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Abstract—The deficient energy supplies of wireless sensor
networks (WSNs) drives network designers to optimize energy
consumption in various ways. Not only with regard to the energy
issue but also with respect to system performance, we designa
local search technique for sink placement in WSNs that triesto
minimize the maximum worst-case delay and extend the lifetime
of a WSN, simultaneously. Since it is not feasible for a sink to use
global information, which especially applies to large-scale WSNs,
we introduce a self-organized sink placement (SOSP) strategy
that combines the advantages of our previous works [1] and [2].
The goal of this research is to provide a better sink placement
strategy with a lower communication overhead. Avoiding the
costly design of using nodes’ location information, each sink
sets up its own group by communicating to itsn-hop distance
neighbors. While keeping the locally optimal placement, SOSP
exhibits a quality of the solutions with respect to communication
overhead as well as computational effort that are better than
previous solutions. To model and consequently control the worst-
case delay of a given WSN we build upon the so-called sensor
network calculus (a recent methodology first introduced in [3]).

Index Terms—Wireless Sensor Networks, Network Design,
Sink Placement, Network Calculus, Worst-Case Delay.

I. I NTRODUCTION

Depending on different criteria the network designer has to
plan a WSN which not only optimizes the energy consumption
but also achieves a high system performance. Typical scenarios
for large-scale WSNs contain multiple sources and multiple
sinks. Compared to a single sink, multiple sinks provide a
better manageability of WSNs. In a WSN, multiple sinks on
proper locations can strongly decrease both the amount of
energy usage and the message transfer delay in communica-
tion, mainly due to the effect of a shorter multi-hop distance
between sensor nodes and sinks. Therefore, we assume that the
path with the lowest hop count is taken in order to minimize
the maximum worst-case delay.

The general sink location problem is NP-complete, so find-
ing the exact optimal sink placement is very hard. Some well-
known approaches for finding the optimal solution include
integer linear programming [4], [5], exhaustive search [1]and
iterative clustering [6], [7], [8]. We also developed a heuristic
method [2], which performs well and delivers near-optimal
solutions. Integer linear programming and exhaustive search
only work for small-scale WSNs. They use global knowledge
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of the network, e.g., where the nodes are located, such that
position-awareness of sensor nodes becomes a critical issue.
In some papers [9], [6], sinks are addressed as mobile nodes.
Although the dynamic nature of routing becomes the most
challenging issue for a mobile sink, this mobility still offers
many benefits. Even though sink placement is an obvious
problem to be solved in WSN design, in literature, it has been
addressed surprisingly seldom compared to other areas, as for
example routing and localization in WSNs.

Avoiding the costly design of using nodes’ locations infor-
mation, we introduce a self-organized sink placement (SOSP)
algorithm with lower computation and communication over-
head to minimize the maximum worst-case delay for large-
scale WSNs. SOSP chooses the initial sink locations and
each sink forms its own group by communicating to itsn-
hop distance neighbors. We consider mobile sinks for the
initial selection of the best sink placement and later use
stationary sinks to collect the data packets from the sensor
nodes via multi-hop communication. In this paper, we make no
assumptions on a priori global knowledge apart from minimum
knowledge about the size of the sensor field and, based on this,
develop the SOSP algorithm.

A related work on which we build in this research is our
previous research on sensor network calculus (SNC) [3], [10],
[11]. Based on network calculus [12], SNC has been proposed
and customized as a framework for worst-case analysis in
WSNs. In our research, we use the DISCO network calculator
[13], which is an open source toolbox for worst-case analysis
written in JavaTM . All network calculus operations and differ-
ent network analysis algorithms can easily be used from this
library. Using the foundation of sensor network calculus, we
calculate the worst-case end-to-end delays for each flow and
find the maximum worst-case delay in the field.

The rest of the paper is organized as follows: Section 2
introduces the SOSP algorithm alongside with its four phases.
The following Section 3 contains a detailed performance
evaluation of SOSP against previously proposed approaches.
Finally, we conclude the paper in Section 4.

II. SELF-ORGANIZED SINK PLACEMENT

Algorithm 1 summarizes all steps of SOSP. In our algorithm,
the only information we need is the size of the field, the
transmission ranges and the number of nodes for both sensor
nodes and sinks. After a random node deployment phase, the
next step is grouping which is illustrated in Fig.1(a). Since



Algorithm 1 SOSP Algorithm.
Given: a circular sensor field with known radius and transmis-
sion ranges of nodes and sinks.
Definitions: initial locations of sinks,Si, wherei = 1, 2, ..., k,
nodesNj , wherej = 1, 2, ..., N .
1. Deployment Phase

(i) Deploy a random node distribution
2. Grouping Phase

(i) Placek sinks at CGSCs
(ii) Create 1-hop neighbors set forSi by transmitting a

signal and whichever node replies to the signal is collected
(iii) Determine1-hop neighbors distances fromSi and thus

locations by using trilateration with TOA and 3 anchor points
(vi) Group up ton-hop distance (n-value is obtained by

simulation)
3. Sink Location Selection Phase

For each group, (k sinks representk groups)
(i) Determine the fixed candidate locations according to the

1-hop neighbors’ locations set from 2. (iii)
(ii) A mobile sink traverses into each candidate location and

calculates the maximum worst-case delay
(iv) Select the best sink, i.e., the one which minimizes the

maximum worst-case delay
4. Operation Phase

Upon the selection of the best sink from each group,
(i) Allow Nj to connect to the nearest (i.e., the shortest hop

distance) sink
(ii) Calculate the maximum worst-case delay

typically large-scale WSNs are designed with multiple sinks,
it is possible to create groups whose number corresponds to the
number of sinks. We initially choose the sink at each center of
gravity of the sector of a circle (CGSC) which connect to their
1-hop neighbor nodes by broadcasting a message. This way
continues to the next hops up to the set ofn-hop neighbors in
whichn is set according to simulative results. When each node
is assigned to a group, we determine the 1-hop neighbors’
locations for the selection of the best sink placement. To
estimate the distance, we use Time of Arrival (TOA) method.
Then the triangulation and trilateration approach is applied to
estimate the location of a node. Using the location information,
the fixed assignment of candidate location sets is calculated
as illustrated in Fig. 1(b). The candidate locations are placed
at fixed points, the corners of a regular octagon, inside the
transmission range of each neighbor node. Note that we only

sensor node

sink
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sensor node

sink

sink candidate location 

(b)

Figure 1. (a) Grouping for 50-node network with 3-sink and (b) fixed
candidate locations at circumradius of a regular octagon.

use the location information of1-hop neighbors due to the
computational expensiveness of location estimation scheme

in large-scale WSNs. After the candidate location sets have
been determined, a mobile sink traverses from one candidate
location to another during which it computes the maximum
worst-case delay, and finally picks the location having the
minimum value. We assume that the mobile sink has more
than enough energy supply for these operations. The nodes
do not consume considerable amounts of energy due to the
design of SOSP. Upon achieving the best self-organized sink
placement for each group, we can start the operation and then
calculate the actual global maximum worst-case delay. Since
we have a fully connected network, there is at least one sink
for each of the nodes. In order to obtain a better performance,
the nodes are allowed to connect to the nearest sink (i.e.,
the minimum hop distance sink) in SOSP. This approach is
helpful for worst-case delay performance, since the message
transfer delay is strongly affected by greater hop distances and
aggregate flows towards the sink.

III. PERFORMANCEEVALUATION

All experiments are based on the following assumptions:
A circular field shaped network is chosen for initial sink

placement at CGSC. The sensor nodes are deployed with the
density of 0.01

nodes
m2 in uniform random node distribution

fashion. The transmission range is16m for both sensor and
sink nodes. We analyze scenarios of100, 200 and 500 node
networks with 2-6 sinks. In each scenario, we analyze10

different node distributions and take the average of their results
to counter random effects. (In fact, in none of the compar-
isons below, the 99% confidence intervals were even near to
overlapping). The same network scenarios are used for each
strategy. The routing we use here is based on the Dijkstra’s
shortest path. Under a homogeneous nodes assumption, the
token bucket arrival curves and rate-latency service curves are
considered for the network calculus operations. In particular,
for the service curve we use rate-latency functions which
correspond to a duty cycle of1% and11.5%1 depending on
the network size, since for larger networks a duty cycle of
1% results in infinite delay bounds. For example, a duty cycle
of 1% results in a latency of1.096s and a forwarding rate of
258 b/s. We use the so-called Pay Multiplexing Only Once
analysis (PMOO) described in [15], to compute end-to-end
service curves.

Two scenarios for the performance evaluation of SOSP are
described in the following subsections.

A. Performance Comparison of SOSP vs. GSP

At first, we evaluate the performance between SOSP and
GSP strategies. The GSP sink placement where sinks are
placed at CGSC [2] is utilized as an initial sink placement
in the SOSP algorithm, so the latter always has to outper-
form GSP. Furthermore, SOSP uses mobile sinks for a self-
organized network operation and thus should have an edge
over GSP in terms of delay minimization.

In fact, as expected, SOSP outperforms the GSP strategy as
shown in Fig. 2.

For 200 nodes, the worst-case delay gaps between the two
strategies are2.8s, 1.5s, 1.2s, 0.7s and0.7s for 2 to 6 sinks,
respectively.

1The values are based on a realistic node model of a Mica2 mote running
the TinyOS system (see CC1000 Radio Stack Mannual) [14].
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Figure 2. The worst-case delay comparison of SOSP vs. GSP.

For 500 nodes, the worst-case delay gaps between the two
strategies are1.9s, 1.2s, 0.9s and 0.9s for 3 to 6 sinks
placement, respectively. The reason of having a smaller delay
gap is the node distribution pattern and a higher duty cycle.
The higher duty cycle results in a lower latency and a higher
forwarding rate, thus providing a faster message transfer delay.
Accordingly, the worst-case delay gap becomes smaller. But
note that obtaining the same delay performance as the SOSP
with 3 sinks would require6 sinks for the GSP.

Although the investigated scenarios are based on uniform
random node distribution, which is a good “playground” for
the GSP strategy, SOSP is still very robust against different
node distribution patterns according to experiments undernon-
uniform random node distribution.

B. Performance Comparison of SOSP vs. GASP

As we introduced the heuristic GASP strategy [2] for near-
optimal sink placement, we can use it for benchmarking SOSP
against a good global strategy. The performance evaluationof
SOSP and GASP, along with the results for GSP, are shown
in Fig. 3. In particular, we analyze a scenario of the100-node
network with4 sinks. We restricted the scenario to100 nodes
due to the considerable amount of computations for larger
networks with the GASP. The result is again the average over
10 different node distributions. For the GASP strategy, each
evaluation consists of a population size of80 individuals and
the number of generations was set to100, resulting in8000

different sink placements. In comparison, SOSP uses about
300 different sink placements for choosing the best location.

The worst-case delay improves from5.8s to 4.5s to 4.2s
for GSP, SOSP, and GASP, respectively. The performance of
the SOSP strategy is close to that of the GASP strategy, which
can be considered as success.
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Figure 3. The worst-case delay comparison among GSP, SOSP and GASP.

IV. CONCLUSION

In this paper, we introduced a self-organized sink place-
ment algorithm with lower computation and communication

overhead compared to previous solutions in order to minimize
the maximum worst-case delay in WSNs. This algorithm
was inspired by our previous works [1] and [2], of which
we used the respective advantages. In particular, we put
emphasis on the self-organized nature of our sink placement
algorithm without using global knowledge as, e.g., sensor
nodes’ locations. We consider this key to an application
in large-scale WSNs. In particular, as we require only the
information from the1-hop neighborhood of the initial sink
placement (at CGSC), the algorithm, SOSP, should scale up
to very large WSNs. From the experimental results, it is clear
that SOSP distinctly outperforms an almost totally scenario-
agnostic strategy (GSP) and comes very close to a global, near-
optimal strategy (GASP), which, however, does not scale. In
conclusion, SOSP strategy is shown to be a promising scalable
solution to the sink placement problem with low computation
and communication overhead.
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