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Abstract—The deficient energy supplies of wireless sensor of the network, e.g., where the nodes are located, such that
networks (WSNs) drives network designers to optimize enesg position-awareness of sensor nodes becomes a critica. issu
consumption in various ways. Not only with regard to the enegy  |n some papers [9], [6], sinks are addressed as mobile nodes.
issue but also with respect to system performance, we design Although the dynamic nature of routing becomes the most
local s.eartchh technique for SiPk plac(;ar?ent indWSthdt?:t 'ltrfig;o challenging issue for a mobile sink, this mobility still ef
minimize the maximum worst-case delay ana exten el e . : : :
of a WSN, simultaneously. Since it is notyfeasible for a sinkat use many benefits. Even_though Sm!( pl(fice_ment IS _an obvious

problem to be solved in WSN design, in literature, it has been

global information, which especially applies to large-scl@ WSNs, .
we introduce a self-organized sink placement (SOSP) stragg @ddressed surprisingly seldom compared to other areaer as f

that combines the advantages of our previous works [1] and [2 €xample routing and localization in WSNSs.

The goal of this research is to provide a better sink placemen  Avoiding the costly design of using nodes’ locations infor-
strategy with a lower communication overhead. Avoiding the mation, we introduce a self-organized sink placement (SOSP
costly design of using nodes’ location information, each sk  algorithm with lower computation and communication over-
sets up its own group by communicating to itsn-hop distance head to minimize the maximum worst-case delay for large-
neighbors. While keeping the locally optimal placement, S8P  gc516 \WSNs. SOSP chooses the initial sink locations and
exhibits a quality of the solutions with respect to communiation each sink forms its own group by communicating to its

overhead as well as computational effort that are better tha h dist iahb Wi id bil inks for th
previous solutions. To model and consequently control the @rst- Op distance neighbors. Ve consider mobiie Sinks for the

case delay of a given WSN we build upon the so-called sensorinitial selection of the best sink placement and later use
network calculus (a recent methodology first introduced in B]). ~ Stationary sinks to collect the data packets from the sensor
Index Terms—Wireless Sensor Networks, Network Design, nodes via multi-hop communication. In this paper, we make no

Sink Placement, Network Calculus, Worst-Case Delay. assumptions on a priori global knowledge apart from minimum
knowledge about the size of the sensor field and, based gn this
|. INTRODUCTION develop the SOSP algorithm.

_ ) o _ A related work on which we build in this research is our
Depending on different criteria the network designer has [feious research on sensor network calculus (SNC) [3], [10
plan @ WSN which not only optimizes the energy consumptigi1} 'gased on network calculus [12], SNC has been proposed
but also achieves a high system performance. Typical sanat, ' cistomized as a framework for worst-case analysis in
for large-scale WSNs contain multiple sources and multipl{gss. n our research, we use the DISCO network calculator
sinks. Compared to a single sink, multiple sinks provide [@3) \hich is an open source toolbox for worst-case analysi

better manageability of WSNs. In a WSN, multiple sinks ofjiten in Javd™ . All network calculus operations and differ-
proper locations can strongly decrease both the amountQfi hetwork analysis algorithms can easily be used from this
energy usage and the message transfer delay in communjgga v *sing the foundation of sensor network calculus, w
tion, mainly due to the effect of a shorter multi-hop dis@nc.|c\jjate the worst-case end-to-end delays for each flow and
between sensor nodes and sinks. Therefore, we assumeehaffhy the maximum worst-case delay in the field.
path with the lowest hop count is taken in order to minimize o rest of the paper is organized as follows: Section 2
the maximum worst-case delay. _ __iptroduces the SOSP algorithm alongside with its four phase
The general sink location problem is NP-complete, so f”"jzhe following Section 3 contains a detailed performance

ing the exact optimal sink placement is very hard. Some wellyq| ation of SOSP against previously proposed approaches
known approaches for finding the optimal solution mcludgina”y we conclude the paper in Section 4.

integer linear programming [4], [5], exhaustive searchdtl

iterative clusten_ng [6], [7], [8]. We also dev_eloped a heu:r:_ Il. SELF-ORGANIZED SINK PLACEMENT

method [2], which performs well and delivers near-optimal ) . .
solutions. Integer linear programming and exhaustiveckear Algorithm 1 summarizes all steps of SOSP. In our algorithm,

only work for small-scale WSNs. They use global knowledg&e only information we need is the size of the field, the
transmission ranges and the number of nodes for both sensor

*This work has been generously supported by Gottlieb Daimied Karl N0des and sinks. After a random node deployment phase, the
Benz-Stiftung under grant number 02-13/06, 2009. next step is grouping which is illustrated in Fig.1(a). ®inc



Algorithm 1 SOSP Algorithm. in large-scale WSNSs. After the candidate location sets have
Given: a circular sensor field with known radius and transmibeen determined, a mobile sink traverses from one candidate

sion ranges of nodes and sinks. location to another during which it computes the maximum
Definitions: initial locations of sinksS;, wherei = 1,2,...,k, Wworst-case delay, and finally picks the location having the
nodesN;, wherej = 1,2, ..., N. minimum value. We assume that the mobile sink has more

than enough energy supply for these operations. The nodes
do not consume considerable amounts of energy due to the
2. Grouping Phase design of SOSP. Upon achieving the best self-organized sink
C . placement for each group, we can start the operation and then
(') Placek sinks at C?GSCS . calculate the actual global maximum worst-case delay.eSinc
(i) Create 1-hop neighbors set forS; by transmitting @ e have a fully connected network, there is at least one sink
signal and whichever node replies to the signal is collecteckor each of the nodes. In order to obtain a better performance
(iii) Determine 1-hop neighbors distances frofy and thus the nodes are allowed to connect to the nearest sink (i.e.,
locations by using trilateration with TOA and 3 anchor psintthe minimum hop distance sink) in SOSP. This approach is
(vi) Group up ton-hop distance r{-value is obtained by helpful for worst-case delay performance, since the messag
simulation) transfer delay is strongly affected by greater hop distarcel
3. Sink Location Selection Phase aggregate flows towards the sink.
For each group,i( sinks represent groups) m
(i) Determine the fixed candidate locations according to the
1-hop neighbors’ locations set from 2. (iii)
(i) A mobile sink traverses into each candidate locatiod a

1. Deployment Phase
(i) Deploy a random node distribution

. PERFORMANCEEVALUATION

All experiments are based on the following assumptions:
A circular field shaped network is chosen for initial sink
rblacement at CGSC. The sensor nodes are deployed with the

calgulates the maximum qust-case delay i . density of0.0l%d.fs in uniform random node distribution
(iv) Select the best sink, i.e., the one which minimizes thgshion. The transmission range li§m for both sensor and

maximum worst-case delay sink nodes. We analyze scenarioslof), 200 and 500 node

4. Operation Phase networks with 2-6 sinks. In each scenario, we analyfe

Upon the selection of the best sink from each group, different node distributions and take the average of tlesiuits

(i) Allow N; to connect to the nearest (i.e., the shortest hap counter random effects. (In fact, in none of the compar-
distance) sink isons below, the 99% confidence intervals were even near to

(i) Calculate the maximum worst-case delay overlapping). The same network scenarios are used for each
strategy. The routing we use here is based on the Dijkstra’s
shortest path. Under a homogeneous nodes assumption, the
oken bucket arrival curves and rate-latency service cuave
onsidered for the network calculus operations. In pdgigu

r the service curve we use rate-latency functions which
rrespond to a duty cycle dR and11.5%' depending on

network size, since for larger networks a duty cycle of
o results in infinite delay bounds. For example, a duty cycle
% 1% results in a latency of.096s and a forwarding rate of

typically large-scale WSNs are designed with multiple sinkt
it is possible to create groups whose number correspontie to
number of sinks. We initially choose the sink at each cenifter
gravity of the sector of a circle (CGSC) which connect toithef°
1-hop neighbor nodes by broadcasting a message. This i
continues to the next hops up to the setefiop neighbors in
whichn is set according to simulative results. When each no

is assigned to a group, we determine the 1-hop neighbo X . :
locations for the selection of the best sink placement. -ﬂpalyss (PMOO) described in [15], to compute end-to-end

estimate the distance, we use Time of Arrival (TOA) methog€rVice curves. .
( ) Two scenarios for the performance evaluation of SOSP are

Then the triangulation and trilateration approach is agptd ; . . .
estimate the location of a node. Using the location inforomat described in the following subsections.

the fixed assignment of candidate location sets is cal@ilatg performance Comparison of SOSP vs. GSP

as illustrated in Fig. 1(b). The candidate locations areqia At first, we evaluate the performance between SOSP and

at fixed points, the corners of a regular octagon, inside the P ; The GSP sink bl h K
transmission range of each neighbor node. Note that we o strategies. The P sink placement where sinks are
pfaced at CGSC [2] is utilized as an initial sink placement

in the SOSP algorithm, so the latter always has to outper-
form GSP. Furthermore, SOSP uses mobile sinks for a self-
organized network operation and thus should have an edge
over GSP in terms of delay minimization.

In fact, as expected, SOSP outperforms the GSP strategy as
shown in Fig. 2.

For 200 nodes, the worst-case delay gaps between the two

Figure 1.  (a) Grouping for 50-node network with 3-sink and {tred  strategies are.8s, 1.5s, 1.2s, 0.7s and0.7s for 2 to 6 sinks,
candidate locations at circumradius of a regular octagon. respectively.

8 b/s. We use the so-called Pay Multiplexing Only Once

use the location information of-hop neighbors due to the ithe values are based on a realistic node model of a Mica2 matsing
computational expensiveness of location estimation seheme TinyOS system (see CC1000 Radio Stack Mannual) [14].
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Figure 2. The worst-case delay comparison of SOSP vs. GSP.

overhead compared to previous solutions in order to miremiz
the maximum worst-case delay in WSNs. This algorithm
was inspired by our previous works [1] and [2], of which
we used the respective advantages. In particular, we put
emphasis on the self-organized nature of our sink placement
algorithm without using global knowledge as, e.g., sensor
nodes’ locations. We consider this key to an application
in large-scale WSNSs. In particular, as we require only the
information from thel-hop neighborhood of the initial sink
placement (at CGSC), the algorithm, SOSP, should scale up
to very large WSNs. From the experimental results, it isrclea
that SOSP distinctly outperforms an almost totally scenari

For 500 nodes, the worst-case delay gaps between the twgnostic strategy (GSP) and comes very close to a globat, nea
strategies arel.9s, 1.2s, 0.9s and 0.9s for 3 to 6 sinks gptimal strategy (GASP), which, however, does not scale. In
placement, respectively. The reason of having a small@ydetonclysion, SOSP strategy is shown to be a promising sealabl

gap is the node distribution pattern and a higher duty cyclg,

lution to the sink placement problem with low computation

The higher duty cycle results in a lower latency and a highghd communication overhead.

forwarding rate, thus providing a faster message transfiayd
Accordingly, the worst-case delay gap becomes smaller. But
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