the distance to w. Taking the values from
the MICAz data sheet [1], we can calculate the power consumed by the receiver
electronics Pr., and the transmitting electronics P, (w). The exact dependencies
of Py (w) on the distance to w is described by a model for the MICAz mote,
which can be found in [25].



5.3 Competitors

We have realized different competitors to compare our heuristic with. Unfortu-
nately, the field of multiple mobile sink for very large WSNs is barely tapped
so it was hard to find direct competitors. To create competitors we generalized
ideas from other (smaller scale) proposals ([12], [7], [16]). The competitors are
briefly described in the following; some of them are illustrated in Figure 4.

Random Walk: Initially, sinks are placed uniformly randomly in the sensor
field. At the start of each epoch, the sinks randomly choose a direction and step
size (ensuring, however, that they do not leave the sensor field). We use this
competitor as a baseline and also because it has been discussed in literature [4].

Outer Periphery: [12] remarks that, in the single sink case, a trajectory along
the periphery of the network optimizes the lifetime by balancing the load dis-
tribution. We generalize this concept by moving each of our sinks along the cell
peripheries, where the cells are formed according to the MD approach.

Following the Energy (FE): In this strategy, the sinks are placed randomly
over the network area for the first epoch. For the following epochs, the K sensor
nodes with the highest residual energy left are identified and the sinks move
near to them. We use this one only as a competitor for lifetime, as its delay
peformance is very bad. It represents the group of state-aware trajectories (e.g.

[16]).

K-Center Heuristic: [7] presents a polynomial 2-approximation for the NP-
hard K-center optimization problem. The competitiveness of the algorithm is
illustrated by the result of [8] which shows that if there exists an §-approximation
with § < 2 this results in NP = P. The authors use their algorithm on a
fully connected weighted graph, nevertheless the idea can be carried over to
our graph (see Appendix I). This is a competitor only for the worst-case delay,
as it performs badly with respect to lifetime due to being static. It serves as
a representative for algorithms based on graph-theoretic abstractions and was
expected to perform very well for delay due to its nice theoretical properties.

Static MD: This takes the same sink distribution as generated by our MD
heuristic, but the sinks are not moving. Instead we run the MD strategy for a
whole set of possible positions and choose the one, which has minimal delay. This
obviously bad lifetime competitor is included to show both, how the lifetime of
the network is increased by mobility as well as its negative effect on delay.

5.4 Experimental Set Up

Using discrete-event simulations, we evaluate the worst-case delay and the life-
time performance of our heuristic framework. In the experiments, nodes are
uniformly distributed over a circular field with radius R. The respective network



Fig. 4. Competitors: (a) a random walk, (b) an outer periphery trajectory, and (c) a
static MD.

radii are chosen such that always a node density of W is achieved. A 20m
disc-based transmission range is used under a shortest path routing for the sink
trees. Token-bucket arrival curves and rate-latency service curves are considered
for SNC operations. In particular, for the service curve we use a rate-latency
function that corresponds to a duty cycle of 1% and it takes 5ms time on duty
with a 500 ms cycle length which results in a latency of 0.495 s'. The correspond-
ing forwarding rate becomes 2500 bps. Initially, the nodes are set to an initial
battery level of 0.1 joule. Packets of 100 bytes length are sent to the correspond-
ing sinks. Apart from static sinks, all others move synchronously to their next
position between epochs. The MD and EA methods use a movement angle of
6 = 10°. To compute the energy consumption (Equation 5), we use the follow-
ing data based on [25, 1]. The current consumption is 8.5mA with—25dBm for
distances up to 12.5m, and 9.9 mA for distances between 12.5m and 23 m with
—20dBm. For receiving a data packet, a 1% duty cycle is considered with a
current of 19.7mA. A constant voltage of 3V is used. A transmission data rate
of 250 Kbps is used, which takes t;, = 3.2ms for a 100 byte packet.

5.5 Results

We analyze the following three scenarios: 1500 nodes with 15 sinks, 5000 nodes
with 50 sinks, and 10000 nodes with 100 sinks. So, we keep a constant node to
sink ratio of 100 nodes/sink. For each scenario, we analyze the energy consump-
tion per epoch, the lifetime and the worst-case delay. For all experiments, we
performed 10 replications and present the average results from these. For the
large majority of results, we obtained non-overlapping 95% confidence intervals,
so we do not show these in most of the graphs for reasons of legibility. The static
MD and the K-center heuristic are static sink placements so that we compute
the lifetime based on the overall number of packets transmitted and translate it
into an equivalent number of epochs (using the results from the other methods).

Worst-Case Delay Evaluation Figure 5 compares the delay performance
of the four mobile sinks and two static sinks strategies. In all scenarios, the

! The values are calculated based on the TinyOS files CC2420AckLplh and
CC2420AckLplP.nc.
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Fig. 5. Delay and lifetime performance comparison: (a) 1500 nodes and 15 sinks, (b)
5000 nodes and 50 sinks, and (c) 10000 nodes and 100 sinks.

best delay performance is achieved by the static MD, closely followed by our
mobile sinks strategies EA and MD. As already discussed in Section 1, there
is a price to pay for the prolonged lifetime by mobile sinks in terms of delay,
yet as we see here that price is rather low. EA and MD perform almost equally
well with a slight advantage for EA. More importantly, both of them achieve
roughly the same delay performance across the different scenarios and are thus
scalable with respect to delay. For the outer periphery and the random walk, the
assessment is very different: their delay performance is much worse and also the
delay increases with growing network size, so they do not scale well with respect
to delay. Somewhat surprisingly, the K-center heuristic, which requires a high
computational effort and centralized information, is not doing particularly well
and is actually slightly outperformed by the mobile trajectories EA and MD,
which indicates again that their delay performance is very good.

Lifetime Evaluation The simulation results for the lifetime performance of
the competitors are shown in Figure 5. The graph shows the total energy con-
sumption in the sensor field over the number of epochs, so the lengths of the
lines indicates the lifetime performance of the respective method. Looking over
all scenarios, MD turns out to be the clear winner with respect to lifetime. EA
basically achieves the same lifetime in the 1500-nodes scenario, but cannot keep
up with MD in the larger scenarios. All other competitors perform rather poorly:
the random walk is a complete failure with a lifetime of 1.5 epochs in the largest
scenario; the FE strategy also performs very bad and does not fulfil the hopes
one could have in a state-aware trajectory (admittedly it is a simple strategy
and more sophisticated state-aware trajectories could be doing better); the outer
periphery strategy is a little bit better, but at the expense of a high overall en-
ergy consumption. Interestingly, the static MD does not perform too badly, it
outperforms FE and the random walk, which shows that trajectory planning
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must be done with care otherwise one could do even worse than a good static
strategy. On the other hand, we can see very clearly the lifetime prolongation
effect of using mobile sinks when comparing static MD with the MD sink trajec-
tory: for example, in the 1500-nodes scenario MD achieves 10.8 epochs whereas
static MD achieves only 4.6 epochs.

Lifetime vs. Delay and Scalability In this subsection, we somewhat wrap
up the previous results by particularly looking at the combined lifetime vs. delay
performance as presented in Figure 6. The x-axis represents the delay and the
y-axis shows the corresponding lifetime performance in terms of the number of
epochs. The shape and color of the symbols represents the different strategies
and the size of the symbols encodes the scale of the experiment, i.e., the large
symbols represent the experiments with 100 sinks, while the medium-sized and
small symbols represent the experiments with 50 and 15 sinks, respectively. By
following the path from small to large symbols one can see, how the strategies
scale for larger WSNs. Clearly, the goal must be to stay within the upper left
quadrant of this graph. Only MD achieves this goal, EA has a problem with
respect to lifteime scalability. All other competitors do not really offer good
lifetime-delay tradeoffs and are at best good in one of them.

One may even become suspicious about MD for its scalability, because as can
be observed in Figure 6, there is a certain degradation with respect to lifetime
for it, too. However, the lifetime definition that we use here (when the first
node dies) somewhat looses its usefulness with an increasing number of nodes,
as it becomes more and more likely that some single node is in an unfortunate
position where its battery is drained much quicker than for others. Therefore,
we provide some more information on the “death” process of the nodes in the
field when we continue network operation after the first node died in Figure 7
(again the size of the symbols represents the scale of the scenario). In particular,
when we redefine lifetime as the time until which 10% of the nodes have died
then we see that MD scales very well, i.e., it achieves almost the same lifetime
in all three scenarios. In comparison, EA still does not scale that well, though
arguably it also benefits from this redefinition of the lifetime.
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6 Conclusion and Outlook

In this report, we have proposed a flexible heuristic framework to design the
trajectories for multiple mobile sinks such that a good tradeoff between a high
network lifetime and a low information transfer delay can be achieved in very
large sensor networks. The framework uses an n-orbit model which is based on
a geometric rationale that, in large sensor networks, cell areas and Euclidean
distances between nodes and sinks are good proxy measures for lifetime and
delay. Two instances of the framework are derived: one which focuses on the
minimization of the maximal Euclidean distances (MD), and one which targets
to equalize the area assignment and takes distance minimization as a secondary
goal (EA). Both are compared with several competitors in detailed discrete-event
simulations and show very good lifetime-delay tradeoffs. Especially, the MD
strategy shows a very scalable behavior for its lifetime and delay performance
when the number of nodes becomes large. In particular, in contrast to all other
methods it keeps up the delay and lifetime values of smaller scenarios when
scaled to larger scenarios under a constant node-to sink ratio. More abstractly, we
believe to have provided strong evidence that the orbital sink trajectories provide
for a natural scalability to very large sensor networks, if designed carefully.

To conclude the report, we want to discuss some relaxations of the assump-
tions in our framework and how the geometric interpretation can still be helpful,
thereby pointing out directions for future work: One assumption is the circu-
lar shape of the sensor field. Smaller distortions (linear transformations) of this
would result in ellipsoid shapes, which can still be dealt with a similarly distorted
orbit model (mapping the position of the sinks by the same transformation to
the new sensor field). A change of the underlying distance norm would result in
completely different shapes, we could think of a squared network area as a circle
under the maximum norm || - ||« (similarly one could change to the || - ||;-norm
to handle a rhombus-shaped sensor field). Another assumption is the uniform



distribution of nodes over the field. In some networks, there might be clusters
of high density and regions with low density. Here more sinks are needed in
the clusters, while the sparse areas can be handled by less sinks, this could be
achieved by altering the distances the sinks move between the epochs in our
orbit model. Slowing the sinks down, when reaching the clusters would result in
accumulating sinks in that region and speeding them up again, when leaving the
clusters, moves them fast through the sparse areas.

Appendix I : The K-Center Heuristic

The K -Center heuristic of Hochbaum and Shmoys will be presented and modi-
fied, such that it fits our needs. The K -Center heuristic is at its core a bisection
search other the optimal value for the paramter “mid”. The algorithm chooses
with the help of this parameter a set of sinks, if this set has less than K or just
K elements, the parameter “mid” must be decreased (because we can assume
to achieve a better maximal distance, if we can place more sinks), if the set is
larger than K we have to increase “mid”, since we are using too much sinks. The
original algorithm works on a fully connected, edge-weighted graph, satisfying
the triangle-inequality. Hochbaum and Shmoys algorithm is a 2-approximation,
which is best possible, in the sense that finding a ¢ -approximation wit polyno-
mial runtime and § < 2 leads to NP = P . Before we explain the algorithm, we
need some notations. We talk of G = (V, E) being a complete graph with edge
weights w the edges are sorted by their weight, this means:

w(es) Swley) Vi<j<m=|E]

The graph is stored in adjacency-list-form. This means for each vertex v the
adjacent vertices are listed in increasing edge weight order. We need two more
notations G; = (V, E;) , where E; = {e1,...,e;} and ADJ;(x) which is the
adjacency list of z in G; . Next we will present the Algorithm 3 as it can be
found in the paper of Hochbaum and Shmoys:

To adapt this algorithm to our report we made a few changes. At first our
sensor network is not fully connected and on the other side links have no weights.
we solve these two problems by using the euclidean distances between the nodes
as link weight and assume the network to be fully connected. Further we are not
operating an a complete list of edges, instead each node has its own list, which
again contains the neighbours of the node in the order of increasing edge-weights.
for this we denote by n(v) = (24,1, %2, ..., %y n) the vector of neighbours of v
and by n;(v) = (@y,1,Zv,2,...,%y;) the first ¢ neighbours of v . Watch out that
n;(v) # ADJ;(v) , in the first vector we have pruned the list of v to ¢ neighbours.
In the second vector we have pruned the complete set of edges to F; and then
take all neighbours of v which are left. A second change to the original algorithm
is, that we are not deleting the neighbours of the neighbours of v from the set T .
Instead we are just deleting the neighbours of v , which leads to less coordination
between the nodes. The Algorithm 4 looks then like this:



Algorithm 3 The K-Center Heuristic.

Begin:
low:= 1;
high:= m;
ifk=|V
S =V
end
while high > low + 1 do
mid:= |high + 192 |
S := 0
T:=V;
while 3z € T do
S = Su{z};
for v € ADJpia(x) do
T:=T— ADJpia(v) — {v};

end

end

if | S|<k
high = mid;
S’ = 8;
end

if | S|>k
low := mid;
end

end
end

Algorithm 4 The K-Center Heuristic for WSN.

Begin:
low:= 1;
high:= N;
ifk =V
S =V
end
while high > low 4 1 do
mid:= |high + 2 |
S = 0
T:=V;
while 3z € T do
S:=Su{z};
T :=T — nmia(z); First we have to convert the vector to a set at this line.
The set is built simply by collecting all entries of the vector.

end

if | S|<k
high := mid;
S =5;

end

if | S|>k
low := mid;
end

end
end

If the algorithm outputs a set of sinks which has less than K elements, we
place the difference of sinks randomly over the network. Note that as a result
of this sink placement, we can bound the maximal euclidean distance from any
node to the nearest sink by:

max{x, mid}
veV
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