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ABSTRACT

Wireless Sensor Networks (WSN) comprise a large number
of sensor nodes that possess scarce energy supplies. To
minimize energy consumption and to consequently extend
the lifetime of WSNs, we propose a local search technique
for sink placement in WSNs. In addition, a proper sink
placement plays a vital role in performance-sensitive WSN
applications. Since it is not feasible for a sink to use global
information, especially for large-scale WSNs, we introduce
a self-organized sink placement (SOSP) strategy that com-
bines the advantages of our previous works [7] and [8].
Besides, this paper is a substantial extension of [9]. The
goal of this research is to provide a better sink placement
strategy with a lower communication overhead. Avoiding
the costly design of using the nodes’ location information,
each sink sets up its own group by communicating to its
n-hop distance neighbors. While keeping the locally optimal
placement, SOSP exhibits a better solution quality with
respect to communication overhead and computational
effort than previous solutions. To analyze performance
issues, especially the worst-case delay of a given WSN, we
use a methodology called sensor network calculus [10].
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1. INTRODUCTION
Research activity in the area of WSNs has grown dramat-

ically in the past few years and was motivated by a vast
array of potential applications. Unlike traditional networks,
WSNs may consist of several thousands of sensor nodes for
unattended operations. Consequently, various design and
control techniques used in traditional networks cannot be
applied directly in WSNs. Furthermore, the sensors have
the ability to communicate with each other either by sending
their own data or by routing the others’ data via multi-hop
communication to a base station, often called a sink. As a
result, the longer the hop distances from a node to the sink,
the greater the delay and energy consumption will be. Thus,
the lifetime of the WSN becomes shorter. Energy consump-
tion is often assumed to be the most critical issue in WSNs
due to their battery operation, which probably constitutes
one of the main differences from traditional networks. Thus,
all design and control processes are usually focused on min-
imizing energy consumption as much as possible.

Typical scenarios for large-scale WSNs contain multiple
sources and multiple sinks. Compared to a single sink,
multiple sinks provide better manageability of WSNs. De-
pending on different criteria, network designer has to plan
a WSN, which not only optimizes energy consumption but
also achieves a high system performance. Performance is-
sues in WSNs play a vital role in many applications. In
time-sensitive WSN applications, the maximum allowable
message transfer delay must be bounded. Hence, it is crucial
to develop an algorithm to minimize the maximum worst-
case delay in WSNs. Avoiding the costly design of us-
ing the nodes’ locations information, we introduce a self-
organized sink placement (SOSP) algorithm with lower com-
putation and communication overhead to minimize the max-
imum worst-case delay.

In WSNs, sinks can be either mobile or stationary. For
a mobile sink, the dynamic nature of routing becomes the
most challenging issue, although a lot of benefits from this
mobility also arise. Using the advantages of mobility, we
consider mobile sinks for the initial selection of the best
sink placement, and later use stationary sinks to collect data
packets from the sensor nodes via multi-hop communication.

In case of the improper deployment of sensor nodes and
sinks, it is difficult to control a running network and to that
end energy consumption and system performance are nega-
tively affected. For a random-based deployment process of
a WSN (consider an airplane to distribute the nodes), the
sink placement becomes an important criterion for the net-
work designer to increase the network lifetime and system



performance. In a WSN, multiple sinks in proper locations
can strongly decrease the amount of energy use and the mes-
sage transfer delay in communication, mainly as the effect
of a shorter multi-hop distance between sensor nodes and
sinks. For that reason, we focus on a multiple sink location
(or placement) problem in self-organizing manner in order
to suit the requirements of large-scale WSNs.

The rest of the paper is organized as follows: In Section
2 we discuss the sink location problem and its related work.
After that we introduce the SOSP algorithm alongside with
deployment, grouping, sink placement selection, and opera-
tional phases in Section 3. Section 4 contains a detailed per-
formance evaluation of SOSP against previously proposed
benchmarks and near optimal sink placement strategies. Ac-
cordingly, we briefly introduce these strategies for compari-
son of the worst-case analysis method. Finally, we conclude
the paper in Section 5.

2. RELATED WORK
In this section, we discuss the sink location problem and

its relation to the previous work in WSNs. In WSNs, data
packets traverse from the sensor nodes to a sink through
multi-hop communication owing to expensiveness or even
infeasibility of direct communication. Therefore, a sensor
node is not only a source but can also be a router. For
large-scale WSNs, if a sensor node acts as a router close to
a sink, it can experience quite high amounts of data from
other nodes flowing through it. As a result, the traffic inten-
sity in the network becomes high and data transfer may be
considerably delayed. What is more, if the sink is located far
apart from some nodes, their hop distances increase, simu-
taneously amplifying the message transfer delay. Therefore,
we assume that the path with the lowest hop count is taken
in order to minimize the maximum worst-case delay.

The general sink location problem is NP-complete, so find-
ing the exact optimal sink placement is very hard. Some
well-known approaches for finding the optimal solution in-
clude integer linear programming, exhaustive search and it-
erative clustering. We also developed a heuristic method [8],
which performs well and delivers near-optimal solution. In-
teger linear programming and exhaustive search only work
for small-scale WSNs. They use the global knowledge of the
network such as the nodes locations, thus position-awareness
of the sensor nodes becomes a critical issue. The sensor
nodes equipped with global positioning system (GPS) hard-
ware are for many applications too expensive. Of course,
there are plenty localization algorithms that can work quite
well under some a priori knowledge of a few nodes’ positions
and provide an approximation of others. Nonetheless, even
this might often be inconvenient to assume in large-scale
WSNs due to the related communication overhead. That
is why, in this paper, we make no assumptions on a priori
global knowledge, apart from minimum knowledge about the
size of the sensor field and based on this develop the SOSP
algorithm.

Next, we discuss two main categories of sink placement
strategies in WSNs: (1) using the global knowledge of the
sensor nodes’ locations and (2) based on the estimates of
the nodes’ locations. In the first group, the node locations
may be obtained from GPS receivers or are simply known
from a planned deployment process. Obviously, it suits only
small-scale WSNs because of the corresponding computation
and communication overhead. The second category is sink

placement based on the estimation of node locations, which
uses, for example, anchor points. Yet, these approaches still
seem infeasible for large-scale WSNs.

Although sink placement is an obvious problem to be
solved in WSN design, in literature, it has been addressed
surprisingly seldom compared to other areas, as for exam-
ple, routing and localization in WSNs. Depending on vari-
ous design criteria, a number of papers, for example, [6] and
[4] address different sink placement methods with different
intentions for the main purpose of network lifetime exten-
sion. In most cases, clustering is considered as a common
way of grouping. There are many good clustering algorithms
in literature, which are mainly divided into hierarchical and
non-hierarchical methods [17]. If a clustering method is ap-
plied in WSNs, the cluster head or the centroid of a cluster
is usually considered as a sink. Yet, clustering algorithms
normally require global knowledge, such as where the nodes
are located, what the energy levels of the nodes are, and
so forth. This drives conventional clustering approaches to
become infeasible for large-scale WSNs. Another somewhat
related work can be found in [16], where the problem of
optimally steering mobile sinks is approached by using an
electrostatic model for maximizing the lifetime of a WSN.
A similar approach is discussed in [2], which also deals with
effective control of mobile sinks.

A related work on which we build in this research is our
previous research on sensor network calculus (SNC) [10, 14,
15]. Based on network calculus [5], SNC was proposed and
customized as a framework for the worst-case analysis in
WSNs. In our research, we use the DISCO network calcula-
tor [11], which is an open source toolbox for the worst-case
analysis written in JavaTM . All network calculus operations
and different network analysis algorithms can easily be used
from this library: for example, end-to-end service curve cal-
culation, total flow analysis, separated flow analysis, PMOO
analysis, etc. Using the foundation of sensor network calcu-
lus, we calculate the worst-case end-to-end delays for each
flow and find the maximum worst-case delay in the field.

3. SELF-ORGANIZED SINK PLACEMENT
In this section we present the algorithm of SOSP in de-

tail. In SOSP, the only assumption on a priori knowledge we
make is that sensor nodes are deployed over a circular field
shape. Note that one can always draw a circle around a dif-
ferently shaped field. A generalization from this assumption
should be straightforward. Such a lax assumption is key to
applicability in large-scale WSNs.

3.1 Algorithm Overview
After the (random) node deployment phase, the algorithm

chooses the initial sink placements at the the Center of Grav-
ity of the Sectors of the Circle (CGSC), which results from
an equal sectorization with the number of sinks. The mathe-
matical expression for the CGSC is given in Section 4. Next,
the sinks, now located at CGSCs, perform grouping, starting
from a 1-hop neighbors set in a wave to an n-hop neighbors
set. The value of n varies according to the number of sensor
nodes, sinks, node density, and transmission ranges. In our
algorithm, we assume that sensor nodes are homogeneous
and that both sensors and sinks use the same transmission
range with a given node density. The simulation results of
the n-hop values having different sensor nodes and sinks are
discussed in more detail in the subsection on the grouping



phase. Note that the maximum value of n must be consid-
ered to obtain a fully connected network. Furthermore, we
estimate the locations of the 1-hop neighbors which are re-
quired for selecting sink candidate locations. Without the
supporting GPS hardware, we estimate the locations by us-
ing trilateration with the time of arrival (TOA) method [3].
In TOA, the distances to the nodes are estimated time spent
by the signal transmitted from the sink. Time spent in tran-
sit is converted into the distance travelled to calculate the
distance between a sink and a node. Note that this method
is better suited for outdoor WSNs for signal interference
with obstacles that causes lower accuracy. Knowing the es-
timated distance, we can calculate the location of the node,
which is demonstrated in the subsection on the sink location
selection phase. In SOSP, we need to estimate locations only
for the 1-hop neighbors sets. From this location information,
we define a set of fixed candidate locations for sink place-
ment inside the search space of the 1-hop neighbors region.
Finally, the best candidate is selected for sink placement.
Here, we assume that a mobile sink performs the tasks of
determining the 1-hop neighbor nodes’ locations (by doing
the TOA measurements from at least three different posi-
tions) and the computation of the best sink placement for
each group. In the following subsections, we discuss four
operational phases of the SOSP algorithm in detail.

3.2 Deployment
During the design phase of WSNs, the designer knows

only the number of sensor nodes and sinks to be deployed.
Both sinks deployment and nodes deployment affect the per-
formance of the WSN. The nodes deployment can be ei-
ther planned or random. In a planned node deployment,
sensor nodes are manually placed so that their locations
are known, whereas for a random deployment, sensor nodes
are positioned at locations which are not known with cer-
tainty. Planned node deployments are usually only suitable
for small-scale WSNs for cost issues. Due to our interest in
large-scale WSNs, in this paper we focus on random node de-
ployments. To illustrate where a random node deployment
would be inevitable, let us assume that sensor nodes are dis-
tributed by an airplaine, for example, in an environmental
monitoring application.

3.3 Grouping
Grouping is an important issue for large-scale WSNs for

manageability by keeping operations local. Although con-
ventional clustering is considered as a usual way of group-
ing, we focus on self-organized grouping, which improves in
terms of computation and communication overhead. In or-
der to build a group, it is necessary to have an inital location
which should be a good starting point for sink placement.
The sensor field shape is assumed to be circular in our ex-
periment. Since typical large-scale WSNs are designed with
multiple sinks, it is possible to create groups whose number
corresponds to the number of sinks. Based on this, we ini-
tially choose the sink placement at each CGSC. To minimize
the maximum worst-case delay a sink placement at CGSC
produces a fair result as presented in [7]. So, we first place
at CGSCs mobile sinks that connect to their 1-hop neighbor
nodes by broadcasting a message. (Any node here that can
hear a message from the sink is defined as a 1-hop neighbor,
also referred to as a 1-hop distance neighbor.) Upon receiv-
ing this message, the nodes within the sink’s transmission

range communicate back to their sink (we use a random send
time to avoid collisions for these replies). This self-organized
grouping of neighboring nodes continues to the next hops up
to the set of n-hop neighbors, in which n is set according to
simulative results (provided in Subsection 3.3.2). A priori
knowledge of the n-hop value helps to minimize the energy
consumption while keeping the balance of the group sizes.
An example of grouping in a 50-node network with 3 sinks
is illustrated in Fig. 1.

Figure 1: Grouping for 50-node network with 3-sink.

In our algorithm, a node is not allowed to communicate
with more than one sink to avoid the nodes’ duplication and
to maintain a fully connected network, as shown in Fig. 1.
In the grouping phase, if a node is already in a group it
is then owned by that group, although it may have a link
to another group (perhaps, it may even have a lower hop
distance to the other sink). For those nodes that act as
gateways to other groups, we have the chance to choose the
nearest sink (i.e., the one with shorter hop distance) during
the operation phase. Such gateway nodes are marked inside
an oval in Fig. 1. What is more, this characteristic is very
important for fault-tolerance because a node may take an
alternative route to another sink in case of a node failure
inside the local group.

In addition, the determination of the 1-hop neighbors’ lo-
cations is necessary for the selection of the best sink place-
ment during the grouping phase. In the following subsec-
tions, we describe (1) the determination of 1-hop neighbors’
locations from estimated distances and (2) the simulation
results of the maximum n-hop distances with respect to re-
lated factors, such as the number of sensor nodes, sinks,
transmission range, and node density.

3.3.1 Determination of Distances and Locations

While grouping the 1-hop neighbor nodes, the algorithm
first calculates their approximate locations. From three
main approaches to localization: Proximity-based approach,
triangulation and trilateration, and scene analysis [3], we
use the triangulation and trilateration approach that exploit
geometric properties of a given scenario. Using elementary
geometry, distances can be used to derive information about
node locations. Trilateration and triangulation methods
are based on distances between entities and angles between
nodes, respectively. To estimate the locations on a plane, at
least three non-collinear anchor points are required. Using
the distances (between anchor points and the nodes) and
anchor nodes’ location, the node positions have to be at the
intersection point of the three anchor nodes’ transmission
ranges. This basic fact is illustrated in Fig. 2. By moving
a mobile sink adequately we can obtain the required anchor
points for SOSP.

In order to apply the (multi-) lateration method, estimates
for the distances from the node to the anchor points are re-



quired. This information can be obtained using Time of Ar-
rival (TOA), Time Difference of Arrival (TDOA), Angle of
Arrival (AOA) or Received Signal Strength Indicator (RSSI)
[3]. In our algorithm, we use TOA as a distance estimation
technique. This is also known as time of flight method.
The TOA exploits the conversion of the distance from the
transmission time, when the propagation speed is known.
Upon receiving a small packet from a sender, a receiver im-
mediately returns the packet to the sender. Assuming the
same forward and backward paths, the sender measures the
round trip time and estimates the distance from this. The
distances obtained by TOA are then used in trilateration to
estimate the nodes’ locations. We assume that all computa-
tions are done by the mobile sink, and thus do not constitute
a burden for the sensor nodes.

Fig. 2 illustrates the trilateration process for a node lo-
cation with 3 anchor points. Knowing the locations of three
anchor points, (xi, yi), we can estimate the distance di where
i = 1, 2, 3. Using elementary geometry, we can calculate the
location of the node position.

Figure 2: Trilateration with 3 anchor points.

3.3.2 Determination of n-Hop Values

The purpose of calculating n-hop values is to determine
the maximum number of hops necessary for grouping with-
out endangering connectivity of the network. In fact, the
determination of n-hop values is not easily predictable due
to several factors on which it depends, such as the number
of nodes and sinks, transmission range, and node density.
Also, the actual sink location affects the value of n. How-
ever, a priori knowledge of the n-hop value helps minimizing
energy consumption while keeping balance between groups
with respect to the number of nodes. Actually, it is not a
fundamental necessity to be balanced, and, in fact, in some
configurations it might be better to follow the nearest sink
rule for routing in order to minimize the maximum worst-
case delay. On the other hand, most often an unbalanced
network produces traffic hot spots and diminishes the system
performance as well as the lifetime of the WSNs. Therefore,
we analyze n-hop values under varying parameters and de-
termine typical n-hop values for small-scale and large-scale
WSNs. Simulative results for n-hop values are shown in the
following tables together with their related factors. We ana-
lyze n-hop values with sink to node ratios of 1:50 and 1:100.
The results are given as the minimum and maximum n-hop
values over 10 different random node distributions. Having
the same ratio of nodes and sinks, the required n-hop dis-
tances are quite stable. Here, we use the same experimental
setup as in Section 4.3.

3.4 Sink Location Selection
The step following the grouping phase is to choose the

optimal sink placement. The goal of SOSP is to design an

Table 1: Table of n-hop values with sink to node
ratio of 1:50.

nodes sinks txRange density (min,max) n-hop

50 1 16m 0.01nodes

m2 (4, 6)

100 2 16m 0.01nodes

m2
(5, 6)

200 4 16m 0.01nodes

m2 (6, 7)

400 8 16m 0.01nodes

m2 (6, 7)

Table 2: Table of n-hop values with sink to node
ratio of 1:100.

nodes sinks txRange density (min,max) n-hop

100 1 18m 0.01nodes

m2 (6, 8)

200 2 18m 0.01nodes

m2 (7, 8)

400 4 18m 0.01nodes

m2 (7, 9)

algorithm for the sink placement which minimizes the max-
imum worst-case delay. At the same time, the algorithm
should have an acceptable computation and communication
effort for an on-line operation. Due to these design crite-
ria we focus on the area near CGSC, especially within the
1-hop neighbor region, for sink location selection. As we
face a large, continuous search space, the computation time
for an on-line operation of SOSP indicates a purely local
search. Because of the continuous search space, we first dis-
cretize and determine a set of candidate locations for sink
placement. The following subsection explains the way to
compute the candidate locations.

3.4.1 Determination of Candidate Locations

We propose two methods of a candidate location selec-
tion. The first method is based on the discretization of
the originally continuous search space into a finite search
space [7], whereas the latter is based on the fixed set of
candidate locations. In order to determine the candidate
locations within the 1-hop neighborhood we must know the
1-hop neighbor nodes’ locations which are obtained from the
grouping phase for both methods. The first method simply
samples the search space and chooses a candidate from each
indifference region. Using the sensor nodes’ locations and
their transmission ranges, the sampling takes place over all
possible regions and collects a point from each of them. Fig.
3(a) illlustrates all possible regions for sink placement. From
the intersection of the nodes’ transmission ranges we obtain
a tesselation of the sensor field. The atomic regions form-
ing that tesselation become the indifference region. Note
that no matter where we place a sink within such an area
the routing topology will not be altered, which is why we
can just choose any point inside such a region as a candi-
date location. For further details see [8]. If it were for a
global search, the whole space would need to be discretized
in that fashion, however, for our purposes we discretize only
the area of the 1-hop neighbors’ transmissions intersection.
Therefore, this method needs the nodes’ locations and trans-
mission ranges to determine the candidate locations. This
means that candidate locations may vary with respect to
the number of neighbors and their locations. Although this
method guarantees confines to the 1-hop neighborhood, the
computational effort for sampling is still pretty high and
may strain the on-line operation of SOSP.

As opposed to the sampling method, we introduce a fixed



sensor node

sink

sink candidate location 

(b)

Figure 3: (a) Discretizing of candidate locations
among 1-hop neighbors and (b) fixed candidate lo-
cations at circumradius of a regular octagon.

candidate location generation which has considerably lower
communication overhead and computational effort. Again,
we focus on the 1-hop neighbors’ positions and their trans-
mission ranges in this method. Instead of sampling over
the search space, we place the candidate locations at fixed
points inside the transmission range of each neighbor node.
The fixed candidate locations are placed at the corners of
a regular octagon as illustrated in Fig. 3(b). Those points
can easily be calculated from the sensor nodes’ locations.
We use three-quarters of the node’s transmission range as a
distance between the node and the candidate location (cir-
cumradius of octagon). For example, we place a candidate
location at 12m distance (which is three-quarters of our typ-
ically assumed 16m transmission range) from the node at a
corner of the regular octagon. The closer this distance be-
comes to the transmission range the better the chance for
more 1-hop neighbors. As illustrated in Fig. 3(b), some can-
didate locations may be duplicated with respect to covering
indifference regions. Although this is unavoidable, it must
not constitute a bad thing since the indifference regions may
be different when factoring in 2-hop neighbors. For this rea-
son, we also consider the distance that is as far as possible
from the node location. In this method, the number of the
candidate locations depends only upon the number of neigh-
bor nodes. In particular, the total candidate locations will
be eight times the number of 1-hop neighbors if the fixed
candidate is based on a regular octagon shape.

The following histogram shows a quantitative comparison
between fixed and sampled candidate locations in the SOSP
strategy. We analyze this experiment based on the assump-
tions from Section 4.3.

Figure 4: Comparison between fixed and sampled
candidate locations in SOSP.

As shown in Fig. 4, the fixed candidate location scheme
performs almost as good as the exhaustive sampling scheme.
With the advantages of lower communication overhead and
computational expensiveness we further on opted for the
fixed candidate locations scheme in SOSP.

When knowing the candidate location set for sink place-

ment, we can start with the sink location selection. We
assume that the mobile sink traverses from one candidate
location to another and computes the maximum worst-case
delays which are the function of the routing topology. After
these calculations, the sink location minimizing the maxi-
mum worst-case delay is selected. All of these actions can
be done in parallel for each of the mobile sinks.

3.5 Operation
After selecting the best sink location in each group, the

sinks are made stationary at those locations. In fact, it is
well conceivable that sink locations are recomputed from
time to time in order to deal with network changes, which
would require the sinks to become mobile again, but we leave
this for future work. The actual operation of the WSN can
now start, for example, after broadcasting a query to all
sensor nodes. A node receiving the message forwards it to
the others until all nodes are reached. The sensor nodes
send back the message to the nearest sink in order to fix the
routing. Nearest here means the hop distance because the
message transfer delay is computed over multi-hop commu-
nications. Note that this could mean a different routing from
the grouping phase, where groups were build independently
from one another.

Algorithm 1 summarizes all steps of SOSP.

Algorithm 1 SOSP Algorithm.

Given: a circular sensor field with known radius and trans-
mission ranges of nodes and sinks.
Definitions: initial locations of sinks, Si, where i = 1, 2, ..., k,
nodes Nj , where j = 1, 2, ..., N .
1. Deployment Phase

(i) Deploy a random node distribution
2. Grouping Phase

(i) Place k sinks at CGSCs
(ii) Create 1-hop neighbors set for Si by transmitting a

signal and whichever node replies to the signal is collected
(iii) Determine 1-hop neighbors distances from Si and

thus locations by using trilateration with TOA and 3 an-
chor points

(vi) Group up to n-hop distance (n-value is obtained by
simulation)
3. Sink Location Selection Phase

For each group, (k sinks represent k groups)
(i) Determine the fixed candidate locations according to

the 1-hop neighbors’ locations set from 2(iii)
(ii) A mobile sink traverses into each candidate location

and calculates the maximum worst-case delay
(iv) Select the best sink, i.e., the one minimizing the max-

imum worst-case delay
4. Operation Phase

Upon the selection of the best sink from each group,
(i) Allow Nj to connect to the nearest (i.e., the shortest

hop distance) sink
(ii) Calculate the maximum worst-case delay

In our algorithm, the only information we need is the field
size, the transmission ranges of both sensors nodes and sinks,
and the number of nodes. The step following the random
node deployment phase is grouping. After assigning each
node to a group, we can start with the sink placement phase.
The fixed assignment of candidate location sets is calculated
based on the location information obtained from the group-



ing phase. Note that we only use the location information
of 1-hop neighbors. After the candidate location sets have
been determined, a mobile sink traverses from one candidate
location to another, computes the maximum worst-case de-
lay, and finally picks the location having the minimum value.
We assume that the mobile sink has more than enough en-
ergy supply for these operations. The nodes do not consume
considerable amounts of energy due to the design of SOSP.
Upon achieving the best self-organized sink placement for
each group, we can start the operation and then calculate
the actual global maximum worst-case delay. Since we have
a fully connected network, there is at least one sink for each
of the nodes. In order to obtain a better performance, the
nodes are allowed to connect to the nearest sink (i.e., the
minimum hop distance sink) in SOSP. This approach is help-
ful for the worst-case delay performance, since the message
transfer delay is strongly affected by greater hop distances
and aggregate flows toward the sink.

4. PERFORMANCE EVALUATION
In this section we describe the performance evaluation of

SOSP. Before its presentation, we introduce some facts that
are used in the evaluation. We refer to our previous works
[7, 8] several times since we use those techniques as bench-
marks for the new SOSP algorithm. Therefore, we discuss
some basic concepts from our previous works for the purpose
of better understanding. Besides, the worst-case network
analysis framework, sensor network calculus, being used is
also presented in brief.

4.1 Introduction of GSP and GASP Strategies
The Geographic Sink Placement (GSP) is intended as a

very simple, almost fully scenario-agnostic sink placement
strategy. The only information required is the size of the
sensor field (as with SOSP). GSP is designed to work well
for uniformly distributed sensor nodes and does not require
any information about the actual sensor nodes’ locations.
For any number of sensor nodes, it requires only the number
of sinks to be deployed and the radius of the network field
in order to calculate the CGSC. The center of gravity of
a sector with angle α always lies on the middle radial line
(α/2) of that sector. The formulation of CGSC is given in
Equations 1 and 2.

CGSC = F (α) × R (1)

F (α) =
4

3
sin(α

2
)

α
(2)

where α is in radians, 0 ≤ α ≤ 2π, and R is the radius.
As discussed in [7], the GSP strategy gives pretty good

results for uniform node distributions. It is as lightweight
as one could imagine and with respect to this has an edge
over all other strategies.

At the other end of the spectrum compared to GSP,
GASP represents a Genetic Algorithm (GA)-based heuristic
method for sink placement. Although it cannot absolutely
guarantee to find an optimal solution, GASP has shown
itself to be a very good heuristic on achieving near-optimal
sink placements. The candidate locations are obtained by
discretizing the search space without loosing optimality.
Each candidate location represents the so-called indifference
region, in which, no matter where we place a sink, the rout-
ing topology together with the value of the objective func-

tion, the maximum worst-case delay, stay unchanged. After
establishing the candidate locations set, GASP is applied.
To implement GASP, the first step is to select initial indi-
viduals from the overall search space (i.e., the whole set of
candidate locations). Each individual represents a solution
to a problem and is coded in the so-called “chromosome”,
where we chose a problem-specific good representation. The
selected set of individuals becomes the initial “population”.
Next, the GA operators, crossover and mutation are all
implemented, and problem-specifically, together with the
“fitness” are also computed for each individual. After that
the final operator of the GA, the selection, is invoked to
create the next “generation” of individuals that forms a new
population. The termination of the GASP is done after
a number of evolutionary loops. Since the cardinality of
the candidate locations grows rapidly for larger networks,
the number of all possible combinations, and therefore the
search space, is vast, making total enumeration unthinkable.
The GA-based enumeration process requires considerably
lower computational effort while providing, at least for
smaller instances, almost always the globally optimal sink
placement [8] (for larger instances the global optima cannot
be computed). A clear drawback of the GASP is that
it requires global knowledge about a sensor network, in
particular, all the node locations, and that it makes further
assumptions that are inconvenient for large-scale WSNs.
Furthermore, it is still quite compute-intensive. These are
actually the reasons why we in this paper proposed SOSP
for large-scale WSNs.

4.2 Minimizing the Maximum Worst-Case
Delay

As we mentioned before, network calculus [5] guarantees
as a framework for the worst-case analysis in WSNs in [10].

In [10], bounding processes called arrival curve α and ser-
vice curves β can capture the major worst-case properties for
data flows: maximum delay and maximum backlog. Here are
some definitions: the arrival curve bounds the input func-
tion, which is the sensed data of every sensor node, whereas
the service curve depends on the duty cycle, and can there-
fore be adjusted to achieve certain energy-efficiency goals.
The heart of sensor network calculus is formed by three
bounds: backlog bound, delay bound, and output bound. In
general, the backlog bound is the vertical deviation between
α and β and the delay bound is the horizontal deviation
between α and β. The output bound of each server can be
calculated by using deconvoluting arrival and service curves
α ⊘ β . Detailed explanations of the SNC can be found in
[10, 14], and [15].

Based on these definitions, delay, backlog and output
bounds can be calculated with different analysis methods.
We use the so-called Pay Multiplexing Only Once analysis
(PMOO) [13], which is shown to deliver a tight bound
for sink-trees [12] of homogeneous nodes, to calculate the
end-to-end delay for each flow of interest from one sensor
node to the sink.

4.3 Experimental Results
All experiments are based on the following assumptions:
A circular field shaped network is chosen for initial sink

placement at CGSC. The sensor nodes are deployed with a
density of 0.01nodes

m2
in uniform random node distribution

fashion. The transmission range is 16m for both sensor and



sink nodes. We analyze scenarios of 100, 200 and 500 node
networks with 2-6 sinks. In each scenario, we analyze 10 dif-
ferent node distributions and take the average of their results
to counter random effects; in fact, in none of the comparisons
below, 99% confidence intervals were even near to overlap-
ping. The same network scenarios are used for each strategy.
The routing we use here is based on the Dijkstra’s shortest
path. Under the homogeneous nodes assumption, the to-
ken bucket arrival curves and rate-latency service curves are
considered for the network calculus operations. In particu-
lar, for the service curve we use rate-latency functions that
correspond to a duty cycle of 1% and 11.5%1 depending on
the network size, since for larger networks a duty cycle of 1%
results in infinite delay bounds. For example, a duty cycle
of 1% results in a latency of 1.096s and a forwarding rate
of 258 b/s. As mentioned above, we use PMOO network
analysis.

Figure 5: The worst-case delay comparison of SOSP
vs. GSP.

4.3.1 Performance Comparison of SOSP vs. GSP

At first, we evaluate the performance between SOSP and
GSP strategies. The GSP sink placement is used as an ini-
tial sink placement in the SOSP algorithm, so the later al-
ways has to outperform GSP. Furthermore, SOSP uses mo-
bile sinks for a self-organized network operation and should
therefore, have an edge over GSP in terms of delay mini-
mization.

In fact, as expected, SOSP outperforms the GSP strategy
as shown in Fig. 5. In a 100 node network, the worst-case
delay of GSP improves from 14 to 7.7 to 5.8 to 5.1 to 4.4s
for the 2- to 6-sink scenarios, respectively. For SOSP, the
worst-case delay improves from 8.5 to 5.7 to 4.5 to 4.3 to
3.5s for the 2- to 6-sink scenarios, respectively. The delay
differences between GSP and SOSP vary from 0.8s to 5.5s.
So, for example, to provide the same delay performance to
SOSP with 4 sinks, 6 sinks for the GSP are required. In our
experiments, we noticed that the more sinks, the smaller the
worst-case delay gap between GSP and SOSP strategies.

For 500 nodes, the worst-case delay gaps between the two
strategies are 1.9s, 1.2s, 0.9s and 0.9s for 3 to 6 sinks place-
ment, respectively. The reason for having a small delay gap
is the node distribution pattern and a higher duty cycle. The
higher duty cycle results in a lower latency and a higher for-
warding rate, thus providing a faster message transfer delay.
Accordingly, the worst-case delay gap becomes smaller. But
note again that obtaining the same delay performance as
SOSP with 3 sinks would require 6 sinks for the GSP.

In fact, all investigated scenarios are based on uniform

1The values are based on a realistic node model of a Mica2
mote running the TinyOS system (see CC1000 Radio Stack
Mannual) [1].

random node distributions, which is a good “playground”
for the GSP strategy. We, therefore, performed another ex-
periment under non-uniform random node distribution in
order to check whether SOSP can outperform GSP strategy
more pronouncedly.

In the non-uniform random node distribution network, the
node density varies from region to region. Nodes are densely
deployed in some regions but not in all. The sink placement
in GSP is fixed at CGSC and does not depend on the node
distribution pattern. Thus, GSP should be expected to pro-
duce higher worst-case delays in non-uniform random node
distributions. In opposite to GSP, SOSP should perform
well in non-uniform random node distributions. Whatever
node distribution pattern is applied, SOSP self-organizes a
good sink placement which has a low maximum worst-case
delay. In non-uniform node distributions, some candidate
locations from regions with lower density may provide good
candidates for regions with higher density. This means that
candidate locations near regions of higher density can of-
fload the respective sink in those regions to achieve better
delay performance. With this flexible movement, SOSP is
very robust against different node distribution patterns.

Fig. 6 shows how SOSP outperforms GSP under non-
uniform random node distribution. For a fully connected

Figure 6: SOSP vs. GSP in non-uniform network.

network, the transmission ranges for both sensor nodes and
sink have to be increased in non-uniform random node dis-
tributions. A 22m transmission range is used for 100 and
200 node networks with 1% duty cycle. We analyze 3 to
6 sinks scenarios for both networks since 1% duty cycle re-
sults in infinite delay bounds for the 200 node network with
2 sinks.

In the 100 node network, the delay gaps improve from
2.4s, 1.9s, 1.8s, and 1.4s for 3 to 6 sinks scenarios, respec-
tively. For 200 nodes, the delay gaps improve from 4.9s, 2.8s,
2.9s, and 2.1s from 3 to 6 sinks scenarios. These results show
that SOSP considerably outperforms GSP in non-uniform
networks. For example, for both networks SOSP with 3
sinks outperforms GSP even if that one is given 6 sinks.

4.3.2 Performance Comparison of SOSP vs. GASP

As we introduced the heuristic GASP strategy [8] for near-
optimal sink placement, we can use it for benchmarking
SOSP against a good global strategy. The performance eval-
uation of SOSP and GASP, along with the results for GSP, is
shown in Fig. 7. In particular, we analyze the scenario for a
100 node network with 4 sinks. We restricted the scenario to
100 nodes due to the considerable amount of computations
for larger networks with the GASP. The result is again the
average over 10 different node distributions. For the GASP
strategy, each evaluation consists of a population size of 80
individuals and the number of generations was set to 100,



resulting in 8000 different sink placements. In comparison,
SOSP uses about 300 different sink placements for choosing
the best location.

The worst-case delay improves from 5.8s to 4.5s to 4.2s
for GSP, SOSP, and GASP, respectively. The performance
of the SOSP strategy is close to that of the GASP strategy,
which can be considered a success.

Figure 7: The worst-case delay comparison among
GSP, SOSP and GASP.

5. CONCLUSION
In this paper, we introduced a self-organized sink place-

ment algorithm with lower computation and communica-
tion overhead compared to previous solutions to minimize
the maximum worst-case delay in WSNs. This algorithm
was inspired by our previous works [7] and [8], of which we
used the respective advantages. In particular, we put em-
phasis on the self-organized nature of our sink placement
algorithm without using global knowledge as, e.g., the sen-
sor nodes’ locations. We consider this key for an application
in large-scale WSNs. In particular, as we require only in-
formation from the 1-hop neighborhood of the initial sink
placement (at CGSC), the algorithm, SOSP, should scale
up to very large WSNs. From the experimental results, it
is clear that SOSP clearly outperforms an almost totally
scenario-agnostic strategy (GSP) and comes very close to a
global, near-optimal strategy (GASP), which however does
not scale. In conclusion, SOSP strategy is shown to be a
promising scalable solution to the sink placement problem
with low computation and communication overhead.
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