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Abstract

There is a growing trend for ever larger wireless sensor networks (WSNs)
consisting of thousands or tens of thousands of sensor nodes (e.g., [91, 79]).
We believe this trend will continue and thus scalability plays a crucial role
in all protocols and mechanisms for WSNs. Another trend in many mod-
ern WSN applications is the time sensitivity to information from sensors to
sinks. In particular, WSNs are a central part of the vision of cyber-physical
systems and as these are basically closed-loop systems many WSN appli-
cations will have to operate under stringent timing requirements. Hence,
it is crucial to develop algorithms that minimize the worst-case delay in
WSNs. In addition, almost all WSNs consist of battery-powered nodes,
and thus energy-e�ciency clearly remains another premier goal in order
to keep network lifetime high. This dissertation presents and evaluates
designs for WSNs using multiple sinks to achieve high lifetime and low
delay.
Firstly, we investigate random and deterministic node placement strate-

gies for large-scale and time-sensitive WSNs. In particular, we focus on
tiling-based deterministic node placement strategies and analyze their ef-
fects on coverage, lifetime, and delay performance under both exact place-
ment and stochastically disturbed placement.
Next, we present sink placement strategies, which constitutes the main

contributions of this dissertation. Static sinks will be placed and mobile
sinks will be given a trajectory. A proper sink placement strategy can
improve the performance of a WSN signi�cantly. In general, the optimal
sink placement with lifetime maximization is an NP-hard problem. The
problem is even harder if delay is taken into account. In order to achieve
both lifetime and delay goals, we focus on the problem of placing multi-
ple (static) sinks such that the maximum worst-case delay is minimized
while keeping the energy consumption as low as possible. Di�erent target
networks may need a corresponding sink placement strategy under di�er-
ing levels of apriori assumptions. Therefore, we �rst develop an algorithm
based on the Genetic Algorithm (GA) paradigm for known sensor nodes'
locations. For a network where global information is not feasible we intro-
duce a self-organized sink placement (SOSP) strategy. While GA-based
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sink placement achieves a near-optimal solution, SOSP provides a good
sink placement strategy with a lower communication overhead.
How to plan the trajectories of many mobile sinks in very large WSNs

in order to simultaneously achieve lifetime and delay goals had not been
treated so far in the literature. Therefore, we delve into this di�cult prob-
lem and propose a heuristic framework using multiple orbits for the sinks'
trajectories. The framework is designed based on geometric arguments
to achieve both, high lifetime and low delay. In simulations, we compare
two di�erent instances of our framework, one conceived based on a load-
balancing argument and one based on a distance minimization argument,
with a set of di�erent competitors spanning from statically placed sinks
to battery-state aware strategies. We �nd our heuristics outperform the
competitors in both, lifetime and delay. Furthermore, and probably even
more important, the heuristic, while keeping its good delay and lifetime
performance, scales well with an increasing number of sinks.
In brief, the goal of this dissertation is to show that placing nodes and

sinks in conventional WSNs as well as planning trajectories in mobility
enabled WSNs carefully really pays o� for large-scale and time-sensitive
WSNs.
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Zusammenfassung

In den letzten Jahren ist ein wachsender Trend zu immer gröÿeren Wi-
reless Sensor Networks (WSN), bestehend aus Tausenden oder Zehntau-
senden von Sensorknoten (z. B. [91, 79]), zu beobachten. Wir glauben,
dass dieser Trend anhalten und damit die Skalierbarkeit eine entscheiden-
de Rolle in zukünftigen Protokollen und Mechanismen für WSNs spielen
wird. Ein weiterer Trend in modernen WSN-Anwendungen ist die wachsen-
de Zeitsensibilität des Transports von Sensorinformationen an der Senke.
Insbesondere sind WSNs ein zentraler Teil der Vision von Cyber-Physical
Systems (welche hauptsächlich Regelungssysteme darstellen), d. h. viele
WSN-Anwendungen müssen auch unter strengen Zeitanforderungen funk-
tionieren. Daher ist es von entscheidender Bedeutung Algorithmen zu ent-
wickeln, die die Worst-Case-Verzögerung in WSNs minimieren. Darüber
hinaus bestehen nahezu alle WSNs aus batteriebetriebenen Sensorknoten,
und so ist auch die Energiee�zienz ein wichtiges Ziel um eine hohe Le-
bensdauer des Netzwerks zu erzielen. Diese Dissertation präsentiert und
bewertet Designs für WSNs unter Verwendung mehrerer Senken, um so
eine hohe Lebensdauer bei gleichzeitig geringer Verzögerung zu erreichen.
Zunächst untersuchen wir sowohl zufällige als auch deterministische

Platzierungsstrategien für Sensorknoten in groÿen und zeitkritischen WSNs.
Insbesondere konzentrieren wir uns auf tiling-basierte, deterministische Plat-
zierungsstrategien und analysieren ihre Auswirkungen auf die Abdeckung,
Lebensdauer und Verzögerung des Netzwerks, sowohl für exakte als auch
für stochastisch gestörte Platzierungen.
Als nächstes präsentieren wir Platzierungsstrategien für Senken, welche

auch den Hauptbeitrag dieser Dissertation bilden. Es werden hierbei so-
wohl statische als auch mobile Senken betrachtet, die sich entlang geplan-
ter Trajektorien bewegen. Eine gut gewählte Senkenplatzierungsstrategie
kann dann die Leistung eines WSNs deutlich verbessern. Im Allgemeinen
ist eine optimale Senkenplatzierung mit dem Ziel der Maximierung der Le-
bensdauer jedoch ein NP-hartes Problem, welches sogar noch schwieriger
wird wenn zusätzlich die Minimierung der Verzögerung als Ziel berück-
sichtigt wird. Um sowohl Lebensdauer- und Verzögerungsziele zu erreichen
beschäftigen wir uns mit der Platzierung mehrerer (statischer) Senken,
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um die maximale Worst-Case-Verzögerung zu minimieren und gleichzeitig
den Energieverbrauch so gering wie möglich zu halten. Unterschiedliche
Netzwerktopologien können hierbei angepasste Strategien für die Platzie-
rung unter unterschiedlichen a priori Annahmen erfordern. Deshalb entwi-
ckeln wir zunächst einen Algorithmus der auf dem Genetic Algorithm (GA)-
Paradigma, unter Verwendung von bekannten Knotenpositionen, basiert.
Für Netzwerke in denen solche globalen Informationen nicht verfügbar sind
stellen wir eine selbst-organisierte Senkenplatzierungsstrategie (SOSP) vor.
Während die GA-basierte Senkenplatzierung eine nahezu optimale Lösung
erreicht, bietet SOSP eine gute Strategie mit geringerem Kommunikati-
onsoverhead.
Bis jetzt wurden in der Literatur noch keine Strategien untersucht,

die Trajektorien von vielen mobilen Senken verwenden um gleichzeitig
Lebensdauer- und Verzögerungsziele in sehr groÿen WSNs zu erreichen.
Deshalb haben wir uns in dieses schwierige Problem vertieft und schlagen
ein heuristisches Framework mit mehreren Orbits für die Trajektorien der
Senken vor. Das Framework basiert auf geometrischen Überlegungen und
erzielt sowohl eine hohe Lebensdauer als auch eine geringe Verzögerung.
Mittels Simulationen vergleichen wir zwei Instanzen unseres Frameworks
mit einer Reihe von Gegenvorschlägen aus der Literatur, von der stati-
schen Platzierung der Senken bis zu Strategien, die den Batteriezustand
der Sensorknoten miteinbeziehen. Unsere zwei Instanzen basieren hierbei
entweder Load-Balancing-Überlegungen oder der Minimierung der durch-
schnittlichen Entfernungen. Unsere Ergebnisse belegen, dass die vorgestell-
ten Heuristiken die Konkurrenz sowohl im Bezug auf Lebensdauer als auch
der Minimierung der Verzögerung übertre�en. Weiterhin, und wahrschein-
lich noch wichtiger, stellen wir fest, dass die heuristische Strategie mit
zunehmender Anzahl von Senken im Bezug auf Verzögerung und Lebens-
dauer sehr gut skaliert. Kurz gesagt ist das Ziel dieser Arbeit zu zeigen,
dass eine planvolle Platzierung von Sensorknoten und Senken in konven-
tionellen WSNs und die Planung von Trajektorien in neuen mobilen WSNs
sich vor allem in groÿen und zeitkritischen Sensornetzwerken auszahlt.
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1. Introduction

A Wireless Sensor Network (WSN) provides a wireless communication in-
frastructure that allows us to react, monitor, observe, and response to
phenomena in a natural environment, physical, and cyber infrastructure
[113]. It is composed of a number of small, unobtrusive, and autonomous
devices called sensor nodes with processing, communication, and sensing
capabilities. Sensor nodes can be homogeneous or heterogeneous, i.e., pos-
sessing the same or di�erent communication and computation capabilities,
respectively. Although some applications require heterogeneous sensors, for
many applications it is su�cient to investigate the case of homogeneous
WSNs. Less complexity and a better manageability are the most bene�cial
properties of homogeneity. Some distinct features of WSNs are being data
centric and application-speci�c, having energy constraints, striving to be
time-sensitive and scalable. In WSNs, nodes do not have global identi�ers,
therefore, data is collected based on certain attributes rather than direct
addressing of particular nodes, this is called data centricity. Application
speci�city in WSNs means that one cannot have a solution that �ts all
problems. Therefore, it is very hard to �nd standard designs, protocols,
and algorithms for all sorts of WSN applications. Due to the battery lim-
itations, sensor nodes are energy-constrained. Therefore, energy-e�cient
designs, protocols, and algorithms are considered with the intention of life-
time prolongation of WSNs. Besides striving for elongated lifetimes, many
applications of WSNs are time-sensitive, i.e., they strongly bene�t from
bounds on the message transfer delay. Hence, minimizing maximum delay
is a primary goal for time-sensitive WSNs. Further, a WSN is composed of
a large amount of unsophisticated and low cost sensors to perform the sens-
ing of the information instead of using a few expensive and sophisticated
sensors as in a conventional sensor network approach. Thus scalability is
a critical issue in WSNs.
In this dissertation, we intend to present insights into designing large-

scale and time-sensitive WSNs, by using multiple sinks in WSNs and by
planning the trajectories of multiple mobile sinks in order to achieve lifetime
and delay goals. In addition, we investigate alternative node placement
strategies for various performance metrics.
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1.1. Motivation

Lifetime prolongation of WSNs by using multiple static or mobile sinks
has already been treated in literature [99, 65, 139, 55, 107, 140, 82, 144,
20, 125]. However, designing WSNs using multiple sinks to achieve both
lifetime and delay goals has not been researched yet. In general, there is
a tradeo� between lifetime and delay optimization. But existing studies
do not explicitly address the optimal sink placement strategy for delay and
lifetime goals. Hence, our objective is to design and control both static
and mobile sinks for large-scale and time-sensitive WSNs to achieve high
lifetime and low delay. In fact, even the optimal static or mobile sink
placement for lifetime prolongation is an NP-hard problem. Thus, we can
imagine that a solution of the problem for both lifetime and delay goals
is very hard to achieve. To solve this problem, heuristics and problem
transformations are promising strategies which will be taken into account
in this dissertation.

The sink placement problem can be divided into the static sink placement
problem and the mobile sink movement problem. The static sink placement
problem is related with conventional WSNs where the locations of sinks
are �xed. For large-scale and time-sensitive WSNs, scalable and low delay
sink placement strategies are desired. It is di�cult to �nd a single solution
to all types of problems for application-speci�c WSNs. For di�erent target
networks, appropriate sink placements are required. For example, a sink
placement strategy should provide a better performance if a WSN provides
global information such as nodes' locations during the design time. Hence,
it is necessary to �nd suitable sink placement strategies for di�erent target
networks that guarantee scalability and low delay without degradation of
lifetime performance.

In the case of mobile sink placement, the locations of sinks are changing
from time to time within the network area. Actually, mobile sink place-
ment problem can be viewed as a sink trajectory problem. Depending on
the movement of mobile sinks, a sink trajectory can be de�ned as discrete
or continuous. A sink trajectory is seen as a discrete type if the movement
of a sink is abstracted as a sequence of static sink placements assuming
that the time scale of sink mobility is much larger than that of data de-
livery. In contrast, a continuous type of sink trajectory collects the data
within a short period of time at each sink candidate location or during the
movement without stopping anywhere along the trajectory. With a slow
mobility (i.e., a discrete type), the complexity of problems such as packet
loss or dynamic topology changes can be reduced e�ectively. In this dis-
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sertation, we investigate the �rst approach for the sink trajectory problem.
Using sink mobility, we face a con�ict between lifetime maximization and
delay bound minimization in large-scale, time-sensitive WSNs. The chal-
lenge thus becomes the search for good trajectories for the sinks such that
lifetime and delay goals are met simultaneously.
Additionally, a proper node placement scheme can reduce the complex-

ity of problems in WSNs as, for example, routing, communication, data
aggregation, energy consumption, etc. While a random node placement
is preferable in many scenarios, deterministic node placement comes to
our attention due to its better performance. Therefore it is necessary to
analyze deterministic node placement strategies for large-scale and time-
sensitive WSNs more deeply. In particular, tiling-based node placement
strategies are taken into account in this dissertation. However, we should
be aware about deployment errors due to environmental and geograph-
ical impacts or node failures. In order to apply realistic node placement
strategies which are useful in real world scenarios, network designers should
investigate the e�ects of environmental and geographical disturbances on
deterministic node placement strategies.

1.2. Methodology

To evaluate lifetime performance of WSNs, a simple energy model is for-
mulated to study energy consumption at each sensor node. Of course,
a very accurate energy estimation would be desirable because knowledge
about the node level energy behavior is necessary to evaluate the energy
consumption distribution. However, this would need to be investigated
starting from the transistor level, taking into consideration leakage, etc.
We take a more abstract view and de�ne a rather simple energy model for
the assessment and performance comparison of design strategies in WSNs.
Our model mainly highlights the energy consumption of the transceiver
unit, since the energy consumption of the processing unit is relatively the
same for all nodes and, as such, can be taken as a constant. Thus, energy
consumption for security, routing, and data aggregation is not taken into
account. We de�ne a model which concerns the 1 bit energy consumption
of sensing, transmitting, and receiving for all nodes when communicating
to their nearest sinks. The energy model is based on the popular MICAz
mote [7].
While an average-case analysis is useful in some applications, for time-

sensitive WSN applications it must be ensured that messages indicating
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dangerous situations are not lost and they should be guaranteed not to
exceed a maximum worst-case delay. This can be achieved by a new
methodology called sensor network calculus (SNC) [115]. Based on net-
work calculus [71], SNC was proposed and customized as a framework for
the worst-case analysis in WSNs. A tool exists called DISCO network cal-
culator [116], which is an open-source toolbox for the worst-case analysis.
The network calculus operations and di�erent network analysis algorithms
can easily be used from this library: for example, end-to-end service curve
calculation, total �ow analysis, separated �ow analysis, PMOO analysis,
etc. Using the foundation of sensor network calculus, we calculate the
worst-case end-to-end delays for each �ow and �nd the maximum worst-
case delay in the �eld. A related work on which we build in this research
is the previous research on SNC [115, 118, 119].

1.3. Dissertation Overview and Outline

WSNs became mature and smart in many sectors with the support of
emerging technologies in embedded systems. At the same time, large-
scale and time-sensitive WSN applications are more and more demanding
in our environmental and cyber-physical systems. So far, we know that
energy-constraints are inevitable in WSNs. For these networks to become
integrated in our surroundings, lifetime prolongation with minimal energy
consumption and minimizing the worst-case delay bound are crucial. Also,
scalability is a fundamental issue for every design. In order to scale well
with delay and lifetime, large WSNs require multiple sinks. Therefore,
it becomes very interesting to investigate how to place multiple sinks in
conventional WSNs and how to plan the trajectories of multiple mobile
sinks in mobility enabled WSNs such that lifetime and delay goals are
met simultaneously. Due to the hardness of the problem, the problems
of multiple sinks placement and multiple sinks trajectories are solved with
heuristic approaches.
In chapter 2, we survey various design issues for large-scale and time-

sensitive WSNs. In each issue, we discuss the existing strategies and their
methodologies together with pros and cons. Furthermore, a realistic energy
model basing on MICAz motes [7] is introduced. The details of SNC
operations and analysis methods will also be discussed there.
In chapter 3, we examine a uniform random node placement and tiling

based deterministic node placements are investigated. The goal of this
chapter is the introduction of tiling-based node placements for WSNs and
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providing alternative placements for the application designers to meet their
desired goals. We analyze coverage, energy consumption, and delay of
each node placement strategy. We �rst study the performance of the
strategies while assuming an exact placement. Since various di�culties
can occur in exactly placing sensor nodes in WSNs due to environmental
and geographical constraints, we study a stochastically disturbed version of
the strategies. Finally, we analyze the tradeo�s between these performance
metrics for each placement strategy with and without disturbance e�ects
to show which strategy is preferable under what factors, e.g., the number
of nodes.
In chapter 4, heuristic-based static sink placement strategies are pro-

posed for time-sensitive WSNs. For di�erent target networks we develop
two sink placement strategies: a Genetic Algorithm-based sink placement
strategy and a self-organized sink placement strategy under di�erent as-
sumptions. Performance is analyzed and compared to other strategies
having the same level of abstraction.
In chapter 5, mobile sinks are introduced for large-scale and time-sensitive

WSNs. Since �nding an optimal sink trajectory is very hard to achieve,
we relax the problem by giving it a geometric interpretation, and introduce
a heuristic framework which we call orbital sink trajectory. The orbital
sink trajectory is built on a geometric reduction of the problem, where the
two performance characteristics, delay and lifetime, are amalgamated into
minimizing the Euclidean distance between nodes and sinks. The intuition
behind this is that both, delay and lifetime, bene�t from nodes being closer
to their assigned sinks. By simulation, the validity of analytical results are
con�rmed and the performance of the orbital sink trajectory for multiple
sinks is evaluated and compared to several alternatives.
In chapter 6, we summarize the dissertation with its original contribu-

tions and discuss the future work.
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2. Design Issues in

Large-Scale,

Time-Sensitive WSNs

2.1. Introduction

Research in the area of WSNs can be classi�ed into three di�erent levels:
component level, system level, and application level [113, 112, 45]. Re-
search at the component level is mainly concerned with hardware issues
such as sensing, communication, and computation capabilities of sensor
devices in WSNs in order to achieve low cost and high performance. The
system level research focuses on deployment, communication, and net-
working issues in an energy-e�cient and scalable manner. Research at the
application level is very speci�c. The data collected from the sensors is
being processed according to the application's requirements.
Clearly, various design issues arise at each level. In each design, the re-

quired information and the level of abstraction is di�erent. An interesting
question is: what is the required information for each individual design in
order to achieve an optimal design? For application-speci�c and resources
constrained WSNs, the answer of that question is not easy to �nd. Since
the applications of WSNs are very broad, it is very di�cult to ful�ll the
requirements of each individual application. It is debatable which informa-
tion is important enough to be explicitly considered as a design parameter.
Thus, it is very likely that one could argue in favor of adding more infor-
mation or removing some from others' suggestions. An obvious thing is
that there always exists a cost-performance trade-o� associated with each
design problem. The cost issue not only relates to the hardware and in-
stallation cost but also to the requirement of global information, the usage
of energy, etc.
Before we discuss the important design issues, we �rst want to highlight

the assumptions taken into account for each design issue. We know that
the level of abstraction varies in each design issue. For instance, deploy-
ment designs are more abstract than the others because, in general, net-
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work information is not known in advance. As a result, the designers have
to make several assumptions. During design time, some assumptions are
inevitable, while some are �exible and some are strict. Another important
thing is that assumptions must be cost-e�ective under the consideration
of large-scale WSNs. One can imagine that the designers can provide an
optimal design only if all information of the application is assumed to be
given. In general, the more information we have the better the design and
the higher performance should be possible to provide. On the other hand,
we encounter high computation and communication overheads which are
very expensive for large-scale WSNs. For example, in a dynamic routing
design that requires global information like nodes' locations, sensor nodes
may keep the locations of some of the other nodes or may distribute the
locations of itself and/or its neighboring nodes to other sensors. Obviously,
such a design has high communication overheads.

To be able to apply a proposed design in large-scale WSNs, the most im-
portant feature is its scalability. Scalability plays a vital role in large-scale
WSNs. Any design, protocol, and algorithm must be able to maintain its
performance with a large amount of sensor nodes since WSNs are expected
to be composed of thousands of nodes. There are already WSN deploy-
ments, such as [79, 91]. A universal method for solving the scalability
issue is the clustering approach [151, 52, 99, 65]. Along with clustering,
multiple sinks are considered to maintain performance and to get a better
manageability. By dividing the network into smaller sub-networks, a global
problem is reduced to several (similar) local problems of a smaller scale.
Indeed, such transformation results in a better management, lower com-
munication overheads and energy consumption especially for routing and
in-network aggregation of the data in WSNs. The hardest part of clus-
tering is constructing optimal clusters to achieve the desired goals with
minimal cost.

In this chapter, we discuss brie�y about the important design issues
at each level for large-scale and time-sensitive WSNs. Among them, we
mainly focus on deployment designs starting from Chapter 3 onwards.
Since the goals of our designs are maximizing lifetime and minimizing the
worst-case delay, the methodologies to evaluate them are also presented in
this chapter.
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2.2. Design Issues at the Component Level

A WSN comprises of a collection of autonomous sensing nodes, each
equipped with physical sensors, modest computing ability, memory, a wire-
less transceiver, and a power source [61]. Component level designs are
concerned with sensor node hardware. Physical sensors such as pressure,
humidity, and sound are used to measure physical and environmental con-
ditions. Sensed data are being processed according to application needs.
Memory is used to bu�er the intermediate data and store global informa-
tion, e.g., the locations of sinks. Communication is handled by the radio
transceiver, i.e., receiving and transmitting data over the wireless channel.
The power required for the above operations is provided by a battery unit.
Among a variety of design issues at the component level, we brie�y discuss
hardware designs and operating system designs in this section. As men-
tioned above, achieving low cost and high performance are primary goals
of these design issues.

2.2.1. Hardware Design

When designing hardware components for a WSN, the designers have to
pay attention to reduce size, costs, and energy consumption for processing
and wireless radio communication of the sensor node. A small node size is
preferable so that nodes are unobtrusive and attachable everywhere. The
latter case is necessary for some applications like intrusion detection where
sensor nodes should not be noticeable for the intruders. Cost is a very
crucial issue not only for the hardware design but also for the usability of
the WSN in the real world, especially for large-scale WSN applications.
On the other hand, performance and cost e�ectiveness have to be traded
o�. The performance in hardware design is mainly concerned with com-
putation and communication capabilities such that these capabilities have
to provide an acceptable service. To compromise cost and performance
issues, cost-e�ectiveness and energy-e�cient hardware designs are consid-
ered for data processing and wireless radio communication. For instance,
micro-electromechanical systems (MEMS) sensor generations made a lot
of progress in micro sensor technology.
The range of WSN platforms varies from lightweight platforms to high

performance platforms. Some of them are compared in Table 2.1. The well
known lightweight platforms that are commercially available are Mica2,
MicaZ, TelosB, Imote, and BT [5, 2]. These nodes are very popular and
widely used in various research organizations. Except for the BT node, the
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Table 2.1.: Comparison of wireless sensor network platforms.
Mote Microcontroller Data/Storage Memory Radio Data Rate

Mica2 ATmega128l/8-bit 4 / 512 KB CC1000 38.4 Kbps

MicaZ ATmega128l/8-bit 4 / 128 KB CC2420 250 Kbps

TelosB TI MSP430/16-bit 16 +10 RAM / 48 KB CC2420 250 Kbps

Imote ARM7/32-bit 11 / - KB Zeevo TC2001 723.2 Kbps

BT node ATmega128l/8-bit 64 / 180 KB Zeevo ZV4002 723.2 Kbps

XYZ OKI ML67Q5002/32-bit 32KB+2MB RAM/256 KB CC2420 250 Kbps

Stargate Intel XScale/32-bit 64 / 32 MB IEEE 802.11b 1�11 Mbps

above mentioned platforms are from Crossbow Technologies [5]. In con-
trast to these general purpose platforms, some platforms focus on a speci�c
application. For example, in [36], the authors presented the design of the
eXtreme Scale Mote, a new sensor network platform for reliably detecting,
classifying, and quickly reporting rare, random, and ephemeral events in
a large-scale, long lived, and retaskable manner. The Yale XYZ platform,
which is a typical example of ranging above the lightweight platforms, has
more memory and processing resources than the lightweight platforms.
However, intermediate platforms are still equipped with low bandwidth ra-
dios (e.g., the IEEE 802.15.4 compliant CC2420). Thus, real-time high
volume data streaming is not possible with these platforms either. At the
higher performance level, there are PDA-class platforms (e.g., Stargates)
which are more powerful than the intermediate platforms. PDA-class plat-
forms equipped with IEEE 802.11 radios are suitable for real-time high
volume data streaming due the highly capable processors and large mem-
ory available on board. However, the energy dissipation of these devices
is more than an order of magnitude higher than the energy dissipation of
lightweight platforms. Furthermore, it consumes considerably more energy
for communication. For that reason, these nodes are suitable to use as
gateway nodes or sinks because they are usually assumed to be resource
unconstrained.

Although, many improvements can be found in this research area, on
the one hand, low power processor and radio designs for computation and
communication, and cost-e�ective physical sensors and processing unit are
still desirable under the inevitable limited battery problem. On the other
hand, long lived battery and sensor nodes integrated with energy harvesting
circuits (e.g., solar cell) designs are active research areas [120, 26, 12].
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2.2.2. Operating System Design

The operating system for WSNs can be viewed at two levels: node-level or
local systems and network-level or distributed systems [108]. The impor-
tant issues related to node-level systems are limited resource management,
concurrency handling, and power management whereas issues related to
both systems are inter-node communication, failure handling, heterogene-
ity, and scalability.

As we know that energy is limited, an operating system has to provide the
necessary mechanisms to optimize the power consumption for prolonging
the lifetime of the WSN. Some e�cient methods are the periodic sleeping
of nodes, controlling scheduling policies, and adjusting the duty cycle. In
general, sensor nodes operate in three sleep modes: idle, power down,
and power save. In idle mode, only the processor shuts down. In power
down mode, everything is shut down except the watch dog timer and
interrupt logic necessary to wake up the node. The power save mode is
similar to the power down mode except that a timer is running. By allowing
periodic sleeping of nodes, the nodes can save energy e�ectively. Note that
switching modes between sleep and wake up should be energy-e�cient in
case an application needs to wake up frequently. Otherwise, the complexity
and cost for switching modes will be negatively e�ected. An alternative
method is that the operating system should properly schedule the tasks
to the processor to optimize the processing power. At the same time,
the operating system should be able to handle concurrent operations at a
given point of time since a sensor node may be doing more than a single
task, for example, sensing data from itself and collecting data from others
while transmitting data to the sink. Operating systems should handle these
situations in an energy-e�cient way. Otherwise, tasks are lost and a node
consumes more energy for repeating the same task again. Adjusting the
duty cycle is a simple but e�cient way of saving energy in sensor nodes.
This method is relevant to periodic data sensing applications.

Besides node-level issues, network-level issues are equally important in
operating system designs. In a distributed environment, an operating sys-
tem should provide an optimal inter-networking among components of each
individual node. The operating system designs should be robust, i.e., able
to handle disconnections between nodes in case of node failures or topology
changes. That means the running application should not be e�ected under
these conditions. Like other design concerns, heterogeneity and scalability
have to be carefully considered in the operating system design. Further
important characteristics are a �exible architecture, an e�cient execution
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model, real-time features, resource management, etc.
Existing operating systems for sensor nodes can be classi�ed as event-

driven, thread-driven, and hybrid designs according to their execution
model. The choice of the operating system should be dependent on the
application's desired goals. In an event-driven system, tasks are executed
in FIFO order as scheduled. Preemption is not possible. The most popular
event-driven operating system for sensor nodes is TinyOS [3]. In a thread-
driven system, tasks are preempted by the scheduler for other high priority
tasks to execute. An example of a thread-driven system is MOS [22].
We can see that preemption is a key di�erence between event-driven and
thread-driven systems. An event-driven system is assumed to have a better
performance in constrained environments whereas a thread-driven system
has advantages with high concurrency. Although preemption is a key ad-
vantage in thread-driven system, it usually has higher energy consumption.
A hybrid approach combines the advantages of event- and thread-based
operating systems. An example of a hybrid approach is the Contiki operat-
ing system [35]. A highly concurrent operating system design is desirable
for real-time WSN applications, but at the same time, energy consumption
should also be minimized. Although there are studies on this topic [145],
advanced designs and methodologies are still required.

2.3. Design Issues at the System Level

2.3.1. Deployment Design

Deployment is de�ned as setting up an operational sensor network in a real
world environment [109]. The primary design issues where major research
activities are going on in deployment designs are node placement and sink
placement.
Node placement can be a one-time activity or a continuous process. In

the former case, sensor node positions are �xed, no replacement of failed
nodes is considered. In contrast, the latter case takes additional node de-
ployment at any time during operation into account in order to maintain
the performance of the system. In a �xed node placement, nodes are dis-
tributed in a random or deterministic fashion. In a random deployment,
sensor nodes can be deployed either by placing one after another in the
area of interest or by dropping them from a vehicle, e.g., a plane. Ran-
dom node distribution is not desirable with respect to system performance
but it is assumed to be a cost e�ective and unsophisticated deployment.
Post-processing of random distribution for high performance such as self-
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con�guration of sensor networks without human intervention is consid-
ered in [74, 142]. Such an option has several challenges for applications,
e.g., due to environmental conditions. As a performance-oriented design,
a deterministic node placement comes into attention. Regular pattern-
based node placement is proposed in WSNs as a good deterministic node
placement [14, 16, 15, 17]. In most aspects, a regular pattern placement
outperforms a random placement. For this reason, many works take the
assumption of deterministic node placement in their designs, protocols or
algorithms. In some applications, post-processing of node placement is
mandatory. To that end, node mobility is a solution to perform this task
in order to increase or recover coverage or connectivity of the network.
Research in node mobility can be found in [33, 19, 134, 97]. Node place-
ment strategies play a very important role in providing better QoS, for
example, coverage performance like, how well each point in the sensing
�eld is covered. However, due to severe resource constraints and hostile
environmental conditions, it is nontrivial to design an e�cient deployment
strategy that would minimize cost for communication and the required
number of sensors, while maximizing the area coverage, and maintaining
a globally connected network.

Coverage or area coverage is one of the fundamental problems related
to node placement design. It has been observed that di�erent applications
require di�erent degrees of coverage in the sensing �eld. Some appli-
cations require a high degree of area coverage, for example, a military
surveillance application would want a region to be monitored by multiple
nodes simultaneously in order to protect from node failures and capture
high quality information. Whereas some monitoring applications like a
temperature sensing application might require only a low degree of area
coverage. Besides, some applications may need to adjust the coverage
degree dynamically, for instance, an intrusion detection system may need
to change the degree of coverage at a restricted region in case a threat or
an intrusion takes place. Nevertheless, high coverage is a key for robust
systems and makes it feasible to extend the lifetime by allowing power-
saving sleep nodes. A drawback is the increasing node redundancy, which
is an expensive option for a large-scale network. The problem of guaran-
teeing coverage while achieving application requirements often time rises
to NP-hard problems [37, 38]. To solve the coverage problem, many works
proposed methods relying on computational geometry and graph theory
[38, 75, 89, 138, 90]. In computational geometry, the problem of coverage
based on the sensor deployment is related to the traditional art gallery
problem (AGP) [98]. In graph theory, the coverage problem is de�ned
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based on exposure paths. The well known methods of exposure paths cov-
erage problems are minimal/maximal exposure path, maximal breach path,
and maximal support path [75, 89, 138, 90]. For example, Meguerdichian
et al. [90] suggests constructing a Voronoi diagram for the set of nodes in
order to compute the maximal breach path such that the path that max-
imizes the distance between the target and the nearest sensor node. The
points on the edges of the Voronoi diagram provide the maximum distance
to the given sensors. Among various coverage types, the k-coverage [69]
or minimum coverage problem has received much attention in the litera-
ture. Along with coverage, node density may vary widely, ranging from
very sparse to very dense.

A signi�cant deployment problem in WSNs is sink placement. Many
studies [99, 65, 139, 55, 107, 140] have already proven that the locations
of sinks strongly in�uence the performance of the WSN applications. The
number of sinks is lower bounded by one, but can be arbitrarily high, de-
pending on the size of the network and the application demands. For
large-scale WSNs, using multiple sinks is a key idea for scalability and
better manageability. In conventional WSNs, sinks' locations are �xed.
The data gathered by the nodes is forwarded to the sinks via multi-hop
communication paths and thus is forming a many-to-one tra�c �ow prob-
lem. Due to the many-to-one architecture, the sensor nodes nearer to
the sink deplete their battery quickly by carrying heavy tra�c loads from
other sensors. As a result, the so called energy hole or hot-spot problem
appears, which causes that no more data can be delivered to the sink and
the WSN is not able to continue its operation properly. Some studies
[148, 80] suggest to deploy non-uniform node distribution or non-uniform
battery assignment to solve this energy hole problem; however these ap-
proaches cannot eliminate the problem. Recently, an elegant approach of
sink mobility was introduced to eliminate the hot-spot problem: by mov-
ing the sink location from time to time, the lifetime of a WSN improves
signi�cantly [21, 121, 82, 92, 144, 29, 44, 125]. In the general case, the pri-
mary objective of static sink placement or mobile sink placement is lifetime
maximization. In addition to the lifetime goal, the worst-case delay bound
plays a vital role among other performance metrics for time-sensitive WSN
applications. In order to control the performance of end-to-end informa-
tion transfer delay, sink placement becomes the most promising strategic
option in WSNs because the locations of sinks heavily e�ect the tra�c
�ows and hop-distance between sensor nodes and sinks. Other important
characteristics for sink placement designs are scalability, load balancing,
mobility related issues, synchronization, and so forth.
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2.3.2. Communications Design

Along with deployment designs, the notion of connectivity is equally impor-
tant in WSNs because the goal of an optimal sensor deployment strategy
is to have a globally connected network. Hence, some studied connectivity
issues in deployment designs, for example, the connectivity problem related
with coverage issue is addressed in [14, 157]. Since connectivity is a foun-
dation for communication functionalities, we discuss the connectivity issue
under system level designs. Two nodes are connected if and only if they
are located inside each others communication range. In other words, there
exists a connection between two nodes if both can hear each other. Three
types of connectivity are available in WSNs [112]. A network is known to
be fully connected if there exists a single-hop or multihop communication
path between any two nodes. By ensuring that the network is fully con-
nected, it is also ensured that the sensed information can be transmitted to
other nodes and �nally to a sink which is a necessity for WSN applications.
A network has an intermittent connectivity if there exist partitions in the
network. This type of connectivity requires relay nodes or gateway nodes
between partitions in order to be fully connected. If nodes are outside of
the others' communication ranges most of the time, such connectivity is
called sporadic. Connectivity strongly e�ects the design of communication
protocols and data gathering algorithms in order to provide high robust-
ness and throughput for a sensor network. Like k-coverage, k-connectivity
is considered in WSNs. k-connectivity means that at least k other nodes
fall within the transmission range of each node. A sensor network is said
to have k-connectivity if removal of any k − 1 nodes does not render the
underlying communication graph disconnected. Di�erent approaches of
the connectivity problem have been addressed in the literature. One way
is assigning di�erent transmission ranges to the sensors to guarantee a
connected network. The problem of �nding the critical transmission range
has been addressed in [114] under homogeneous node distributions. An
alternative approach is using deterministic node placement, where each
node has k-connectivity [14]. Almost all available connectivity models use
simplifying assumptions such as a disc-based transmission range, uniform
transmission ranges, etc. Since real radios are much more complex than
the simple model, these complexities have a strong impact on the behav-
ior of communication protocols and algorithms [159]. A detailed study of
simplifying assumptions for radio propagation has been addressed in [66].
Although such assumptions are unavoidable at the design level, a realis-
tic stochastic propagation models should be developed to suit di�erent
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environments and to verify the protocols or algorithms.

With a connected network, a good routing design should consider un-
congested routes from nodes to the sink for a reliable data transfer. At the
same time, it should minimize end-to-end delay and energy consumption.
Therefore, the key idea is to avoid congestion by balancing the load over
nodes along the shortest route. In earlier work [110, 111], the routing
problem is modeled as a classical graph �ow problem such as the short-
est path tree (SPT) or spanning tree (ST) problems. The minimum total
energy routing algorithm in [110] �nds a path with minimum total en-
ergy consumption. In [111], a minimum hop algorithm is introduced for
energy-e�cient routing. Later, a new paradigm of cross-layer design, an
opportunistic routing, has been developed in WSNs, e.g., [158, 160]. The
opportunistic routing schemes use the network and MAC layer simultane-
ously such that the MAC layer selects a node to forward the data to, and
the network layer selects the best candidate nodes to receive the data.
Although the opportunistic routing is an e�cient routing scheme to over-
come the problems of unreliable links or unstable end-to-end connections,
a drawback is that it consumes a lot of energy due to multiple broadcasts.
Recently, geographic routing has been shown to be a promising method
for e�cient point-to-point routing in large-scale WSNs. In order to apply
such a routing algorithm, a node must have knowledge about the posi-
tions of its 1-hop neighbors, the destination, and itself. Then the node
forwards the data to the neighbor which is the closest to the sink. Such
a kind of routing is suitable for event driven execution. The advantage of
a geographic routing is its statelessness and that forwarding is performed
by local decisions. Being a localized algorithm, geometric routing scales
better in dynamic networks, where a global algorithm would need to track
every topology change. However, the drawback of geographic routing is
the requirement of nodes' locations. Additionally, local minima (or) dead
ends may arise. With the help of GPS or other localization methods,
nodes can estimate their 1-hop neighbors, however, this is expensive for
large-scale networks. The dead end problem or unreliable end-to-end con-
nections will occur when a node does not have a neighbor closer than itself
to the destination. To avoid the dead end problem, additional non-local
state or auxiliary mechanisms are considered in geographic routing (see in
[43, 133, 25, 62]). When a packet reaches communication holes or a dead
end node [62], for example, uses a distributed perimeter forwarding algo-
rithm that routes around such obstacles. An alternative approach is based
on the idea of divide and conquer: the network is decomposed into com-
ponents [132, 63] where greedy routing is likely to perform well, and then
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a global structure is used to assist inter-component routing. One of the
simplest globalized routing protocols is shortest path routing. Obviously,
shortest path routing has higher overhead at each node than any localized
scheme. Each node has to update the global information of other nodes
whenever the network topology changes. On the other hand, such a rout-
ing design can avoid dead ends and can handle frequent topology changes.
Due to the dynamic and unpredictable nature of wireless communication
and mobility, reliability and self-organizing functions have to be carefully
planned in advanced routing designs.

2.3.3. Network Design

The network topology severely a�ects many important network character-
istics such as delay, robustness, and capacity. The complexity of routing
and data gathering also relies on the topology. We can use several network
topologies to coordinate nodes and sinks in WSNs. In the simplest form,
where each node is able to communicate to the sink via a single hop, a
WSN has a star topology. This topology is applicable for small-scale WSNs
applications. Although it is simple, long distance communication is not de-
sirable in WSNs due to energy constraints. A multi-hop network may form
an arbitrary topology such as a tree or a set of connected stars. If multiple
sinks are available in a multi-hop network, one approach is to implement a
cluster or tree topology. Under a tree topology, it is clear that some nodes
act as routers and thus they consume more energy than leaf nodes. A
drawback is that all downstream nodes lose their connections to the sink if
their root router node depleted its energy. To solve such problems, mesh
topologies can be used in WSNs, where redundant communication paths
are available to increase the reliability of the system. A mesh topology in
WSNs can be viewed as a set of connected star topologies. By providing
multiple paths from nodes to the sink, the network is able to automatically
reroute the packets to the sink in case one router node fails to forward the
data [43]. This way, the network can prolong the lifetime to some degree.
A drawback is that mesh topologies maximize the information transfer de-
lay which is undesirable for time-sensitive WSNs. An alternative approach
is a backbone-based topology which is introduced to guarantee the con-
nectivity of the whole network. In fact, it is a type of bus topology. Every
node except the backbone nodes must have at least a connection to one
of the backbone nodes thus guaranteeing 1-connectivity. The problem is
also known as connected dominating set. Finding the minimum connected
dominating set is shown to be a NP-hard problem [155]. [149] proposes a
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distributed algorithm for the k-connected m-dominating set problem with
time complexity O((m + 4) × Diam) where 4 is the maximum node
degree and Diam is the network diameter, i.e., the maximum number of
hops between any two nodes. Since the complexity of related design issues
is pretty much dependent on the selected topology, the designers should
carefully choose the best topology for the application. Further, topology
problems become much more complicated if the WSN is dynamic due to
mobility enabled nodes.

2.4. Design Issues at the Application Level

2.4.1. Data Gathering

Popular data reporting models are time-driven, query-driven, or event-
driven. In a time-driven model, sensors periodically sense the data from
the environment and transport the data to the sink. Such a kind of data
reporting can be found in environmental monitoring applications, for ex-
ample, CO2 emission level is measured every day to control air pollution
of industrial areas. In a query-driven model, data is reported to the sink
according to the query, for example, the control center wants to know the
path of military vehicles (e.g., tanks) with tracking applications [6]. When
the query enters the network, nodes collaborate in estimating the path
and tracking results are transmitted to the control center. An event-driven
data reporting model is similar to a query-driven model. Nodes are ac-
tivated by the event instead of a query. A typical application using the
event-driven model is intrusion detection where sensors report whenever
any suspicious event is detected. Applications like tracking and detect-
ing have to guarantee data reporting from sensors to sinks within a given
deadline.
Although di�erent data reporting methods are available for individual

WSN applications, data gathering is the main task of every application.
A typical data gathering involves a systematic collection of sensed data
from all sensors and transmitting the data to the sink via e�cient routes.
Actually, data gathering is strongly e�ected by the design of the routing
protocol. Previous work in routing algorithms was mainly concerned with
energy-e�cient and uncongested paths without considering data aggrega-
tion. Since the data generated from sensors is often redundant and also
the amount of data generated may be very huge for the sink to process
it, additional methods are required to improve the data gathering process.
Recently, many studies [39, 72, 78, 49] addressed the routing problem
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together with mechanisms to gather and to process data more e�ciently.
Among them, in-network aggregation is known to be the most e�cient way
to reduce redundant transmissions from multiple sensors by estimating the
desired data and providing aggregated information to the sink.

In-network aggregation is the global process of gathering and routing
information through a multihop network, processing data at intermediate
nodes with the objective of reducing resource consumption (in particular
energy), and thereby increasing network lifetime [39]. While, in-network
aggregation solves redundant transmissions and reduces energy consump-
tion at each node, it can be considered a relatively complex functionality
because the aggregation algorithms should be distributed over the network
which requires coordination among nodes in order to achieve better per-
formance. A typical way of data gathering is using a gathering tree from
nodes to the sink where the sink acts as the root, e.g., [72]. Usually,
�ooding is used to construct such a gathering tree. Using a beaconless
protocol �ooding is very simple, but, it is not energy-e�cient because
nodes have to forward data as long as they receive message from their
upstream nodes. Previous work in [49, 51, 78, 77] focused on preserving
energy from sensors during the process of data gathering. In the directed
di�usion protocol [49], the gradients are set up for data �ows from source
to sink during the interest/query dissemination from the sink. By aggre-
gating the data at intermediate nodes, this approach achieves signi�cant
energy savings. An alternative approach is used in the spin protocol [51]
where metadata negotiations are used between sensors to eliminate redun-
dant data transmissions through the network. In [77], sensors form chains
so that each node transmits and receives from a nearby neighbor. Gath-
ered data moves from node to node, gets aggregated and is eventually
transmitted to the sink. Next, a clustering approach is introduced in data
gathering. LEACH [52] was an early proposal for a randomized clustering
protocol that demonstrated some of the gains of in-network compression
and its relation to routing. The LEACH protocol is a cluster-based ap-
proach where each cluster head participates in data gathering. In order
to balance energy consumption, the cluster head is reselected from time
to time. In [78], the authors propose a hierarchical scheme based on [77]
that reduces the average energy and delay incurred in gathering the sensed
data. Note that all the above studies work well in static networks where
the topology is �xed. In order to handle data gathering in a dynamic en-
vironment such as under node mobility, alternative approaches have been
proposed [43, 13]. Even multi-path algorithms may be able to deal with
topology changes, but the e�ciency is limited [94]. A reactive and local-
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ized routing protocol is proposed in [13] where MAC layer issues are taken
into account. A hybrid approach can be found in [86], which combines the
properties of tree-based and multi-path schemes. Nevertheless the exist-
ing data gathering approaches are only able to deal with limited topology
changes and thus several issues are still open with respect to more dramatic
topology changes as seen in mobility enabled WSNs. Although some initial
work addressed this topic, a deeper analysis of the aggregation functions
is not su�ciently well studied.

2.4.2. Other Technical Issues

In WSNs, many technical issues still need to be addressed more compre-
hensively and be solved. Among them, mobility, self-organization, and
heterogeneity are discussed here.
Enabling mobility in WSNs changes the whole infrastructure of some im-

portant functionalities. Most severely e�ected research areas are topology,
routing, data gathering and aggregation, connectivity, and deployment.
While the degree of network dynamics has a large impact on the design
of networking protocols and distributed algorithms, the trajectory and the
speed of movement strongly relies on the deployment, data gathering, and
connectivity issues. On the other hand, a mobile enabled WSN gains sig-
ni�cantly in lifetime prolongation which, in fact, is the most prioritized
issue among energy-constrained sensor nodes. Naturally mobility can ap-
ply to both nodes and sinks. To trade o� between network dynamics and
lifetime, partial mobility (rather than full mobility) of nodes and sinks are
considered. Furthermore, the degree of mobility, i.e., the types and veloc-
ity of movement, may also vary from discrete to continuous movement.
The key idea of using node mobility is to recon�gure the coverage and
connectivity in order to solve the energy hole problem. For large-scale
WSNs, only partial node mobility is considered due to complexity, cost,
and environmental conditions. Although several challenges are created by
sink mobility, a great advantage is the maximizing of the lifetime of WSNs
by eliminating the classical hot-spot problem which is inevitable in tradi-
tional WSNs. Hence, mobility has to be considered as a parameter in every
design of WSNs.
Along with mobility, self-organizing designs and algorithms are preferable

due to the dynamically changing environment. Self-organization can be ap-
plied at all design levels. In the component level designs, self-organization
is considered to accomplish speci�c functions such as sharing and managing
processing and communication capacity. In the system level design, self-
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organization helps in forming and maintaining structures and in adapting
behavior associated with routing. If a network needs post-processing after
deploying nodes across a geographic area, self-organization could form an
initial topology by adjusting the power level of nodes or by injecting re-
placement sensors. In case of losing connectivity due to, for example, node
failures, self-organization could provide topology recon�guration by mov-
ing nodes to new locations or by adjusting the transmission ranges of some
nodes. In the application level design, self-organization provides adaptive
processing functionalities associated with disseminating and querying for
information, with assigning tasks, con�guring software components and
resilience by repairing faults and resisting attacks. A drawback of self-
organization is that it produces a higher complexity and overhead.
Another important characteristic of future WSN applications is hetero-

geneity. Many prototypical systems available today are composed of a
variety of di�erent devices and sensors. That means some nodes may sup-
port powerful computation; some nodes may have special hardware like
Global Positioning System (GPS), some nodes may have special sensing
devices such as cameras, some nodes may have higher battery levels to act
as gateways, etc. The degree of heterogeneity is an important factor for
designs and management of the whole system.
Although a large amount of existing work is available, WSNs still remain

an exciting and open �eld in the research area.

2.5. Two Objectives in Large-Scale,
Time-Sensitive WSNs

Research activity in the area of WSNs has grown dramatically in the past
few years and was motivated by a vast array of potential applications. It
includes for example, environmental monitoring, intrusion detection, secu-
rity and surveillance, precision agriculture, utility plant monitoring, health
monitoring, battle�eld scenarios, building management, and disaster recov-
ery. Unlike traditional networks, WSNs may consist of several thousands of
sensor nodes for unattended operations. Consequently, various design and
control techniques used in traditional networks cannot be applied directly
to WSNs.
Typical scenarios for large-scale WSNs contain multiple sources and mul-

tiple sinks. Compared to a single sink, the use of multiple sinks results in a
better manageability of large-scale WSNs. In a general WSN application,
it is desired to collect the information acquired by sensors for processing,
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archiving and other purposes. A sink normally has a higher capacity as
well as cost than usual sensor nodes. Sinks can be sensors themselves or
devices such as PDAs or gateways to other larger networks [61]. In WSNs,
sensor nodes are not only sources but also act as routers. If a sensor node
acts as a router in a large-scale WSN, it can be experiencing quite high
amounts of data �ows from other sensors or routers. Clearly the router
nodes deplete their battery rapidly. The condition is even worse if the sinks
are distributed in improper locations. In case of an improper deployment
of sensor nodes and sinks, it is di�cult to control a running network and
to that end energy consumption and system performance are negatively af-
fected. Additionally, many nodes would be far away from the sink and thus
many hops must be traversed before the sink is reached under multi-hop
communication scheme. As a result, response times become excessive and
the lifetime of the WSN becomes very short and a di�cult replacement of
batteries if sensor nodes are deployed for example in a forest or in the ocean
has to be performed. If sensor nodes use high transmission power which
means they enforce as direct communication to the sinks as possible, the
high delay problem can be avoided but energy will be depleted very fast.
Therefore, it is sensible to deploy multiple sinks as optimally as possible
so that messages reach their destination with less hops and consequently
response times are decreased and energy is saved.

Energy consumption is often assumed to be the most critical issue in
WSNs due to operation on batteries, which probably constitutes one of
the main di�erences from traditional networks. The sensor node TelosB,
for example, mote has a lifetime of roughly ∼ 90 hours with 100 % duty
cycle with the initial capacity provided by energizer ultra+ batteries [95].
Here 100% duty cycle means the node's radio is always on, no sleep and
no communication at all. Therefore the lifetime of a WSNs is very limited.
One may argue that there are several promising methods for energy scav-
enging which, however, need additional circuitry and cost. For that reason,
all design and control processes are usually focused on minimizing energy
consumption as much as possible as we discussed in previous sections. A
protocol is called energy-e�cient if it minimizes the cumulative energy con-
sumption while completing its task. Note that an energy-e�cient protocol
does not necessarily maximize the network lifetime. In WSNs, communi-
cation for data reception and transmission between nodes is the highest
energy consumer. In order to reduce the energy consumption of commu-
nication, WSNs were improved by the use of multi-hop communication
instead of direct communication. Adjusting the duty cycle is also a pow-
erful way of optimizing energy consumption.
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Additionally, �nding the optimal location of sinks in a way that the total
energy consumption or the total load from nodes is minimized is consid-
ered for lifetime prolongation [99, 65, 139, 55, 107, 140]. Furthermore
an e�ective way of lifetime prolongation by mobile sinks is introduced in
[82, 20, 144, 125]. By changing the sinks' locations from time to time,
the set of nodes nearer to a sink is changing as well and thus balancing
energy consumption at each node. Along these lines, lifetime of WSNs
can be maximized. By carefully designing WSNs, we prolong the lifetime
which can be seen in the next chapters. In order to evaluate the lifetime of
WSNs, we de�ne an energy model in Section 2.6.2 which concerns the 1 bit
energy consumption of sensing, transmitting, and receiving for all nodes
when communicating to their destination sinks. A realistic energy model
is considered basing on MICAz motes [7].

Depending on di�erent criteria, network designers have to plan WSNs,
which do not only optimize energy consumption but also achieve a high
system performance. Performance issues in WSNs play a vital role in many
applications. There exist time-sensitive applications where the response
time is crucial in order to ensure a timely actuation in case of certain events.
For instance, in a production surveillance or �re detection application, it
must be ensured that messages indicating dangerous situations arrive at the
control center with minimum delay. Thus the maximum allowable message
transfer delay must be bounded and consequently it is crucial to develop
algorithms to minimize the maximum worst-case delay in WSNs. For that
reason, the dissertation takes the worst-case delay as one of the primary
metrics in WSNs into account. In particular, we focus on strategies to
minimize the maximum worst-case delay, which is important for any timely
actuation based on the information collected by a WSN.

To model and consequently control the worst-case delay of a given WSN
we build upon the so-called Sensor Network Calculus (SNC) (a recent
methodology introduced in [115]). Network calculus [71] is a framework
for worst-case analysis which allows to calculate maximum message trans-
fer delays, maximum bu�er requirements at each sensor node and lower
bounds on duty cycles. SNC customizes the conventional network calcu-
lus to the typical setting in WSNs. Some details of SNC operations and
analysis methods will be discussed in Section 2.7.
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2.6. Lifetime

In WSNs, the lifetime is de�ned as the time span until the network cannot
ful�ll its task anymore. It is likely that the concrete lifetime de�nition may
di�er from one application to another. Among various lifetime de�nitions,
the following are known to be the most often used ones.

2.6.1. Lifetime De�nitions

De�nition 1: The time span starting from initial deployment phase until
any node depletes its battery.

This is the most common lifetime de�nition for WSNs applications. This
type of de�nition is applicable for some WSNs applications where area cov-
erage is the heart of the application requirements. In military applications
such as battle�eld surveillance, area coverage is the most sensitive issue
where the application will totally fail in case of a single node failure. Al-
though the de�nition is somewhat arguable, it is assumed that the rest of
the nodes deplete their batteries soon right after the �rst node dies. This
holds especially in homogeneous network.

De�nition 2: The time span starting from initial deployment phase to the
�rst loss of coverage of a region of interest.

This type of de�nition is well suited for applications where a single node
failure is not so dramatic. For example, in an environmental application
such as pollution monitoring, �nal data represents aggregated data of a
certain region but not the sensed data from a single node. The point is
that the pollution level such as CO2 emission is roughly the same within
a certain region and thus the nodes in that region will have redundant
data. In this case, a single node failure within a certain region does not
necessarily e�ect heavily on the data accuracy of the region of interest.
The network cannot ful�ll its task only if all nodes within a certain region
die. In fact, this de�nition falls together with the �rst one in case a network
only guarantees 1-coverage.

De�nition 3: The time span starting from initial deployment phase to the
time when only m sensor nodes are still alive.

This de�nition is similar to the previous de�nition. The only di�erence is
that the failure of a tolerable number of sensors is accepted. If a network is
composed of heterogeneous nodes, node failures can be tolerable. As long
as a speci�c number of tasks in the application survive with m remaining
sensor nodes, the network is assumed to be still alive.
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2.6.2. Energy Model

A sensor node is composed of a sensing unit, a processing unit, a transceiver
unit, and a power unit. Each unit consumes a di�erent amount of energy.
Usually, the main consumers of energy are the transceiver unit and the
processing unit. The sensing unit consumes energy for a variety of sensors
and for ADC converters. The processing unit requires energy to aggregate
data, compute routing, maintain security, etc. Since the purpose of the
transceiver unit is to both transmit and receive data, there is no doubt
that it consumes quite a lot of energy. Thus energy consumption by trans-
mitting and receiving messages has to be analyzed based on a hop-by-hop
communication scheme.
In fact, a highly accurate energy estimation is desirable because a node

level energy behavior model is necessary to evaluate the energy consump-
tion distribution. However, this would need to be investigated starting from
the transistor level, taking into consideration leakage, etc. We take a more
abstract view and de�ne a simple energy model for the assessment and
performance comparison of WSN designs. Our model mainly highlights
the energy consumption of the transceiver unit, since the energy consump-
tion of the processing unit is largely the same for all nodes and, as such,
can be taken as a constant. Thus, energy consumption for security, rout-
ing, and data aggregation is not taken into account. Regarding wireless
signal propagation, one should be aware of path loss. Typically, the path
loss exponent, τ , varies from 2 to 6. If the environment is a free space,
then τ = 2 is considered based on the Friis free space model. Otherwise
τ = 5 to 6 can be considered for shadowed areas and obstructed indoor
scenarios [61]. We intend to use this model for the analysis of MICAz
motes.
The model concerns the total energy consumption of 1 bit data trans-

missions from all nodes to their nearest sinks. The formulation of the total
energy consumption, Etotal, is given in Equation 2.6.1. It is the sum of
total energy consumption per group, Ei, in which the number of groups
corresponds to the number of sinks, s.

Etotal =

(
s∑
i=1

Ei

)
(2.6.1)

In Equation 2.6.2, we describe the total energy consumption of a group,
Ei. It amounts to the total energy consumption of the data �ows whose
number is the number of nodes, n′. A data �ow is considered to be
routed on the shortest paths between its source node and its nearest sink.
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Obviously, the number of hops in each �ow of interest, lj , depends on the
nodes' locations. Moreover, the energy consumption per hop, ek, needs to
be analyzed separately due to its distance-dependent characteristic.

Ei =

 n′i∑
j=1

lj∑
k=1

ek

 (2.6.2)

To calculate the energy consumption of a single hop, we must know
the energy used by a transmitter, a receiver, and a sensor for 1 bit of data,
which is shown in Equation 2.6.3. Each component can easily be calculated
by multiplying the consumed power and their individual time required for
1 bit of data.

ek = etx + erec + esense (2.6.3)

Equations 2.6.4 and 2.6.5 are used to calculate the energy consumption
of receiver electronics, erec, and energy consumption of sensing, esense, re-
spectively. Taking the values from the MICAz data sheet, we can calculate
the power consumed by the receiver electronics, PrecElec. The time spent
on receiving, trec is independent of the transmitted data rate, but it varies
according to the user-de�ned duty cycle. In most works, it is assumed that
the power consumed by sensors, Psense is negligible. However, it should
not be neglected for a considerable amount of sensors in the sensing unit.
In that case tsense expresses the time required to sense 1 bit of data. From
a given data rate the time required to sense 1 bit of data is obtained.

erec = PrecElec ∗ trec (2.6.4)

esense = Psense ∗ tsense (2.6.5)

There are two components that consume energy in the transmitter part.
The formula is described in Equation 2.6.6. The �rst part represents power
used in transmitter electronics, PtxElec, while the remaining part is ex-
pressed as the transmission power of the RF signal generation, Pamp.

etx = (PtxElec + Pamp) ∗ ttx (2.6.6)

Pamp = V ∗ Itx (2.6.7)

Basically, PtxElec can be assumed to be a constant, whereas we de�ne

Pamp in Equation 2.6.7. Let us discuss the second component in detail.
Although it looks simple, the choice of a current consumption depends
on the transmitted output power setting that relies on the distance and
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the selected modulation scheme. It is impossible to directly use a typical
current because with MICAz it does not report a connection between them.
Therefore, we must check the relationship (in dB) between RF power, Ptx,
and the received signal power at distance d, Pd.
We de�ne the transmission model based on the speci�cations of the

CC2420 RF transceiver of a MICAz mote [1] using reference [126]. First,
we study the e�ect of the path loss variation over the distance between two
nodes. The path loss occurs due to the dissipated power at transmitter
op-amp and channel propagation. For a general analysis of the system
design, the transmission power is derived from the mean path loss which
is measured in dB, as shown in Equation 2.6.8. The mean path loss,
PL(d) can be computed using the mean path loss at reference distance
d0, PL(d0), and the path loss exponent,τ1.

PL(d) = PL(d0) + 10τ log10

(
d

d0

)
(2.6.8)

Based on the free space radio propagation environment, Equation 2.6.9
is used to compute the value of PL(d0).

PL(d0) = 20log10

(
4πd0
λ

)
(2.6.9)

where,
λ = c/f

c := speed of light
f := frequency of the transmitted signal.
We now compute the received signal power at a distance d based on the

transmitted signal in dB with the following Equation.

P (d) = Ptx − PL(d) + σ (2.6.10)

Based on the above equation, a distance-dependent corresponding power
level for the MICAz mote is introduced to get a satisfactory power level
for a given distance, d, [126]. By referring to the Chipcon CC2420 output
power setting for the MICAz mote, we get the typical current consumption,
and thus Pamp.

P (d) =

{
Ptx − 40.2− 20log10(d), d < 8m

Ptx − 58.5− 33log10(d8 ), d > 8m
(2.6.11)

1A wide range of 1km is considered for cellular system and a short range of 1m is
considered for WLANs [61].
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2. Design Issues in Large-Scale, Time-Sensitive WSNs

Note that transmitting uses less energy than receiving even at the highest
output power of the transceiver chip. The reason is that the receiver
consumes a considerable amount of power due to idling in the receive
mode. So, a duty cycle is a good way to control energy consumption of a
receiver.

2.7. Worst-Case Delay Bound

Sensor network calculus is based on network calculus [71], which is a frame-
work for worst-case analysis allowing to calculate maximum message trans-
fer delays, maximum bu�er requirements at each sensor node, and lower
bounds on duty cycles. Sensor network calculus customizes the conven-
tional network calculus to the typical setting in WSNs.
Many WSNs can be modeled as feed-forward (FF) networks. This has

several advantages. FF networks are stable, and fast to compute, because
they do not contain cycles. A tree topology is an example of a FF network.
If WSNs do not have FF characteristics, sensor nodes have many possible
data paths and as a result they may create cyclic dependencies which makes
analysis di�cult and infeasible for higher network loads. To avoid cyclic
dependencies, the turn prohibition algorithm [40] is a very e�ective way to
make general topologies FF.

2.7.1. Basic Sensor Network Calculus

This is a basic overview of the Sensor Network Calculus (SNC). Detailed
explanations of the SNC can be found in [115, 118, 119].
To apply SNC, the network topology has to be known to some degree.

For example, a tree-structured network topology with a sink at the root and
n sensor nodes can be used. Next, the network tra�c has to be described
in terms of the so-called arrival curves for each �ow. An arrival curve
de�nes an upper bound for the input tra�c of a node. Leaf nodes in the
network must handle tra�c according to the sensing function they perform;
for example, a node might sense an event and create a data packet at the
maximum rate of one packet every second. This sensing pattern can be
expressed as an arrival curve αi. Non-leaf nodes handle tra�c according
to their own sensing pattern and the tra�c they receive from other nodes.
To calculate the output, a so-called service curve βi is used. The ser-

vice curve speci�es the minimum forwarding capabilities of a node. The
unavoidable forwarding latencies are de�ned by the nodes' forwarding char-
acteristics.
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2.7. Worst-Case Delay Bound

With the knowledge of arrival and service curves, it is possible to cal-
culate the output bound for each node. Using those bounds, it is possible
to compute the e�ective input ᾱi for each node. After that, the local per-
node delay bounds Di for each sensor node i can be calculated according
to the basic network calculus result given in [70]:

Di = h(ᾱi, βi) = sup
s≥0
{inf{τ ≥ 0 : ᾱi(s) ≤ βi(s+ τ)}}

To compute the total information transfer delay D̄i for a given sensor
node i, the per-node delay bounds on the path P (i) to the sink need to
be added:

D̄i =
∑
j∈P (i)

Dj

Clearly, a bound on the maximum information transfer delay in the sen-
sor network can then be calculated as D = maxi=1,...,N D̄i. The whole
procedure is called total �ow analysis (TFA) because the entire tra�c
arriving at a given node is treated in an aggregate fashion.
Examples for the use of this calculus can be found, e.g., in [67, 124, 130].

2.7.2. Advanced Sensor Network Calculus

Because TFA is a straightforward method for applying network calculus in
the domain of wireless sensor networks, there is room for improvement with
respect to the quality of the calculated performance bounds. This is due to
the fact that the concatenation result for consecutive nodes o�ering service
curves is not exploited by TFA. In particular, we can exploit and even
extend the concatenation result towards the so-called Pay Multiplexing
Only Once analysis (PMOO) described in [119], to compute an end-to-end
service curve for the speci�c �ow of interest from one sensor node to the
sink. Due to the sink-tree structure of the network, all �ows that join the
�ow of interest remain multiplexed until the sink, making it possible to
calculate the total information transfer delay D̄i for a given sensor node
i by using a �ow-speci�c end-to-end service curve. PMOO was shown to
deliver a tight bound for sink-trees of homogeneous nodes [117]. When
compared to the addition of the nodal delay bounds, as done by TFA, this
results in considerably less pessimistic as each interfering �ow's burst has
to be taken into consideration only once.
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2. Design Issues in Large-Scale, Time-Sensitive WSNs

2.7.3. DISCO Network Calculator

In our work, we use the DISCO network calculator which is an open source
toolbox for worst case analysis written in JavaTM . The network calculus
operations and di�erent network analysis algorithms can easily be used
from this library [116].
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3. The E�ect of Sensor Node

Placement on Performance

Metrics

3.1. Introduction

Node placement is a fundamental issue to be solved in Wireless Sensor
Networks (WSNs). Nodes can be deployed over a network in a random
or deterministic fashion. While a random node placement is preferable
in many applications, if possible, other placements should be investigated
since an inappropriate node placement can increase the complexity of other
problems in WSNs. A proper node placement scheme can reduce the com-
plexity of problems in WSNs as, for example, routing, communication,
energy consumption, etc. For instance, since a node stops working when it
depletes its battery, the tasks of a WSN cannot continue if many sensors
deplete their battery. The battery depletes faster if a sensor node needs
to forward a large amount of data packets either from itself or other sen-
sors. In other words, some nodes may have an unbalanced load and this
situation can occur if sensor nodes are placed in inproper locations of the
sensor �eld. At the same time, related problems, for example, coverage
loss and topology changes arise. These examples show that a careful node
placement is preferable in order to meet applications' desired goals. For ex-
ample, a triangular lattice is known to be optimal for coverage performance
[64], such an optimal node placement uses O(log n) times fewer sensors
than a random node placement [69]. However, optimal node placement is
a very challenging problem. It has been proven to be NP-hard in [30, 104].
In this chapter, we examine a uniform random node placement and

six deterministic node placements for large-scale WSNs. Tiling based de-
terministic node placements are investigated, in particular, three regular
tilings: a triangular tiling, a square tiling, and a hexagonal tiling and three
semi-regular tilings: a trihexagonal tiling, an elongated triangular tiling,
and a snub square tiling are taken into account. The goal of this chapter
is to introduce tiling-based node placements for WSNs and to help network
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3. The E�ect of Sensor Node Placement on Performance Metrics

designers alternative placements to meet their desired goals.
Since the priority of performance metrics varies in application-speci�c

WSNs, it is worthwhile to investigate a set of them. For instance, [152]
surveys the e�ects of sensor node placements under several performance
metrics. Among them, we analyze three performance metrics: coverage,
energy consumption, and information transfer delay. We de�ne each metric
as follows.

� Coverage: For the surveillance kind of applications, the minimum
coverage performance, or so called k-coverage must be targeted for
data accuracy and for sleeping nodes in an unreliable network. A
network is said to have k-coverage if every point in it is covered by
at least k sensors. Instead of focusing on the minimum k-coverage,
we propose a novel strategy for calculating the relative frequency of
the exactly k-covered points, which uses k-coverage maps for each
deterministic node placement as presented in Section 3.6. Based on
this, we measure the average k-coverage and the standard deviation
of exactly k-covered points.

� Energy consumption: The simple energy model presented in Section
2.6.2 in Chapter 2 is used to study energy consumption for each
deployment strategy. Since energy is often the most critical issue
in WSNs, it is necessary to optimize energy consumption in various
ways. Using a proper node placement scheme, energy consumption
can be reduced and thus the lifetime of WSNs can be extended.

� Worst-case delay: Often the maximum allowable message transfer
delay must be bounded in order to enable time-sensitive applica-
tions of WSNs. Using the foundation of sensor network calculus
as mentioned in Section 2.7 in Chapter 2, we calculate the worst-
case end-to-end delays for each �ow in every sink tree of the entire
network and �nd the maximum worst-case delay among them.

We �rst study the performance of the strategies under the assumption of
an exact placement. Various di�culties can occur when sensor nodes shall
be placed in exact locations within the network. In fact, an exact node
placement strategy may not be applicable to some WSN applications due
to environmental and geographical constraints. In order to make node
placement strategies realistic and usable in real world scenarios, the net-
work designer should investigate such disturbances for the deterministic
node placement strategies. For this reason, we also investigate stochasti-
cally disturbed versions of the strategies. Finally, we analyze the tradeo�s
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between these performance metrics for each placement strategy with and
without disturbance e�ects to show which strategy is preferable under what
factors, e.g., the number of nodes.

3.1.1. Contributions

The contributions of this chapter are

� To the best of our knowledge, we are the �rst to introduce semi-
regular tiling-based node placements in large-scale, time-sensitive
WSNs. (→Section 3.5)

� We introduce the k-coverage map to assess all possible coverage ar-
eas and to analyze the relative frequency of exactly k-covered points.
(→Section 3.7)

� We thoroughly investigate tiling-based node placements under exact
and disturbed placements for coverage, energy consumption, and
worst-case delay. (→Section 3.8)

3.1.2. Outline

The remainder of for the node placement problem chapter is organized as
follows: Section 3.2 describes the related work. The network model and
assumptions are presented in Section 3.3. In Section 3.4 and 3.5, we explain
the selected placement strategies and their characteristics. Since we have
already discussed the worst-case delay and lifetime performance metrics in
Chapter 2, the remaining coverage metrics especially the relative frequency
of the exactly k-covered points and the formulation of k-coverage maps,
a new approach of evaluating coverage performance, for the deterministic
node placement will be presented in Section 3.6 and 3.7. In Section 3.8,
the properties of these three performance metrics for the exact placement
strategies are compared. Under the same experimental set-up, we evaluate
these three performance metrics for stochastically disturbed placements as
can be found in Section 3.9 and 3.10. The chapter is concluded in Section
3.11.

3.2. Related Work

Finding the optimal locations for sensor nodes is a very hard problem and
it has been proven to be NP-hard in [30, 104]. Ways of �nding sub-optimal
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solutions by heuristic methods have been addressed in [34, 32] where the
nodes are placed according to the desired performance metrics of their
speci�c applications, e.g., coverage performance. Besides, they focus on
static node placement. In reality, nodes' locations can change dynamically
depending on the network states and various external factors to improve
the performance of the application. Repositioning of the nodes during
the operation of the network is addressed in [143, 142, 146]. However,
the complexity of dynamic adjustment of nodes' locations for large-scale
WSNs applications is very high.

3.2.1. Placement Methodology

In two dimensional (2D) space or three dimensional (3D) space, sensor
nodes are distributed either randomly or deterministically. Yet, a random
placement is not an e�cient distribution because the performance of the
random node placement relies pretty much on the node density, some
WSNs applications such as [91, 135] use random deployment due to the
nature of applications and/or geography. [58] investigates three random
node distribution functions with respect to fault-tolerance properties of the
stochastic placements. A good thing about random placement is having no
e�ects of placement errors because a random distribution with a placement
error is still a random distribution. However, sensor failures in random
deployments a�ect the density of the network. In addition, a random node
placement is a common distribution not only for the deployment purpose
but also for evaluation of various algorithms in the network.
On the other hand, nodes can be placed in a deterministic fashion in

order to meet desired performance goals. It is also known that if sensor
nodes are placed at exact locations and they are reliable, an optimal deter-
ministic placement will need O(log n) times fewer sensors than a random
placement where n is the number of sensors used in random placement [69].
Such kind of node distributions are usually desirable for civilian WSN ap-
plications, e.g., structural health monitoring. In [100, 88], sensor nodes are
deterministically placed to monitor corrosion and overstressed beams that
can endanger structure's integrity. Deterministic node placement can also
be found in 3D applications, e.g., underwater acoustics [10] and range-
�nders [48]. In [10], nodes are necessary to be placed at each other's
line-of-sight whereas [48] introduced an art-gallery model for which the
lowest amount of guards is to be placed to monitor a gallery. For these
applications, nodes' candidate locations are very limited due to the appli-
cations' requirements. Another form of deterministic node placement is
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grid-based or polygon-based placement which, in fact, is suitable for wide
area monitoring applications [60, 131, 150, 15]. This kind of determinis-
tic node placement becomes our interest in this chapter. The 3D space
extension from 2D space can also be found in [11, 34].

3.2.2. Relevant Performance Metrics

Regarding the node placement issue, the �rst priority metric that came to
the attention is area coverage in order to provide a high quality of infor-
mation on the region of interest. Since an optimal node placement is a
di�cult task in WSNs, the complexity of the problem is reduced to the
coverage problem where the goal is to minimize the number of sensors to
cover the region of interest [34, 32, 27]. The optimal node placement to
achieve full coverage when deploying sensors deterministically and critical
density needed to achieve full coverage when deploying sensors randomly
has been studied extensively in [15, 141, 69]. The triangular lattice is
known to be the optimal placement pattern to achieve full coverage [15].
However, deployment errors and sensor failure issues have not been dis-
cussed in this work. We know that deployment errors have a strong change
of on the performance of deterministic node placements. The problem is
extensively studied under two deterministic and one random placement in
[18]. To overcome sensor failures and deployment errors, enough sensors
are placed at each lattice point in the �rst strategy. In the second strategy,
only one sensor is placed at each lattice point but the lattice spacing is
su�ciently shrunk to achieve full coverage under the presence of failures
and placement errors. The third strategy is a random deployment with
appropriate density. Their study showed that the deterministic placement
with placement error of half the sensing range and a failure probability
of 50% has better coverage than random placement. Under this condi-
tion, the random deployment needs around 10% higher node density to
achieve the same coverage performance. In that paper, the authors only
considered 1-full coverage performance. The authors in [69] proposed the
appropriate number of sensors to provide k-coverage for a mostly sleep-
ing sensor network. An interesting point is that the conditions for the
deterministic deployment are very similar to the conditions for the ran-
dom deployment to achieve k-coverage. [131] studies a generic approach
to evaluate the average performance of coverage under inevitable random
errors for all kinds of grid-shapes and di�erent sensing models. Another
study on such environmental e�ects can be found in [73] where the authors
pointed out that the performance of the grid-based deployment depends
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only on the environmental conditions instead of the coverage performance.
A similar placement error is considered for our tiling-based node placement
strategies. The sensing model plays a vital role in evaluating coverage per-
formance. While [24] studies a more practical model of irregular sensing
range, in literature, many works abstracted to a disc-based sensing range
[57, 15, 18, 34, 60, 150]. This level of abstraction is hardly avoidable
during the design phase. Like in [57], we compute each k-coverage as the
ratio of the covered area to the region of interest.

The second metric, which has been the most critical issue for WSNs,
is the network lifetime since the positions of nodes signi�cantly a�ect it.
The sensors near the sink usually consume more energy than others thus
the lifetime becomes shorter. To solve this energy hole problem, the au-
thors in [58] showed the R-random placement, in which the density of the
nodes nearer the sink is higher, is a good random distribution with respect
to high fault tolerance with a high probability of having nodes that can
sense. It, however, does not completely eliminate the problem but leads
to unbalanced tra�c load and causes bottlenecks. Maximizing the life-
time by sensor nodes with coverage constraints has been addressed in [33]
where the idea of mobile nodes as relay nodes is introduced. The authors
transformed the problem into minimizing the average energy consumption
by a sensor in each communication in order to balance the load among the
sensors. A heuristic approach is proposed to select the relay nodes among
sensors where the selected relay nodes are relocated to the positions which
are carefully chosen in order to form the most e�cient topology. Recently,
sink mobility [83, 29, 44, 125] has been introduced to prolong the lifetime
of WSNs. Details will be discussed in Chapter 5.

Thirdly, connectivity is a typical networking requirement. Recently, the
connectivity issue has been addressed in node placement [64, 59, 14, 15,
17, 16]. It is known that a triangular lattice is asymptotically optimal with
respect to minimizing the number of discs needed to achieve full coverage
[64]. Besides, when the ratio of the transmission range rtx and the sensing
range rsense is greater than or equal to

√
3, the triangular lattice has 6-

connectivity. Recently, [59] proved that the strip-based pattern is optimal
when rtx = rsense. Based on the strip-pattern, the authors in [14] proved
1-full coverage and 1- and 2-connectivity for all ranges of rtx/rsense. The
authors continued their work for a complete set of deployment patterns
for all ranges of rtx/rsense that achieve 1-full coverage and k-connectivity
where k ≤ 6 [15, 17]. In [16], the authors discussed the pattern mutation
phenomenon that contradicts the conjecture presented in [14, 15, 17] that
there exists a universal elemental pattern among optimal pattern evolution
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and that pattern evolution is continuous. All these works assume disc-
based sensing and transmission ranges.
Last but not least, the message transfer delay can also be improved with

the help of a proper node placement. Since the end-to-end delay depends
highly on the hop-distance between the sensor and the sinks and the tra�c
load along the �ow of interest, the nodes' locations as well as the sinks'
locations are very important. In literature, some have addressed delay min-
imization by sink placement but not using node placement. For this reason,
we also study the e�ect of node placement on the delay performance in
this chapter.

3.3. Node Placement Model and
Assumptions

During the design phase of WSNs, the designer knows the number of
sensor nodes, n, which are deployed in a given �eld in either a random or
a deterministic fashion. Finding the optimal number of sensors to achieve
the desired goal will not be considered in this chapter. A circular �eld
with radius R is considered in our experiments. We introduce one node
placement strategy for random node placement and six strategies for tiling-
based deterministic node placements together with their characteristics.
Although [11, 31] address node placement in 3D space, we investigate
node placements strategies over 2D space which seems more realistic and
usable in most WSN applications. However, in a further study we also
investigate the 3D e�ects due to realistic 2D imperfections like, e.g., a hilly
terrain. We make the following assumptions for random and deterministic
node placements:

� A circular �eld network with radius R is considered for n sensor
nodes, where n and R are assumed to be given. In each tiling, each
of the n grid points hosts a sensor.

� A disc based sensing model rsense which, in fact, is a good abstrac-
tion from the real world especially when certain theoretical founda-
tions are to be established.

� The radius of rsense is de�ned as the distance between any two
vertices in a tiling-based node placement. It is obvious that each
tiling scheme uses di�erent rsense in order to deploy n given sensors
inside a circular �eld with radius R.
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Figure 3.4.1.: Random node placement.

� Since �nding the optimal rsense inside a circular �eld for each tiling
method is not an easy task, we provide approximate formulations.
The idea is that the total area of the network having radius R is
equally subdivided into n areas where each area represents each
node. Then we transform each area into a corresponding shape
for each tiling. The corresponding shape is achieved by connecting
the midpoints of the surrounding polygons of a vertex, for example,
a hexagon is a corresponding shape for a triangular tiling. In brief,
the area of a corresponding shape which is a function of rsense is
approximately equivalent to πR2

n . In this way, an approximate for-
mulation for the relationship among the parameters rsense, R, and
n is achieved.

3.4. Uniform Random Node Placement

A uniform random node placement is considered to be a common node
placement strategy in WSNs such as for analyzing the performance of the
algorithms and protocols where the e�ect of node placement is not sensi-
tive. We choose a uniform random placement as one of the competitors
and as a reference strategy. In the uniform random placement, each of
the n sensors has equal probability of being placed at any point inside the
given �eld, as shown in Figure 3.4.1. Consequently, the nodes are scat-
tered on locations which are known with uncertainty. For example, such
a placement can result from throwing sensor nodes from an airplane. In
general, a uniform random placement is assumed to be easy as well as
cost-e�ective. As we mentioned before, WSN applications often prefer a
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random node placement, which is why we assess its performance metrics
here. Besides, [69] claimed that a uniform random placement outperforms
both the grid and the Poisson distribution placements for k-coverage under
mostly sleeping sensor nodes.

3.5. Deterministic Node Placement

In deterministic node placement, the entire network is �lled with a ba-
sic placement pattern. In fact, tiling, also known as tesselation, is the
covering of an in�nite space (usually Euclidean) with �gures that neither
overlap nor leave any gaps. Although a pattern-based node placement may
be problematic for placing nodes at exact locations in real applications, its
performance characteristics may justify the additional e�ort. Among di�er-
ent tilings, we focus on regular and semi-regular tiling in Euclidean plane.
The name of each tiling can be expressed according to the vertex con�g-
uration which is a short-hand notation for representing the vertex �gure
of a tiling as the sequence of faces around a vertex. A regular tiling is a
highly symmetric tessellation made up of congruent regular polygons. A
regular polygon has the same side lengths and interior angles. There exist
three regular polygon tilings made up of equilateral triangles, squares, or
hexagons. Semi-regular tiling composes of more than one basic placement
polygon. There are eight possible semi-regular tiling in a two dimensional
plane where the arrangement of polygons at every vertex point is identical.
Among them, we investigate a trihexagonal tiling (THT), an elongated
triangular tiling (ETT), and a snub square tiling (SST).

3.5.1. Triangular Tiling (TT)

Triangular tiling is a tiling of equilateral triangles where each vertex has a
36 pattern. As we mentioned before the name comes from going around
a vertex and listing the number of sides each regular polygon has, as
illustrated in Figure 3.5.1(a). The distance of each side of polygon rsense
is de�ned as dt in the triangular tiling.
For coverage performance, a triangular tiling is asymptotically optimal

with respect to the number of discs needed to achieve full coverage [64].
Under the same rsense, the density of triangular cell is the highest among
the three regular tilings. In other words, triangular tiling has the largest
rsense for the same number of nodes n. Having the highest sensing range,
it is obvious that triangular tiling consumes more energy for sensing than
the other two regular tilings. However, each vertex has six neighbor nodes
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(a) (b)

(c)

Figure 3.5.1.: Three regular tilings: (a) a triangular tiling, (b) a square
tiling, and (c) a hexagonal tiling.

within its sensing range regardless of the transmission range of the sensor.
Yet, the node degree cannot guarantee to minimize the worst-case delay,
though it helps to improve the worst-case delay by providing more possible
paths to the sink.

The approximate length dt can be calculated in the following way. Re-
member that each tiling point hosts a node in all tilings. We �rst check the
corresponding shape for the area of each node (i.e., πR

2

n ). By connecting
the centroids of the surrounding triangles of a node, the corresponding
shape becomes a regular hexagon with edge lenght dh′ . We know that the
area of the regular hexagon is 3

√
3

2 d2h′ . The correlation between dh′ and
dt is dh′ = dt√

3
. Finally, the relationship among n, dt, and R is given in
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Equation 3.5.1

dt =

√
2πR2

3n
. (3.5.1)

3.5.2. Square Tiling (ST)

A square tiling is a natural placement strategy over a unit square. As il-
lustrated in Figure 3.5.1(b) a square tiling placement, which is also often
called a grid, is a popular placement not only in WSN but also in conven-
tional networks. A square tiling has a 44 con�guration since each vertex
is surrounded by four polygons with four sides each. In square tiling, we
de�ne ds as rsense.
A square tiling has a higher sensing range ds than a triangular tiling

because the density of a square tiling is not as high as a triangular tiling
due to its node degree of four. In particular, the square grid uses about
5 % of rsense less than that of a triangle grid. As a result, it consumes
less energy for sensing but has lower minimum coverage than a triangular
tiling.

ds =

√
πR2

n
(3.5.2)

Equation 3.5.2 provides the approximate formula for the relationship
among the parameters n, ds, and R. The corresponding shape for each
node in a square tiling is a square with edge length ds after connecting
the midpoints of four squares around a vertex. Thus the corresponding
shape area d2s is equivalent to the area assigned for each node which can
be achieved by dividing the total area of the circular network having radius
R with the number of nodes n.

3.5.3. Hexagonal Tiling (HT)

Another regular tiling is a hexagonal tiling where each vertex has a 63

pattern as shown in Figure 3.5.1(c). We de�ne one side of each hexagon
as dh which becomes rsense to construct a hexagonal tiling.
The hexagonal tiling provides the lowest maximum k-coverage among

the three regular tilings due to its node degree of three. It has some
nice properties such as having the smallest rsense for a given n and R
compared to the triangular and square tiling. In a hexagonal grid, rsense is
about 17 % less than in the triangle grid. Therefore, the hexagonal tiling
consumes the lowest energy for sensing among the three regular tilings
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under the assumption that rsense is equal to one side of each regular
polygon.

dh =

√
4πR2

3
√

3n
(3.5.3)

Equation 3.5.3 allows the approximate computation of any one param-
eter out of n, ds, and R given the other two parameters. With the same
approach, we search a corresponding shape to represent the area of each
node πR2

n in the hexagonal tiling. Since triangular tiling and hexagonal
tiling are dual to each other, the corresponding shape for a single vertex
of hexagonal tiling is a triangle having edge length dt′ =

√
3dh. Knowing

the area of equilateral triangle to be
√
3
4 d

2
t′ , the approximate edge length

of each hexagon dh can be computed according to Equation 3.5.3.

3.5.4. Trihexagonal Tiling (THT)

A THT uses a triangle and a hexagon in a two dimensional plane, the so-
called 3-6-3-6 con�guration as shown in Figure 3.5.2(a). The sensing range
of THT is de�ned as dTHT from now on. A THT combines the advantages
of coverage performance from the triangular grid and the lowest rsense from
a hexagonal grid. In general, the THT placement uses 13 % of rsense less
than the triangle grid while providing nearly double of the 3-coverage area
(more details can be found in Section 3.7.4). Among the selected three
semi-regular tilings, THT uses the least sensing range. Besides, the node
degree of THT within the sensing range dTHT becomes four.
In a similar way to the regular tilings, an approximate formulation for

rsense can be found for THT. Although semi-regular tilings use more than
one regular polygon, there exists a single corresponding shape to represent
the area of each node. For a THT tiling, the area for each node corresponds
to a parallelogram with height dTHT where each corner is either at the
midpoint of a hexagon or a triangle. The base length of the parallelogram
is 4

2
√
3
dTHT which is the sum of half of a hexagon's height and one-third

of the height of the triangle. Then the area of the parallelogram becomes
dTHT × 4

2
√
3
dTHT . An approximate solution for dTHT can be computed

using Equation 3.5.4

dTHT =

√
2
√

3πR2

4n
. (3.5.4)
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(a) (b)

(c)

Figure 3.5.2.: (a) A trihexagonal tiling, (b) an elongated triangular tiling,
and (c) a snub square tiling.

3.5.5. Elongated Triangular Tiling (ETT)

An ETT tiles up squares and equilateral triangles where each vertex is
composed of three triangles and two squares forming a 3-3-3-4-4 vertex
con�guration as illustrated in Figure 3.5.2(b). The dETT is called the
sensing range for ETT. The coverage performance of ETT is a bit better
but it also has a higher sensing range than a square tiling due to the
existence of the triangular cells in ETT. For a given number of n and R
ETT use 12 % lower energy consumption for sensing than the THT node
placement. In addition, ETT has �ve neighboring vertices within dETT .

The approximate value of rsense for ETT placement is presented in
Equation 3.5.5
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dETT =

√
2
√

3πR2

(2
√

3 + 3)n
. (3.5.5)

The corresponding shape for the area represented by each vertex of ETT is
a pentagon. We compute the area of the pentagon which is a combination
of two symmetric trapezoids. Each trapezoid has the height 1

2dETT and

the lengths of the two bases 3+
√
3

6 dETT and 2+
√
3

2
√
3
dETT . Hence, the total

area of the pentagon becomes 2
√
3+3

2
√
3
d2ETT which is roughly the same as

πR2

n .

3.5.6. Snub Square Tiling (SST)

An SST is another tiling of triangles and squares in the two dimensional
plane. Again each vertex is composed of three triangles and two squares
(as ETT), but the con�guration order of SST is 3-3-4-3-4 as illustrated in
Figure 3.5.2(c). Such a con�guration improves the coverage performance
of SST to guarantee a minimum 3-coverage. We de�ne dSST as the
sensing range for SST tiling which, in fact, is the same value as for ETT
node placement.
Although SST and ETT have di�erent con�gurations, both use the same

combination of polygons. Therefore, the cell length dSST is the same as
dETT given in Equation 3.5.5.

3.6. Coverage: a Primary Objective for
Node Placement

As we mentioned in Section 3.2.2, area coverage is a primary objective for
node placement in WSNs. The simple reason for caring about coverage is
to provide a high quality of information on the region of interest. This is
also known as area coverage which is important for most WSN applications.
Full coverage and partial coverage are both notions considered for WSN
applications. To satisfy full coverage of a given region of interest, every
point in it must be covered by at least one sensor without allowing any
uncovered points. However, there may be exceptions when partial coverage
can be assumed as a full coverage. For example, in temperature or pressure
sensing in environmental monitoring applications, reading at one point is
adequate for a wide region since it may have the same readings in its
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surrounding area. In any case, the overall coverage pretty much depends
on both the sensing ranges and the placement scheme of the nodes. To
achieve a desired coverage of a region, adjusting the sensing range has
its limitations due to expensive energy consumption and restricted node
capabilities. Therefore, node placement becomes very important. Among
various types of coverage, calculating the minimum coverage so called k-
coverage is a usual way of specifying conditions on coverage.

3.6.1. Minimum k-coverage

In [69, 122], the authors formulate the k-coverage of a region for mostly
sleeping large-scale WSNs. In [69], it is claimed that the value of the
expression npπr2sense/log(np), where n is the number of sensors and p is
the probability of active sensors, equals 1 forms a su�cient condition for
k-coverage. Although minimum k-coverage is good for surveillance type
of applications, other kinds of coverage, such as average k-coverage or
maximum k-coverage, may be more meaningful in other WSN applications.
Moreover, it seems inappropriate to measure k-coverage for performance
comparisons due to its sole interest in the minimum coverage area of the
network. For this purpose we investigate the relative frequency of the
exactly k-covered points in node placement strategies.

3.6.2. Exact k-Coverage

We de�ne a new term called the exact k-coverage, which means the to-
tal area of the �eld covered by k sensor nodes. In other word, we can
check how much percentage of the region of interest is covered by exactly
k sensors. This way we can compute a minimum, an average, or a max-
imum coverage of the network. In this chapter, we use the term �exact
k-coverage� for the k-coverage map to avoid confusion with k-coverage.

3.7. k-coverage Map

We introduce the notion of a k-coverage map, which is used to check all
possible coverage areas and to analyze the relative frequency of exactly
k-covered points. Using the idea of the k-coverage map we measure the
quality of coverage performance of node placement strategies. We model
the k-coverage map for six tiling placements. A k-coverage map for each
tiling represents the smallest cell which provides all possible coverage area.
We can easily model the k-coverage map by using basic geometry. For

45



3. The E�ect of Sensor Node Placement on Performance Metrics

2-coverage

3-coverage

4-coverage

(a) (b) (c)

Figure 3.7.1.: k-coverage map for (a) a triangular cell, (b) a square cell,
and (c) a hexagonal cell.

a uniform random placement, it can be achieved by applying systematic
sampling over a given �eld.
We make further assumptions to model the k-coverage map for each

tiling:

� A point is covered by a node if it lies either within a disc of sensing
range, rsense, or exactly at circumference of the disc.

� No boundary conditions are considered which seems reasonable for
large-scale WSN scenarios.

3.7.1. Triangular Cell

A single triangular cell is su�cient to check the k-coverage map for trian-
gular tiling which can be seen in Figure 3.7.1(a). Each triangular cell has
exact 3- and 4-coverage areas. The middle region is covered by exactly
3 nodes. The shaded regions are covered by four nodes where the three
nodes lie at the vertices of the triangle and the fourth node is the third
node of the neighboring tiled triangles for each edge of the triangle under
study. Under the same sensing range dt each shaded region is symmetric.
The coverage area of exact k-coverage can be calculated by using Equa-
tions 3.7.1 to 3.7.3. Equation 3.7.1 is used to compute one shaded region
of Figure 3.7.1(a) which is the di�erence between one-sixth of the area of
a circle having radius dt and the area of the equilateral triangle which oc-
cupies the exact 3-coverage area. Then, the total area of exact 4-coverage
is three times At1 and the di�erence between the equilateral triangle and
the total exact 4-coverage is the area of exact 3-coverage that we can
compute by Equation 3.7.2 and 3.7.3 accordingly. In general, 62.75 % of
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the triangular cell is exact 4-covered while 37.25 % of the area is occupied
by exact 3-coverage.

At1 =

[
2π − 3

√
3

12

]
∗ d2t (3.7.1)

A4
t =

[
2π − 3

√
3

4

]
∗ d2t (3.7.2)

A3
t =

[
2
√

3− π
2

]
∗ d2t (3.7.3)

3.7.2. Square Cell

Figure 3.7.1(b) shows the k-coverage map of all possible exactly k-covered
points of a square grid cell. In the square grid cell, nodes are placed at
the corners and their sensing ranges' intersections form a tesselation of the
region. As it is assumed that the sensing range is equal to the length of a
cell, a square grid cell has exact 2-, 3- and 4-coverage regions. For instance,
the middle region has exact 4-coverage because it forms the intersection
region of all nodes. Since the radii of circles are the same, some tesselations
are symmetric. Therefore a square cell has four symmetric gray-regions
near the border lines and four symmetric white-regions covered by exactly
2 and 3 sensor nodes, respectively.
Using Equation 3.7.4 to 3.7.8, we compute the total area of exact k-

coverage of a grid cell.

As1 =

[
4π − 3

√
3

6

]
∗ d2s (3.7.4)

As2 =

[
π − 2

2

]
∗ d2s (3.7.5)

With Equation 3.7.4 we formulate the intersection area between two
circles if the circumference of one circle passes through the origin of the
other circle and vice versa. In Equation 3.7.5, the area between two circles,
x2 + (y − r)2 = 1 and (x − r)2 + y2 = 1 is calculated, where r is the
radius.
Based on Equations 3.7.4 and 3.7.5, the required tesselations are for-

mulated. With Equation 3.7.6, we compute the area of the combination
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of 2- and 3-coverage, which is the di�erence of a quarter circle area and
a half of area As1. Equation 3.7.7 is used to calculate the 2-coverage area
near the border line. Therefore, total 2-coverage regions inside a square
grid cell are four times As4 as presented in Equation 3.7.8.

As3 =

[
πd2s
4
− 0.5As1

]
(3.7.6)

As4 =

[
d2s −

πd2s
4

]
−As3 (3.7.7)

A2
s =

12− 2π − 3
√

3

3
∗ d2s (3.7.8)

Knowing As3 and As4, we calculate the exact 3-coverage which is four
times the di�erence of As3 and As4 as presented in Equation 3.7.9. Finally,
the exact 4-coverage area is computed by using Equation 3.7.10. In sum-
mary, each square cell has 17.4% of 2-coverage, 51.1% of 3-coverage, and
31.5% of 4-coverage.

A3
s =

π + 6
√

3− 12

3
∗ d2s (3.7.9)

A4
s =

π + 3− 3
√

3

3
∗ d2s (3.7.10)

3.7.3. Hexagonal Cell

As shown in Figure 3.7.1(c), there exist three possible exact k-coverages
in a hexagonal cell: 2-coverage, 3-coverage and 6-coverage. Note that a
hexagonal cell is composed of six symmetric tesselations where each tes-
selation is an equilateral triangle as shown in Figure 3.7.1(a). As there
is no center point in the hexagonal cell each equilateral triangle has ex-
act 2-coverage in the center and exact 3-coverage at the border of two
edges of the triangle. Finally, Equation 3.7.11 and 3.7.12 are presented to
compute exact 2-coverage and 3-coverage for each hexagonal cell. From
this coverage map, we know that about 58.16 % of the hexagonal cell area
is covered by 2 nodes and the remaining 41.84 % is covered by exactly 3
sensors. The center of a regular hexagon has exact 6-coverage because
it can be reached by six sensor nodes. As a singular point it has area
0. Nevertheless, such a point is a good candidate for sink placement in
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2-coverage

3-coverage

6-coverage

(a) (b) (c)

Figure 3.7.2.: k-coverage map for (a) a THT cell, (b) a ETT cell, and (c)
a SST cell.

order to have many 1-hop neighbors, thus reducing energy consumption
and worst-case delay.

A3
h =

[
2π − 3

√
3
]
∗ d2h (3.7.11)

A2
h =

[
9
√

3− 4π

2

]
∗ d2h (3.7.12)

A6
h = ε (3.7.13)

3.7.4. THT Cell

The THT cell is illustrated in Figure 3.7.2(a), which is composed of two
basic placement patterns: six equilateral triangles and one regular hexagon,
where each of the tiling point hosts a node. The THT tiling has three
possible exact k-coverages: 2-, 3-, and 6-coverage. The area of each
equilateral triangle is fully covered by three nodes, thus having exact 3-
coverage. Inside a regular hexagon, the only di�erence with the hexagonal
cell is the border region and the rest are the same. The equilateral triangles
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on each side of the hexagon produce the exact 3-coverage tesselations at
the border of the hexagon. The coverage area of the hexagon is now a
composition of six equilateral coverage maps as shown in Figure 3.7.1(a)
but only for exact 2- and 3- coverage due to a lack of a center node inside
the hexagon.
Basing on the concepts of triangular and hexagonal cells, total areas of

exact k-coverages for the THT cell can be calculated by using Equations
3.7.14 to 3.7.16. Equation 3.7.14 is used to compute the exact 3-coverage
for the THT cell which in fact is the area of six equilateral triangles and
the white regions of a hexagonal cell as shown in Figure 3.7.2(a). Equation
3.7.15 computes the total exact 2-coverage. As discussed for the hexagonal
cell, the center point of the THT cell is reachable by 6 sensors and therefore
we denote the area of exact 6-coverage as ε. In summary, 18.6 % and
81.4 % of the THT cell area are used up by 2- and 3-coverage, respectively.

A3
THT =

[
3π − 3

√
3
]
∗ d2THT (3.7.14)

A2
THT =

[
6
√

3− 3π
]
∗ d2THT (3.7.15)

A6
THT = ε (3.7.16)

3.7.5. ETT Cell

The smallest cell of the ETT tiling for which we check all possible exact
k-coverages is presented in Figure 3.7.2(b). An ETT cell has a square
and two equilateral triangles which result in exact 2-, 3-, and 4-coverage.
Each triangular cell has exact 3- and 4-coverage as shown in Figure 3.7.1(a)
except that one of the 4-coverage tesselations near the border of the square
is unavailable. The square in the ETT cell has exact 2-, 3-, and 4-coverage.
Unlike the square cell from Figure 3.7.1(b), the tiled triangles make a better
coverage area near the borders of a square in the ETT cell. As a result,
a square in the ETT cell increases the exact 3- and 4-coverage area by
eliminating half of the exact 2-coverage from the original square cell. Let
AETT1 be one exact 4-coverage inside the square. Equation 3.7.17 provides
the area of AETT1 which is half of the di�erence between the area computed
by Equations 3.7.1 and 3.7.7 with the sensing range dETT . Using the
k-coverage maps of triangular and square cells, the corresponding area
coverage of ETT cell can be computed from Equations 3.7.18 to 3.7.20.
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In addition, an ETT cell has 4.65 % of 2-coverage, 53.98 % of 3-coverage,
and 41.37 % of 4-coverage.

AETT1 =

[
π − 3

6

]
∗ d2ETT (3.7.17)

A2
ETT =

[
12− 2π − 3

√
3

6

]
∗ d2ETT (3.7.18)

A3
ETT =

[
9
√

3− 4π

3

]
∗ d2ETT (3.7.19)

A4
ETT =

[
5π − 6

√
3− 3

3

]
∗ d2ETT (3.7.20)

3.7.6. SST Cell

Though SST tiling has the same composition of basic placement patterns
as ETT, the smallest possible k-coverage map of SST composes of four
equilateral triangles and a square as illustrated in Figure 3.7.2(c). Ac-
cordingly, the coverage performance of SST is better than for ETT after
eliminating the exact 2-coverage by surrounding the equilateral triangles
in a square. Based on the tesselations from ETT cell, Equation 3.7.21 and
3.7.22 provide the total area of exact 3- and 4-coverage. While 68.3 % of
SST cell is 3-covered, 31.7 % of the SST cell is occupied by 4-coverage
area.

A3
SST =

[
9
√

3− 7π + 12

3

]
∗ d2SST (3.7.21)

A4
SST =

[
7π − 6

√
3− 9

3

]
∗ d2SST (3.7.22)
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3.8. Performance Evaluation Under Exact
Placement

In this section we conduct a performance evaluation for our exact node
placement strategies. Note that random placement is used as a bench-
mark strategy for our exact node placements. In the random placement,
we generate 10 scenarios and take the average value for analysis of each
performance metric. The primary factors for all experiments are: the num-
ber of nodes, the number of sinks, and the sensing range. Nodes are
distributed over a circular �eld and sinks are placed at the center of grav-
ity of a sector of a circle (CGSC) [106]. The routing topology we use
here is based on Dijkstra's shortest path algorithm, which produces the
shortest hop distance from a source to a sink. We also assume that rtx is
twice rsense in all strategies. All the selected values for the experiments
are based on a realistic model of MICAz mote [7] running under TinyOS.

3.8.1. Coverage

The network size is varied from 100 to 500 nodes for di�erent scenarios.
Under the same number of nodes n, each tiling uses the best sensing
range that �ts n nodes inside the circular shape with radius R. Under
this circumstance, it is clear that the sensing range slightly di�ers for each
tiling.
We do not consider boundary conditions in deterministic node place-

ment. In the case of the random placement, we do a systematic sampling
over the area that equals a square tiling without boundary condition. Like
a square tiling did, an 11m sensing range is considered. Taking a smaller
granularity does not signi�cantly change the results, so we chose 0.5m
for the experiments. Under 10 distributions of uniform node placement,
we investigate the exact k-coverage and take average results. In fact, the
distributions of exact k-coverage are relatively the same in all scenarios.
The exact k-coverage varies from 0 to 8 as shown in Figure 3.8.1. In all
scenarios, 5% of the network is not covered by any node. Most of the area
is covered by exact 1- to 4-coverage and exact 3-coverage has the highest
covered area varying from 21.6% to 23% of the network. The random
placement has an average 3.00-coverage with a standard deviation of 1.7.
In the regular tilings, no matter what amount of nodes is analyzed, a

single cell is su�cient for computing the whole network coverage since it
has symmetric cells. Moreover the sink location does not a�ect coverage
performance. The relative frequencies of exactly k-covered points of three
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Figure 3.8.1.: The exact k-coverages of the uniform random placement.

regular tilings are shown in Figure 3.8.2.
In Figure 3.8.2(a), a triangular tiling uses 11.75m sensing range. About

62.75 % of the network is occupied by exact 4-coverage area while 37.25 %
of the area has exact 3-coverage. A triangular tiling has an average of
3.63-coverage and a standard deviation of 0.48.
A square tiling uses 11m sensing range. The exact k-coverage of a

square tiling is presented in Figure 3.8.2(b) where about half of the network
is covered by three sensor nodes while the other half is covered by exact
2- and 4-coverage. The exact values are mentioned in Subsection 3.7. In
general, the square tiling has an average 3.14-coverage with a standard
deviation of 0.68.
The exact k-coverage distribution of a hexagonal tiling can be seen

in Figure 3.8.2(c) where 58.16% of the area has exact 2-coverage and
41.84% of the total area is covered by 3 sensors. A hexagonal tiling has
an average 2.42-coverage with a standard deviation of 0.49. While the
coverage performance of a hexagonal tiling is the worst among our selected
strategies, it has the lowest sensing range of 9.7m.
Regarding the average coverage performance metric, the triangular tiling

placement outperforms the other regular tiling placements.
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Figure 3.8.2.: The exact k-coverages of (a) TT, (b) ST, and (c) HT
placements.
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Figure 3.8.3.: The exact k-coverages of (a) THT, (b) ETT, and (c) SST
placements.
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In a semi-regular tiling, a single k-coverage cell is not su�cient to judge
the exact k-coverage of the network. In this case, we �rst compute the
total amount of triangle and hexagon cells inside a given circular �eld
having radius R. After that we compute the relative frequency of exactly
k-covered points by using the k-coverage map as shown in Figure 3.8.3.
Although the ratio of cells does not remain exactly equal when increasing
n, the result for exact k-coverages are nearly the same.
For THT almost two-thirds of the network are 3-covered whereas the

rest is the exactly 2-covered. THT has an average 2.7-coverage with a
standard deviation of 0.47. What is more, THT needs less sensing range
than other strategies. While others except hexagonal tiling placement use
more than 11m sensing range, THT requires only 10.25m.
The results of an ETT cell are presented in Figure 3.7.2(b). From the

results shown in Figure 3.8.3(b), 54.1 % of the network area is covered by
3 sensors whereas 4.6 % and 41.4 % of the network area are occupied by
2- and 4-coverage. ETT has an average 3.36-coverage with a standard
deviation of 0.48.
Both ETT and SST use an 11.4m sensing range. In an SST placement,

about 63.6 % of the area has 3-coverage while the remaining 36.4 % is
covered by exactly 4 sensors. With respect to the minimum k-coverage
performance, SST is better than ETT because SST eliminates the exact
2-coverage from the network. SST, however, roughly has the same average
k-coverage and standard deviation as ETT.

3.8.2. Energy Consumption

We investigate between 100 and 1000 nodes with up to 30 sinks. Among
them the experimental results of three scenarios are presented in Figure
3.8.4. Under the assumption of the free space propagation, we apply
Equation 2.6.11 in order to get the current consumption. All strategies
require a current consumption of 8.5mA with −25 dBm for distances
up to 12.5m and 9.9mA for distances between 12.5m and 23m with
−20 dBm. A constant voltage of 3V is used for transmit and receive
modes. Then we compute the power, Pamp, for a 1 bit data transmission.
Since the power used in transmitter electronics, PtxElec, is relatively the
same, we assume it as a constant. To apply Equation 2.6.6, we compute
ttx. To simplify, in our experiment we assume that the same data rate is
used for transmission and sensing. A data rate of 250 kbps is used, which
takes ttx = 4µs for a 1 bit data transfer. Again, we also assume equal
energy consumption in sensing. It means that Equation 2.6.3 contains only
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Figure 3.8.4.: 1 bit energy consumption comparison of three strategies in
di�erent scenarios.
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etx and erec. We use a current of 19.7mA for the consumed power by the
receiver electronics with a 1% duty cycle for receiving 1 bit of data. The
results from Equation 2.6.3 are used to analyze Equation 2.6.2, and �nally
in Equation 2.6.1, we compute the total energy consumption for the 1 bit
data transfer.
In all scenarios, the triangular tiling and SST outperform the other strate-

gies. The energy consumption of ETT placement is comparable to them.
Surprisingly, the uniform random placement is comparable to the square
tiling for energy consumption performance. This is due to the sink place-
ment strategy where the sinks are placed at CGSCs, which is known to be
good for a uniformly distributed network [106].

3.8.3. Worst-Case Delay

The analytical results of the worst-case delay comparison among strategies
are shown in Figure 3.8.5. For SNC computations, the popular token-
bucket arrival curve and rate-latency service curves are considered. In par-
ticular, for the service curve we use a rate-latency function that corresponds
to a duty cycle of 1%. For the 1% duty cycle, it takes 5ms time-on-duty
with a 500ms cycle length which results in a latency of 0.495 s1. The
corresponding forwarding rate is 2500 bps. The results of 100-, 500-, and
1000-node networks under a varying number of sinks are shown in Figure
3.8.5. The worst-case delay of SST under the exact placement outper-
forms the other strategies in all scenarios. In fact, TT and ETT have a
very similar delay performance as SST. An interesting point is that the
uniform random placement is very comparable to the ST placement.

3.9. Performance Evaluation Under
Environmental Disturbances

Various di�culties may occur in deploying exact node placement strategies
in WSNs. In fact, an exact node placement strategy may not be applicable
in many WSN applications due to environmental and geographical impacts.
In order to make node placement strategies realistic and usable in real world
scenarios, a network designer should investigate such disturbances for the
deterministic node placement strategies.
An environmental disturbance is an event having the potential to af-

fect the deployment. It can be caused naturally or by human action. In

1The values are calculated based on CC2420AckLpl.h and CC2420AckLplP.nc.
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Figure 3.8.5.: Worst-case delay comparison of three strategies in di�erent
scenarios.
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Figure 3.9.1.: An example of a square tiling with gentle disturbance.

WSN applications, where sensor nodes are embedded in natural environ-
ments, nodes are subject to environmental disturbances like �re, �ooding,
and cyclones. Furthermore, the positions of nodes may also be altered by
human action or the deployment process is inexact due to human errors.
Intuitively, the environmental disturbance completely a�ects the whole net-
work and can occur during the deployment process or during the runtime
of the network. Thus, we undertake this investigation in order to see the
performance of deterministic node placement strategies under a distur-
bance e�ect. Although, some environmental disturbances may destroy a
WSN entirely, in our study, we focus on a gentle environmental distur-
bance like a slight meteorological disturbance or placement inaccuracies.
Obvious examples of the �rst kind are wind and rain that may disturb the
original deterministic nodes' positions by moving them to new locations.
An example of a gentle disturbance is shown in Figure 3.9.1 where each
node moves to a new position, which is a uniform random point within a
disturbance radius r centered at the original node position.
We create a gentle disturbance for six tiling placements by slightly per-

turbing nodes n from their original positions, as shown in Figure 3.9.1.
By varying the disturbance radius r, we examine the e�ect of a physical
disturbance on tiling-based node placement strategies under the same ex-
perimental setup used in Section 3.8. The disturbance radius is varied up
to 100 % of each cell length rsense, for instance, 11m with step size of
1.1m for square tiling. Among several experiments, the results of a 500-
node network are presented. Moreover, the same performance metrics are
analyzed for each strategy under such disturbances.

3.9.1. Coverage

A systematic sampling with a granularity of 0.5m is used in all coverage
experiments. The coverage distributions of tilings under gentle disturbance
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up to 100% of the sensing range are shown in Figure 3.9.2 and 3.9.3. In
most cases, two of the highest k-coverage are decreasing while increasing
the other exact k-coverage except for THT. Accordingly, the average cov-
erages are gradually decreased and, in contrast, the standard deviation is
increased. The higher the disturbance radius, the lower the average cov-
erage appears in all tilings except for HT and SST. It is obvious that all
tilings have coverage holes, i.e., exact 0-coverage, as well as new exact
k-coverages (k = 5 or 6) appeared after the disturbance e�ect. Among
them, HT and THT have the highest amount of exact 0-coverage due to
the hexagonal cells.

Figure 3.9.2(a) represents the exact k-coverage distirbutions for the
triangular tiling which has an average of 3.56-coverage with a standard
deviation of 0.72 at 10% disturbance radius while having an average of
3.50-coverage with a standard deviation of 1.17 at 100%. The variation
of the square tiling coverage due to disturbance can be seen clearly in
Figure 3.9.2(b). The square tiling has an average of 3.09-coverage with
a standard deviation of 0.79 at r = 1.1m. At r = 11m, the square grid
has an average of 3.03-coverage with a standard deviation of 1.07. Rel-
ative frequencies of exactly k-covered points of the disturbed hexagonal
tiling are shown in Figure 3.9.2(c). An interesting thing is that the HT
maintains almost the same average coverage but dramatically increases the
standard deviation. At r = 0.97m, HT has an average of 2.36-coverage
while increasing its standard deviation from 0.64 to 0.92. The coverage
results of the disturbed THT strategy are shown in Figure 3.9.2(d). At
r = 1.0m, THT has an average of 2.64-coverage with a standard devia-
tion of 0.64. Also, the standard deviation increases gradually. For example,
at r = 1.0m, the average coverage is 2.63 with a standard deviation of
0.98. The exact k-coverage distributions of ETT and SST under gentle
disturbance are very similar. However, the average coverage performance
of ETT decreases from 3.25- to 3.24 with a respective standard deviations
of 0.77 and 1.11. In constract, SST increases slightly after the disturbance
is applied. In particular, SST has an average of 3.24-coverage with a stan-
dard deviation of 0.72 at 10% of disturbance radius. At r = 11.4m, SST
has an average of 3.25-coverage with a standard deviation of 1.09.

According to the experimental results, the original coverage performance
of each tiling is slightly a�ected by gentle disturbances. An interesting
point is that the average coverage of SST increases slightly after the dis-
turbance is applied.The HT has almost constant average coverage under
gentle disturbance.
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Figure 3.9.2.: The distributions of exact k-coverage at various disturbance
radii under TT, ST, and HT placements.

62



3.9. Performance Evaluation Under Environmental Disturbances

0 1 2 3 4 5 6

Disturbance Radius up to 100% of THT Cell Length

exact k−coverage

pe
rc

en
ta

ge
 (

%
)

0
10

20
30

40
50

60
70

r=1.0m
r=2.0m
r=3.0m
r=4.0m
r=5.0m
r=6.0m
r=7.0m
r=8.0m
r=9.0m
r=10m

0 1 2 3 4 5 6

Disturbance Radius up to 100% of ETT Cell Length

exact k−coverage

pe
rc

en
ta

ge
 (

%
)

0
10

20
30

40
50

60
70

r=1.14m
r=2.28m
r=3.42m
r=4.56m
r=5.7m
r=6.84m
r=7.98m
r=9.12m
r=10.26m
r=11.4m

0 1 2 3 4 5 6

Disturbance Radius up to 100% of SST Cell Length

exact k−coverage

pe
rc

en
ta

ge
 (

%
)

0
10

20
30

40
50

60
70

r=1.14m
r=2.28m
r=3.42m
r=4.56m
r=5.7m
r=6.84m
r=7.98m
r=9.12m
r=10.26m
r=11.4m

Figure 3.9.3.: The distributions of exact k-coverage at various disturbance
radii under THT, ETT, and SST placements.

63



3. The E�ect of Sensor Node Placement on Performance Metrics

3.9.2. Energy Consumption

We investigate the energy consumption of each tiling under gentle dis-
trubance e�ects. For comparison, we consider the same parameters used
in Section 3.8.2. The results of a 500-node network with 5-, 10-, and
20-sinks are presented in Figure 3.9.4. It is interesting to note that in all
the experiments the energy consumption of the square tiling under gentle
disturbance becomes lower than the exact square tiling placement.

We �rst look at the energy consumption of the disturbed triangular
tiling placement. The con�dence interval lengths of 5-, 10-, and 20-sink
scenarios are 4.45, 3.92, and 3.94, respectively. Under the same scenario,
the square tiling has the con�dence interval lengths 6.98, 4.92, and 4.17
whereas the hexagonal tiling has the con�dence interval lengths of 6.67,
5.63, and 3.53 respectively.

The experimental results show that the energy consumption of THT is
rising. In 5-, 10-, and 20-sink scenarios, the con�dence interval lengths for
all disturbance radii are 7.28, 5.16, and 3.55. The energy consumptions
of ETT and SST with gentle disturbance increase gradually. While ETT
has con�dence interval lengths of 5.83, 4.54, and 3.45, the SST has 6.02,
4.43, and 4.37 for 5-, 10-, and 20-sink scenarios.

In conclusion, the energy consumption of the square tiling strategy is
better after a slight perturbation of the exact node placement. The con-
jectured reason for it is that the node degree (i.e., the number of neigh-
bors) increases when disturbance is applied. It implies that each node
has a shorter path, which means a lesser hop count to the nearest sink.
Consequently, the energy consumption is lower according to the hop-based
energy model. Besides, the positive impact is more evident in the square
grid strategy than in other strategies due to its symmetrical nature. It
seems that the symmetric cells of square tiling are good for a disturbance
to minimize the energy consumption. The results of TT, ETT, and SST
are very similar under gentle disturbances up to 100% of the respective
cell lengths. Among all strategies, HT has the highest energy consump-
tion under gentle disturbance.
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Figure 3.9.4.: The distributions of energy consumption at various distur-
bance radii under tiling-based node placement strategies (a)
a 500-nodes-5-sinks, (b) a 500-nodes-10-sinks, and (c) a
500-nodes-20-sinks.
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Figure 3.9.5.: The distributions of the worst-case delay of tiling-based
node placements at various disturbance radii (a) a 500-
nodes-5-sinks, (b) a 500-nodes-10-sinks, and (c) a 500-
nodes-20-sinks.
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3.9.3. Worst-Case Delay

Figure 3.9.5 presents the results of the worst-case delay of tilings with
disturbance. However, the disturbed square tiling has a better worst-case
delay than the original exact placement. The worst-case delay of the square
tiling decreases sharply in the disturbed version. Other strategies are af-
fected negatively in their delay performance except the disturbed HT place-
ment for the 500-nodes-20-sinks scenario. Among all strategies, SST has
the most stable delay performance for 500-nodes with 5- and 10-sinks cases
except a signi�cant delay change from 2.13 s to 2.58 s between r = 1.14m
and r = 2.28m in the 500-nodes-5-sinks case.

3.10. Performance Evaluation Under 3D
E�ects

In WSNs, a disturbance can also be caused by obstacles that may block
the location of the exact node placement positions. The amount and type
of obstacles depends on speci�c WSN applications. Depending on the
environment, these obstacles can be stationary, movable, or moving. For
the sake of simplicity, stationary obstacles that cannot be moved, neither
by themselves nor by others, such as buildings and hills, are taken into
account. In order to make the node placement strategy for real world
scenarios realistic and usable, blocking obstacles should be studied in de-
signing WSNs.

Among the variety of obstacles, we �rst focus on ground contours, which
prevent deploying a precise pattern of node placement. Obviously, geo-
graphic node placement strategies should investigate the ground contours
caused by geographic nature. Furthermore, such an investigation is nec-
essary for some WSN applications, such as environmental and agricultural
monitoring, where varieties of ground contours may exist. In fact, such a
type of disturbance, is also suitable for analysis of node placement strate-
gies, especially for WSN applications in mountainous areas. An illustration
of such a 3D disturbance is presented in Figure 3.10.1. We evaluate the
performance of all tilings with 3D disturbance under the same experimental
setup from Subsection 3.9.
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Figure 3.10.1.: A cross sectional view of 3D disturbance.

3.10.1. Coverage

The coverage distributions of regur and semi-regular tiling-based node
placement under 3D disturbance can be seen in Figure 3.10.2(a)-(f). The
average coverage performance of each tiling strategy decreases dramati-
cally with an increasing standard deviation with respect to an ascending or-
der of disturbance radii. The triangular tiling has an average 3.49-coverage
at r = 1.175m. At r = 11.75m, it has only an average of 1.97-coverage.
The corresponding standard deviations are 0.66 and 1.15 respectively. The
average coverage performance of the square tiling strategy decreases dra-
matically from 3.04- to 1.7-coverage with an increasing standard deviation
from 0.77 to 1.05. The hexagonal tiling reduces its average coverage per-
formance from 2.3- to 1.3-coverage with standard deviations of 0.58 and
0.9, respectively. Also, the THT strategy with 3D disturbance decreases
dramatically from 2.6- to 1.48-coverage.The corresponding standard devi-
ation also goes from 0.6 at r = 1.0m to 0.98 at r = 10m. The ETT
and SST also have very similar average coverages under 3D disturbance.
The average coverage performance dramatically decreases from 3.22- to
1.86-coverage for ETT and 1.84-coverage for SST under an increasing
disturbance radius. While ETT has corresponding standard deviations of
0.72 and 1.09, the SST has standard deviations of 0.67 and 1.1. From
this experiment, it is clear that the coverage performance is signi�cantly
in�uenced by the 3D disturbance.
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Figure 3.10.2.: The distributions of exact k-coverage at various 3D dis-
turbance radii under TT, ST, and HT placements.
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Figure 3.10.3.: The distributions of exact k-coverage at various 3D dis-
turbance radii under THT, ETT, and SST placements.
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3.10.2. Energy Consumption

The energy consumptions of 500-node tiling-based node placements with
3D disturbance are presented in Figure 3.10.4. Similar to the gentle dis-
turbance, the energy consumption is better after applying 3D disturbance
in the square grid strategy. Under 3D disturbance, HT node placement
also improves its energy consumption in all scenarios. The energy con-
sumptions of HT and THT under 3D disturbance are better than for 2D
disturbance. In contrast, TT, ETT, and SST consume more energy under
3D disturbance than for 2D gentle disturbance. An interesting point is ST
maintains stable energy consumption under 2D and 3D disturbance.

3.10.3. Worst-Case Delay

The analytical results of worst-case delay computations under 3D disturbed
tilings are shown in Figure 3.10.5.

In triangular tiling, the worst-case delay bounds are negatively in�uenced
after 3D disturbance is applied. As soon as 3D disturbance is applied,
the worst-case delay of the square and hexagonal tilings decrease in all
scenarios. It can be seen clearly for hexagonal tiling. In most scenarios,
the worst-case delay of HT is decreasing with increasing disturbance radii,
e.g., from 3.09 s at 10 % of disturbance to 2.62 s at 100 % of disturbance
radius in 500-nodes-5-sinks scenario. Under this experiment, the worst-
case delay bounds of THT are not bad. For most disturbance radii, THT
provides the lowest worst-case delay bounds. In a 5-sink scenario, r = 2m
has the minimum worst-case delay of 2.58 s whereas the minimum worst-
case delay of 2.51 s is found at r = 4m for the 20-sink scenario. The more
sinks, the lower the worst-case delay is.

The worst-case delay performance of ETT and SST are not so similar to
the energy consumption performance under 3D disturbance e�ects. Their
worst-case delay bounds are quite chaotic in this experiment. Their de-
lay bounds seem increasing in 500-nodes-5-sinks scenario but both have
decreasing and increasing tendencies in 500-nodes-10-sinks scenario. In
500-nodes-10-sinks scenario, ETT has better worst-case delay than SST.
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Figure 3.10.4.: The distributions of energy consumption of tiling-based
node placements at various 3D disturbance radii (a) a 500-
nodes-5-sinks, (b) a 500-nodes-10-sinks, and (c) a 500-
nodes-20-sinks.
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Figure 3.10.5.: The distributions of worst-case delay of tiling-based node
placements at various 3D disturbance radii (a) a 500-nodes-
5-sinks, (b) a 500-nodes-10-sinks, and (c) a 500-nodes-20-
sinks.
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3.11. Discussion and Conclusion

We made the following �ndings for exact placement schemes of six tilings
and a unifrom random distribution.

� TT has the best coverage performance among the selected node
placement strategies. A triangular tiling has average 3.63-coverage
whereas ETT and SST have the same average 3.36-coverage.

� TT and SST outperform other strategies for energy consumption and
worst-case delay.

� It can also be seen that random deployment is not a bad strategy
and it is comparable to the popular square grid deployment for the
worst-case delay.

In case the exact placements are stochastically disturbed by 2D and 3D
e�ects, we found out the following:

� The original coverage performance of each tiling is slightly a�ected
under gentle disturbance. However, the coverage performance is
signi�cantly in�uenced under 3D disturbance.

� The square tiling is in�uenced positively after applying disturbances
in terms of the energy and worst-case delay.

� The energy consumptions under 2D and 3D disturbance e�ects are
a bit chaotic. The energy consumptions of HT and THT under 3D
disturbance are better than for 2D disturbance. In contrast, TT,
ETT, and SST consume more energy in 3D disturbance than for
2D disturbance. An interesting point is that ST maintains a stable
energy consumption for 2D and 3D e�ects of disturbance.

� Another interesting �nding is that the node degree (i.e., the number
of neighbors) increases in the disturbed versions of exact placements.
This implies that many node have a shorter path (i.e., a lesser hop
count to the nearest sink). As a result, energy consumption is lower
in some tilings such as ST according to the hop-based energy model.
Also, it a�ects the performance of worst-case delay.

� ETT and SST have a similar performance for all metrics under by
2D and 3D disturbances.

� Note that the HT placement uses the smallest sensing and transmis-
sion ranges compared to other placements in our models.
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3.11. Discussion and Conclusion

In each speci�c WSN application, the performance metrics of interest may
di�er from each other. In this chapter, we investigated the e�ects of
tiling-based node placement on the most common performance issues of
coverage, energy consumption, and worst-case delay.
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4. Placing Multiple Static

Sinks in Large-Scale,

Time-Sensitive WSNs

4.1. Introduction

4.1.1. Background and Motivation

In many WSN applications, it is desired to collect the information acquired
by sensors for processing, archiving and other purposes. The station where
that information is required is usually called a sink or base station. A
sink normally has higher capacity as well as cost than usual sensor nodes.
Sinks can be sensors themselves or devices such as PDAs or gateways to
other larger networks [61]. For large-scale WSNs, a single-sink model is not
scalable since message transfer delays as well as energy consumption of the
sensor nodes become prohibitive, due to the fact that most of the nodes
would be far away from the sink and thus many hops must be traversed
before the sink is reached. As a result, response times become excessive
and the lifetime of the WSN becomes very short. Therefore, it is sensible
to deploy multiple sinks so that messages reach their destination with less
hops and consequently response times are decreased and energy is saved.
In WSNs, data packets traverse from the sensor nodes to a sink through

multi-hop communication owing to expensiveness or even infeasibility of
direct communication. Therefore, a sensor node is not only a source but
can also be a router. For large-scale WSNs, if a sensor node acts as a router
close to a sink, it can experience quite high amounts of data from other
nodes �owing through it. As a result, the tra�c intensity in the network
becomes high and data transfer may be considerably delayed. What is
more, if the sink is located far apart from some nodes, their hop distances
increase, simutaneously amplifying the message transfer delay. Sink place-
ment at the right position can minimize maximum message transfer delay
and can increase the lifetime of the network since the loads are shared and
sensors nodes can choose the nearest sink so that communication to a sink
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node is faster and saves energy as well.

In general, optimal sink placement is a hard problem like many other lo-
cation problems (it exhibits particular similarity to the uncapacitated ware-
house location problem, an NP-complete problem). Moreover, the location
problem is even more complex if the problem is an uncapacitated problem.
Obviously, our problem is such a kind of an uncapacitated problem.

In WSNs, sinks can be either mobile or stationary. In this chapter, we will
focus on stationary sink placement. We design two types of sink placement
strategies under di�erent assumption. An obvious distinction between the
two strategies is node locations information. The proposed sink placement
strategies in this chapter are mainly intended for time-sensitive WSN appli-
cations. We developed a genetic algorithm sink placement (GASP), which
performs well and delivers near-optimal solution. If it is feasible to provide
global information such as nodes' locations, GASP is a good choice. GASP
is based on a discretization of the originally continuous search space into
a �nite search space, which forms a contribution of our work of indepen-
dent interest. The idea is we �rst introduce a method to discretize the
search space resulting in a set of candidate locations for the placement of
sinks in a WSN. These candidate locations are based on the concept of
regions of indi�erence, that is regions for which wherever a sink is placed
the routing topology will not be altered and thus the objective function
for the worst-case delay does not change. Hence any location in such a
region of indi�erence can be chosen as a candidate location. Nevertheless,
for large-scale WSNs the number of candidate locations still grows very
fast and an exhaustive search becomes quickly prohibitive. That is why we
consider a GA-based strategy, although, of course, it cannot guarantee to
arrive at a provably optimal solution. The set of candidate locations is the
very heart of the GASP algorithm. The GASP initially picks random sink
candidate locations as initial individuals and computes the �tness function.
By applying the well-known GA operators such as mutation, crossover and
selection, GASP operates the evolutionary loop until either a good solution
is found or the maximum number of generations is reached.

Avoiding the costly design of using the nodes' locations information,
we also introduce a self-organized sink placement (SOSP) algorithm with
lower computation and communication overhead to minimize the maxi-
mum worst-case delay. In brief, the novel algorithm for SOSP is solely
based on rough knowledge about the number of sensor nodes and the
number of sinks being used. The sensor �eld shape is assumed to be cir-
cular, although generalization from that should be straightforward. Based
on this, we choose the initial sink locations at the center of gravity of the
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sector of a circle (we call CGSC further on). Each sink represents a group.
Moreover, we consider movable devices for the selection of sink locations.
The initially located sinks now communicate with their 1-hop neighbors
by broadcasting a message. Using trilateration-based localization, we es-
timate the distances and thus locations of the 1-hop neighbor sets. Then
we suitably de�ne �xed candidate locations in the 1-hop neighbors' re-
gions (i.e., in one of the intersection sets of 1-hop neighbors' transmission
ranges). Finally, the moved sinks select the best sink location among the
set of candidate locations which minimize the maximum worst-case delay.
For the best sink locations, SOSP consider stationary sinks to collect data
packets from the sensor nodes via multi-hop communication.

4.1.2. Contributions

We contribute the following in this chapter:

� One contribution is the set of candidate locations for sink place-
ment by discretizing the original continuous search space into a �nite
search space based on the concept of regions of indi�erence, that is
regions for which wherever a sink is placed the routing topology is
not altered. (→Section 4.4.1)

� We develop a near optimal heuristic sink placement called genetic
algorithm sink placement (GASP) for time-sensitive WSNs where
global information is available. (→Section 4.4.3)

� Avoiding the costly assumption of using the nodes' locations informa-
tion, we introduce a self-organized sink placement (SOSP) algorithm
with lower computation and communication overhead to minimize
the maximum worst-case delay.
(→Section 4.5)

� A thorough simulative investigation and comprehensive comparison
with alternative approaches inspired by literature is presented. (→Section
4.6)

4.1.3. Outline

The goal of this chapter is to develop good strategies for the sink placement
problem that minimizes the maximum worst-case delay in WSNs based on
the sensor network calculus framework. For di�erent target networks we
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develop two sink placement strategies under di�erent assumptions and
analyze their performance.
The organization of this chapter is as follows: In Section 4.2 we discuss

the related work. The assumptions and problem formulation are presented
in Section 4.3. In the next section, we introduce the heuristic sink place-
ment of the GASP strategy alongside with the method for discretization of
the search space. After that we introduce a self-organized sink placement
of SOSP strategy alongside with deployment, grouping, sink placement
selection, and its operational phases in Section 4.5. Next, we analyze the
performance of the GASP and SOSP by comparing it to other strategies
having the same level of abstractions in Section 4.6. One of the competi-
tors for GASP is an optimal strategy based on an exhaustive search which
serves as an upper bound for the performance achievable by the GASP,
and the other one is a Monte-Carlo based strategy that should serve as
lower bound on the performance that can be expected from the GA. For
the SOSP strategy, we compare it against previously proposed benchmarks
called GSP and the near optimal GASP. During the performance analy-
sis of the sink placement strategies, the question of a �good� number of
sinks given a certain number of sensor nodes is also discussed. Finally, we
conclude this chapter in Section 4.11.

4.2. Related Work

In this section, we discuss the existing work on the sink placement problem
in WSNs.
Although a sink location can be �xed or mobile in WSNs, we will focus

on the static sink placement problem in this chapter. WSNs with mobile
sinks will be discussed in Chapter 5. First, we will discuss the related work
of single sink and multiple sink placement problem. Since multiple sinks
are preferrable for large-scale WSNs, we will discuss two main categories
of sink placement strategies in WSNs: (1) using the global knowledge
of the sensor nodes' locations and (2) based on the estimates or no use
of the nodes' locations. In the �rst group, the node locations may be ob-
tained from GPS receivers or are simply known from a planned deployment
process. Obviously, it suits only small-scale WSNs because of the corre-
sponding computation and communication overhead. The second category
is sink placement based on the estimation of node locations, which uses,
for example, anchor points. Yet, these approaches still seem infeasible for
large-scale WSNs. A geometric way of sink placement does not require
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the nodes' locations information. Obviously, the e�ciency of such kind of
sink placement is typically lower compared to known or estimated nodes'
information based techniques.
If the nodes are unifromly distributed and only a single static sink is

available, in general, the sink is placed at the centroid of the network, for
example, in the center if the network is circular or square shape. This
is proved by [82], where it is shown that the center of the circle is the
optimum position for a single sink in WSNs under the uniform distribution
of sensor nodes. Nevertheless, a single sink is not su�cient for large-scale
WSNs because nodes near the sink always have a burden of forwarding a
huge amount of data from the other nodes.
In fact, the multiple sink location problem is NP-complete, so �nding

the exact optimal sink placement is very hard. In [23], the sink placement
problem is reduced to the dominating set problem on a unit disk graph and
is proven to be NP-complete. Recently several studies [99, 65, 139, 55, 107,
140] handle locating multiple sinks with di�erent approaches which include
integer linear programming, exhaustive search and iterative clustering. The
problem is even addressed as a �ow problem in [23].
A number of works solve the problem in the way of integer linear pro-

gramming [55, 107]. In [55], the authors studied the joint problem of
energy provisioning and relay node placement (EP-RNP) for the upper
tier aggregation and forwarding nodes (AFNs) to increase network life-
time. Due to the hardness of the EP-RNP problem, the authors developed
an e�cient polynomial-time heuristic algorithm, SPINDS, that solves the
EP-RNP problem as an iterative LP problem. Moreover, the authors con-
sidered a one-time energy provisioning for the network with the objective
of maximizing network lifetime. In [107], the authors explored the place-
ment problem under three wireless link models. The authors formulated
the placement problem for each link model as an integer linear program.
In [23], two heuristic approaches are considered for sinks' location selec-

tion to minimize the power used to collect the data. The greedy scheme
deploys the sinks incrementally. Basically, the algorithm picks the position
of sinks one-by-one in a greedy manner to improve the data rate by means
of the power e�ciency. Although the greedy algorithm is considered as a
good strategy, it generally does not perform well. The second approach is a
local search technique which is more powerful than the greedy algorithm.
In the local search, the sinks are initially placed randomly. In the next
steps, each sink tries to locate the positions of the neighboring sensors to
�nd a better position in order to maximize the data rate. The algorithm
stops if no improvement is possible and returns the best solution. In fact,
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the local search is an exhaustive search which actually is a drawback for
large-scale WSNs. Another tight restriction is that the sink location must
be one of the nodes' locations. Accordingly, the search space is limited and
the optimal position for sink placement is infeasible under this restriction.

Another heuristic sink placement can be found in [154, 9]. In [154],
the authors propose the Genetic Algorithm for Hop Optimization (GAHO)
approach which is based on arti�cial neural networks for optimal sensor
grouping by reducing the number of hops from sensors to sinks with the
intension of minimizing the delay. We also introduce a Genetic Algorithm
based sink placement for optimal sinks' locations selection in this chapter
but not for grouping purpose. In fact, [154, 9] considered a clustering
technique in WSNs. There are many good clustering algorithms in lit-
erature, which are mainly divided into hierarchical and non-hierarchical
methods [151]. If a clustering method is applied in WSNs, the cluster
head or the centroid of a cluster is usually considered as a sink (see, e.g.,
[99] and [65]). Instead of choosing the centroid of the cluster for sink
placement, the GAHO approach in [154] focuses on the centroid to �nd a
nearby position such that the sink has the highest number of neighbors in
its communication range within the cluster. Clearly, it is a computation-
ally quite expensive approach. The sinks' location selection in our SOSP
algorithm is very similar with this approach. However, we do need only
1-hop neighbors of initial sink locations while they need the global infor-
mation of nodes' locations for sink location. Another advantage is that
the SOSP algorithm optimizes the actual delay instead of the hop count.
A lighweight version of GAHO called Genetic Algorithm for Distance Op-
timization (GADO) is proposed in there, where the idea is to optimize
the Euclidean distance. Using a geometric approach for sink placement in
clustering, GADO reduces the complexity of the algorithm but it still needs
the nodes' locations.

While [99] and [65] focus on energy-e�ciency as optimization criterion,
[154, 9] intended to minimize the delay perfromance under clustering tech-
nique. In order to ful�ll both optimization criteria, we focus on the delay
while achieving energy-e�ciency goals by setting duty cycles accordingly.
By using clustering, in most cases, one cannot guarantee to obtain the
optimal location because most clustering algorithms choose the cluster-
head location according to the Euclidean distance. On the other hand,
clustering is a kind of geometric placement.

In addition, a number of di�erent approaches are considered for sink
placement problem in WSN. Facility location problems are also related
to sink placement problem, and have been considered extensively in the
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�eld of operations research (e.g., [68, 137, 41]). In [150], three random de-
ployment strategies for relay nodes, namely, connectivity-oriented, lifetime-
oriented, and hybrid deployment are presented. A hybrid approach of using
static and mobile sinks is presented in [147] to solve the �o�set� problem
caused by the networking-wide broadcasting. The idea is that mobile sink
broadcast their locations with limited transmission range. Whichever nodes
received the broadcast message send their data to this mobile sink whereas
the other nodes are assigned to communicate to the static sink. However,
their work only focuses on a single static sink and a mobile sink which is
not applicable for large-scale WSNs.

All the above work assumes global knowledge of the network such as
where the nodes are located, what the energy levels of the nodes are, and
so forth. Thus position-awareness of the sensor nodes becomes a critical
issue for large-scale WSNs.

Although many work consider sensor nodes equipped with global posi-
tioning system (GPS) hardware, for many applications this is too expensive.
It may be even infeasible for some applications due to environment issues.
In this case, other localization techniques are preferrable. Of course, there
are plenty of localization algorithms [93, 128, 50] that can work quite well
under some a priori knowledge of a few nodes' positions and provide an
approximation of others. A computational geometry based approach is
considered in [101, 102] where the sink location problem is formulated
as �nding the minimum enclosing circle problem for 1-tiered and 2-tiered
WSNs. Such a circle can be formed if three locations of sensors are known
at most. In [140], the authors introduced a mathematical model to de-
termine the sink locations that minimize the average hop distance with
the intension of lifetime maximization. An interesting part of the paper
is that the authors proposed a 1-hop algorithm using the locations of the
neighboring sensors against a global algorithm using the locations of the
sensors. The 1-hop algorithm is similar to our SOSP algorithm but the
di�erence is that the authors considered relocation of the sinks' position
within 1-hop neighbors while we are interested to use movable sinks to get
the best locations during the design phase.

The primary objective of most of the above sink placement strategies is
lifetime maximization. In contrast, we intend to optimize the maximum
message transfer delay as our primary goal.
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4.3. Assumptions and Problem Statement

As discussed in Subsection 4.1.1, if sinks are placed in good locations, this
can reduce tra�c �ow and energy consumption for sensor nodes. Although
energy is usually considered the most critical resource in WSNs, some ap-
plications depend heavily on performance characteristics such as message
transfer delays or bu�er requirements. In particular, message transfer de-
lay is the most critical issue for time-sensitive WSN applications like �re
or intrusion detection systems in order to ensure a timely actuation in
case of a detection event. Therefore, we focus on strategies to minimize
the maximum worst-case delay, which is important for any timely actua-
tion based on the information collected by a WSN. Hence, a worst-case
analysis approach is considered. While average-case analysis is useful in
some applications, for many WSN applications like production surveillance
or �re detection, it must be ensured that messages indicating dangerous
information are not lost (with high probability) and arrive at the control
center with minimum delay.
However, that brings up the question how these sinks can be placed

optimally in order to achieve a minimum message transfer delay for time-
sensitive applications. In mathematical terms we can pose the problem as
follows:

min. max
i∈{1,...,n}

{di}

with

di=f
(
τ |~α, ~β

)
τ=g(~s|~p,R)

~p=
(
p
(x)
i , p

(y)
i

)
i=1,...,n

~s=
(
s
(x)
j , s

(y)
j

)
j=1,...,k

pi, si∈ F

Here, n denotes the number of sensor nodes and ~p is the vector of
their locations in the sensor �eld F , these locations are assumed to be
given. The values di are the worst-case delays for each sensor node i. By
minimizing the maximum worst-case delay in the �eld, it is ensured that
response times are balanced as far as possible. k is the number of sinks
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and the vector ~s contains their locations, these locations are the actual
decision variables of the optimization problem. This is somewhat hidden
by the fact, that the delays di are only indirectly a�ected by the choice
of the sink locations, because as a �rst-order e�ect, the di are a function
of the topology τ in which the WSN organized the data �ow towards the
sinks and the arrival and service curves of the sensor nodes, denoted as
~α and ~β in the formulas above. While the arrival and service curves are
parameters for a given WSN scenario, the topology is itself a function of
the nodes' locations, the routing algorithm R and the sinks' locations ~s,
where however only the sinks' locations are variable and the other two are
again given parameters. Note, in particular, that we assume the routing
algorithm to be given and not to be subject to the optimization. Although
this could in principle be done, it would aggravate the problem further and
is therefore left for future study.
So, in principle, we face a continuous optimization problem where the

objective function is to minimize the maximum worst-case delay in the �eld
subject to constraints that ensure that each sensor node is connected to
a sink (possible via multi-hop communication, determined by the routing
algorithm) as well as some geographic constraints. Due to the highly non-
linear, jumpy behaviour of the worst-case delay function f , and thus of the
objective function, which results from the formulas derived by sensor net-
work calculus (see [115]), the direct solution of that optimization problem
is practically infeasible.
For this reason, we introduce alternative solutions for di�erent target

networks in the next sections: a heuristic-based sink placement for known
sensor nodes' locations and a self-organized sink placement strategy for
unknown sensor nodes' locations.

4.4. Genetic Algorithm Sink Placement

In this section, we �rst propose a discretization method that reduces the
continuous search space into a �nite set of candidate locations. Each
candidate location represents a so-called region of indi�erence, in which
wherever we place a sink the routing topology is not changed and thus
also the value of the objective function, the maximum worst-case delay,
is not altered. Hence any location in such a region of indi�erence can
be chosen as a candidate location. So, interestingly, the discretization
of the search space does not result in a loss of optimality. Yet, as we
still face a hard combinatorial optimization problem similar to warehouse
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location problems (which are known to be NP-complete) where however the
objective function is highly non-linear in contrast to those, the only resort
for larger problem instances is a heuristic search technique. In the following
subsections, we discuss the method for the discretization of the search
space and the interior workings of the Genetic Algorithm sink placement
(GASP) for known sensor node locations.

4.4.1. Discretization of the Search Space

We assume the locations of the sensors and their transmission ranges to
be given. In a �rst step, we use the nodes' locations to calculate the
total number of regions of indi�erence, so that we know the cardinal-
ity of the candidate location set. To do so, we look at the intersection
regions of sensor nodes' transmission ranges. In that context, nodes are
called neighbours if their transmission areas intersect. By the sensor nodes'
transmission areas we obtain a tesselation of the sensor �eld. The atomic
regions forming that tesselation become the regions of indi�erence for the
sink placement problem, because inside such a region it does not matter
where we place a sink since the routing topology remains invariant and
thus the objective function remains unchanged. Thus, within such a re-
gion of indi�erence we can choose any location as candidate location and
consequently discretize the search space.

To the best of our knowledge, there has been no explicit formula for
the number of intersecting regions when their locations and transmission
ranges are given. In Figure 4.4.1, we discuss possible circle intersections
and the way to calculate the total number of regions as given by our
formula which is given in Equation (4.4.1). In our method, �rst, we pick
a node i with all intersecting neighbors and for each neighbor we add two
regions to the total number of regions. Then we eliminate node i from the
scenario. Based on this a loop invariant can be formulated which shows
the correctness of this procedure. The same procedure will continue until
the last node, which has no further neighbors. Notice that the network is
connected so that no further neighbors node means the last node of our
scenario and its neighbors have already been counted. Finally, we add a
region to the total number of regions for the last node.

The formula to calculate the total number of regions of indi�erence,
N(n), for multi-circle intersections is given in Equation (4.4.1) and we
give evidence for it with some graphical illustration in Figure 4.4.1.
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Figure 4.4.1.: Multi-circle intersection regions.

N(n) =

(
n−1∑
i=1

2 ∗ nbi

)
+ 1 (4.4.1)

where
n := number of sensor nodes
nbi := number of neighboring nodes after elimination of nodes 1, . . . , i− 1

N(n) is important as it controls a sampling process of the sensor �eld,
where we iteratively increase the sampling as much as necessary until the
maximum number of candidate locations is found. The sampling process
works by laying a grid over the sensor �eld, determining for each grid point
its neighborhood in terms of the transmission areas in which it is contained
and then merging grid points which have identical neighborhoods. If the
sampling accuracy is eventually high enough, all regions of indi�erence
have been identi�ed and the respective remaining grid points can be used
as candidate locations for the sink placement. While the iterative grid-
based procedure may seem computationally intensive and a direct method
for calculating the indi�erence regions based on the locations and trans-
mission ranges of the sensor nodes seems appealing, we had to �nd out
after intensive literature research that the basic geometric problem has not
been addressed so far and that even the easier problem of counting the
intersection regions had not been addressed, to the best of our knowledge.
However, the discretization never was a bottleneck in the practical scenar-
ios we investigated and further has the advantage that it also works if the
transmission properties cannot be captured by the typical circular structure
of free-space signal loss models.
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(a)

(b) (c)

Figure 4.4.2.: (a) Cyclic dependency, (b) indi�erence regions, and (c) com-
mon intersection point.

The alert reader might have noticed that there are some special cases of
node constellations which do not agree with Equation (4.4.1) resulting in
unwanted or duplicated regions. These special cases are shown in Figure
4.4.2. One such case is a cyclic dependency which results in an unwanted
region that is useless for sink placement, because sensors cannot reach that
region as shown in Figure 4.4.2(a). Moreover, there is the possibility of
scattered regions of indi�erence, where two or more regions of indi�erence
result in the same routing topology so that actually one of them is su�cient
which is illustrated in Figure 4.4.2(b). The discretization disposes with
such areas in order to keep the search space minimal. The last case in
Figure 4.4.2(c) does not agree with Equation (4.4.1) because some regions
of indi�erence might actually degenerate to a single point in the plane if
we have a common intersection point between three or more transmission
areas of sensor nodes. This case we rule out based on the observation
that in practice this is very unlikely to happen. So, the exact number of
regions of indi�erence may di�er from Equation (4.4.1) due to some cyclic
dependencies and scattered indi�erence regions but is still under control
of the discretization process. In the end, the search space becomes a �nite
set of candidate locations for the sinks.
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4.4.2. Some Background on GAs

Based on the set of candidate locations for the sinks an exhaustive search
can be implemented that tries all possible combinations of sink placements.
However, such an exhaustive search, while ensuring to �nd the optimal sink
placement, becomes computationally too expensive for even moderately
sized WSNs. More speci�cally, if the cardinality of the set of candidate
locations is denoted by L and k sinks shall be placed, then the number
of combinations to be checked becomes

(
L
k

)
, which grows quickly with L.

So, the only resort from this is to use heuristic techniques. We decided
to design a genetic algorithm based heuristic because the GA paradigm is
known to be very �exible and allows to integrate domain-speci�c knowledge
well [46].

John H. Holland [54] introduced the term and basic concepts of Genetic
Algorithms in order to solve complex optimization problems. While being
a random search technique, like a Monte Carlo strategy, a GA attempts
to learn as much as possible from its "experience" with the function to
be optimized and can actually be reasoned to do so in an optimal fashion
due to its inherent parallelism (see [46] for details). While not ensuring
optimality for the solution found, it usually at least provides very good ap-
proximations as long as the so-called building block hypothesis is satis�ed,
i.e., if a good solution can be composed from good partial solutions (yet
not in a very strict sense). The art of GAs therefore lies in the de�nition
of the chromosomes of the individuals that represent the possible solutions
for the problem at hand such that the building block hypothesis is ful�lled.

To implement a GA, the �rst step is to select initial individuals from the
overall search space. Each individual represents a solution of the problem
and is coded in the so-called chromosome. The selected set of individuals
becomes the initial "population". The population size may vary depend-
ing on the search space and the problem characteristics. The next step
is to generate new individuals by reproduction, which is often called the
crossover operator of GAs, and by mutation. How to exactly implement
these operators is problem-speci�c [46], although a large set of variants to
choose from exists. In the last step each individual's "�tness" is computed
using the objective funtion, before the �nal operator of GA, the selection,
is invoked to create the next "generation" of individuals which form the
new population. Again, also for the selection operator there are many vari-
ants one can choose from. Which is best depends again on the problem
and is usually subject to experimentation. The termination of a GA can be
done in two fashions, either the population is converged, meaning that the

89



4. Placing Multiple Static Sinks in Large-Scale, Time-Sensitive WSNs

individuals are all the same or at least very close to it, or, more commonly,
the number of generations, i.e., the number of evolutionary loops is limited
to some number. The latter criterion gives better control on the amount
of computation that is invested.

4.4.3. The GASP Algorithm

The GASP algorithm is given in Algorithm 4.1. Initially, it computes the
candidate location set based on the method from Section 4.4.1. Each can-
didate location is given an index number where the indices are assigned
according to an increasing distance towards the left upper corner of the
sensor �eld, thus, to some degree, keeping track of the geographical posi-
tions of the candidate locations.1

Next, an initialization step is performed: select N individuals randomly
by choosing a random subset of the candidate location set with the cardi-
nality of the subset being equal to the number of sinks to be placed. These
subsets are then transformed into an ordered list where the ordering crite-
rion is according to the distance of the left upper corner of the sensor �eld,
i.e., the chosen locations are ordered according to their respective index
numbers. This chromosome encoding shall ensure that building blocks can
actually be formed and that for the GA crossover operators (as described
below) such building blocks are destroyed with low probability. Now, all
individuals of the initial population are calculated for their �tness invok-
ing the sensor network calculus computations to provide the maximum
worst-case delay for the given sink placement.
Afterwards, the evolutionary loop that is composed of several GA oper-

ations can be started. Before actually performing the crossover operation,
we need to pick two parents. The details of the problem-speci�c crossover
operator we propose are discussed below, yet the idea of the crossover
is to combine good partial solutions to achieve a better total solution.
After the crossover, the mutation operator is invoked for each individual
(old and new ones). Again the speci�cs of the mutation operator are de-
ferred to the next subsection. The idea of the mutation operator is to
integrate the explorative power of random search by trying new options
in the search space which were not explored so far. Yet, it must be used
with care, since otherwise the GA might degenerate into a pure random
(Monte Carlo) search. As last step in the evolutionary loop, the selection
operator chooses the N best individuals from the whole set of old and new

1This is under the assumption of a rectangular �eld, which, however, does not pose a
restriction as the sensor �eld can always be embedded into a rectangle.
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Algorithmus 4.1 GASP algorithm.
Given: location of the n sensor nodes, transmission ranges of the nodes,
number of sinks to be placed (k)
1. Calculate the candidate locations set
2. Init: N individuals
(i) Place the number of sinks (s(i)1 ,s(i)2 ,...,s(i)k ) randomly from candidate

locations set
oriented from the left upper corner of the network �eld
(ii) Calculate �tness function of maximum worst-case delay

3. Evolutionary loop: G generations
(i) Crossover
(ii) Mutation
(iii) Selection

4. Go back to 3.

individuals to form the next generation (elitist strategy). The number of
individuals per generation drives the degree of parallelism in the search and
is again problem-speci�c, but in general the larger the search space, the
larger should be the population size in order to avoid a premature conver-
gence. After the selection of the next generation the evolutionary loop is
repeated for the new population until a certain number of generations is
reached. We choose to control the termination via an explicit number of
generations in order to keep the amount of computation invested under
control, as discussed above. This also eases the comparison with other
strategies. As will be discussed in the performance evaluation section, for
larger problems we need to choose a large number of generations in order
to achieve good solutions.

4.4.4. The GASP Operators

In this section, we discuss in more detail how the problem-speci�c GA
operators we designed for the GASP strategy work. After the individuals
of the initial population are determined and their �tness is evaluated, the
crossover, mutation, and selection operators are applied to drive the search
in the right direction.
Crossover. The �rst step for the crossover operation is to select which

individuals are chosen as mating partners. Although there are many known
methods with respective bene�ts, we used the tournament and random
variants. The tournament method selects two individuals randomly from
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Figure 4.4.3.: Illustration of the crossover operation.

the current population. Then it compares their �tness values, i.e., in our
case their maximum worst-case delays, and chooses the one with the bet-
ter value. The same procedure is repeated for the other mating partner.
The random method is even simpler: two mating partners are selected
randomly from the current population. Note that an individual might be
selected more than once for a crossover operation. We experimented with
both methods and found the random method to be more e�ective in our
problem setting, probably because otherwise the explorative character of
the search is lost too quickly. Once two individuals are selected the ac-
tual crossover operation can take place in order to produce new individuals
by recombination of the parents. The crossover operation is at the very
heart of a GA-based search and distinguishes it from other search tech-
niques. It is very important for the crossover operation when recombining
the chromosomes of the parent individuals that building blocks are not de-
stroyed with high probability. Under these general guidelines we designed
the crossover operation as follows: As mentioned above, each individual
is represented by an ordered set of indices, one index value for each sink.
Now we choose a random start position in that list and choose a random
number of positions such that from the starting point the chosen num-
ber of indices are exchanged between the individuals (see Figure 4.4.3 for
an illustration). In doing so we make sure that this operation does not
wrap around. This procedure is similar to the standard 2-point crossover
with binary encoded chromosomes, but makes sure that indices are not
cut through at intermediate positions during crossover. Furthermore, and
more importantly, in most cases geographically close sinks remain together
because they tend to be near each other on the chosen chromosome encod-
ing. This interplay between chromosome encoding and crossover seemed
to be inevitable to satisfy the building block hypothesis, because when we
experimented with other crossover operators and chromosome encodings
we achieved signi�cantly less satisfying results.

Mutation. Although the crossover operation is generally considered the
more important operator of a GA, the mutation also plays an important role
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Algorithmus 4.2 Mutation algorithm.
1. for a given index/sink location: choose random number r from [0,1]
2. if (r > 0.8) then sink is moved up a small random number
else if(0.6 < r < 0.8) then sink is moved up/down a small random

number
else sink remains at its position

in the search process, since it does not only recombine existing solutions
but tries to �nd new interesting areas of the search space. Especially with
the above crossover operator mutation is indispensable since otherwise sink
locations di�erent from the one in the initial population would never be
tried. The mutation operator we implemented works as follows: For each
individual and each sink location (represented on the chromosome by the
respective index) Algorithm 4.2 is applied. First it is checked whether a
mutation should be applied or not, this is controlled by the mutation prob-
ability. This probability should not be too high because otherwise good
partial solutions are destroyed too often by the mutation. However, in our
case we use a relatively high mutation probability because the crossover
operation is a pure recombination as already mentioned. Again by experi-
mentation, we found a value of 0.4 for the mutation probability to deliver
the best results in our scenarios. Now, the actual mutation operation con-
sists of moving the index and thus the sink location up or down (with
equal probability) in index space. This movement is restricted to a rela-
tively small, compared to the index space, random number (less than 1%
of the index space). This, in fact, weakens the disruptive nature of the
high mutation probability we apply. Again, we experimented with di�erent
versions of mutation operators and only present the one that we found to
deliver good results.

4.5. Self-Organized Sink Placement (SOSP)

The position-awareness of the sensor nodes becomes a critical issue in
large-scale WSNs. Sensor nodes equipped with global positioning system
(GPS) hardware are for many applications too expensive. Of course, there
are plenty localization algorithms [93, 50, 96] that can work quite well
under some a priori knowledge of a few nodes' positions and provide an
approximation of others. Nonetheless, even this might often be inconve-
nient to assume in large-scale WSNs due to the related communication
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overhead.
In this section we present the algorithm of SOSP in detail. SOSP is

intended for a network for which it is infeasible to provide the global infor-
mation of nodes' locations. In SOSP, the assumptions on a priori knowl-
edge we make are the number of sinks, the number of nodes and their
transmission ranges. Sensor nodes are deployed over a circular �eld shape
since we consider the initial sinks at the center of gravity of the sector of
the circle (CGSC) under a sectorization-based grouping. Due to its sim-
plicity and e�ciency we introduced CGSC for initial sink placement. Note
that a circular shape network is not a strong assumption. For any shape of
network with arbitary initial sink placement is feasible to apply the SOSP
algorithm. For instance, in the case of a very long rectangular network, an
elipse will be a generalization from a circular �eld shape and the center of
gravity of the sector of the elipse could be an option for initial sinks. We
consider movable sinks for the initial selection of the best sink placement,
and later use stationary sinks to collect data packets from the sensor nodes
via multi-hop communication.

4.5.1. Initial Sink Placement: Geometric Sink
Placement (GSP)

We call a sink placement at the center of gravity of the sector of the circle
(CGSC) a geometric sink placement (GSP). GSP requires only the number
of the sinks and the radius of the �eld to calculate the centers of gravity.
No further infomation is needed. The center of gravity of a sector with
angle α always lies on the middle radial line (α/2) of the sector. Equation
(4.5.1) calculates the ratio where to place the sink at the middle radial line
of a sector and the center of gravity is simply found by multiplying with
radius R. It can be calculated with Equation (4.5.2). The value of α must
be within the range 0 to π

2 if it is given in radians.

CGSC = F (α)×R (4.5.1)

F (α) =
4
3sin(α2 )

α
(4.5.2)

where;
α is in radians,

0 ≤ α ≤ π

2

R = radius
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Figure 4.5.1.: Delay bound comparison of GSP vs. RSP in a 500 nodes
network.

The above equations allow to compute the center of gravity of a sector and
the degree of a sector can be simply obtained from Equation (4.5.3). The
degree depends on the number of sinks that shall be deployed. Obviously,
a single sink WSN places the sink at the center of the circle. For two sinks
placement, sinks are placed at the center of gravity of the semi-circles. In
fact, the center of gravity is approximately between 0 to 2/3 of the radius
on the middle radial line of each sector (0 to 360 degree). The following
simple formula gives a sector degree (sDegree) for a given number of
sinks.

sDegree =
2π

#sinks
(4.5.3)

Though we mainly consider GSP as initial sink placement, it is a simple and
e�cient sink placement strategy to minimize the maximum delay for the
uniformly distributed networks when there is no information about sensor
nodes' locations. The delay bound comparison of GSP against random
sink placement (RSP) can be seen in Figure 4.5.1. We can see that the
performance gap between RSP and GSP is quite large. Furthermore, the
GSP strategy is obviously very computationally e�cient. It must be kept in
mind that it is designed for applications where N sensor nodes are deployed
and S sinks shall be placed in a network with radius R without being given
any further information.
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4.5.2. SOSP Algorithm Overview

After the (random) node deployment phase, the algorithm chooses the
initial sink placements at CGSC by applying the GSP sink placement. The
mathematical expression for the CGSC is given in Subsection 4.5.1. Next,
the sinks, now located at CGSCs, perform grouping, starting from a 1-
hop neighbor set in a wave to an n-hop neighbor set. The value of n
varies according to the number of sensor nodes, sinks, node density, and
transmission ranges. In our algorithm, we assume that sensor nodes are
homogeneous and that both sensors and sinks use the same transmission
range with a given node density. The simulation results of the n-hop values
having di�erent sensor nodes and sinks are discussed in more detail in the
subsection on the grouping phase. Note that the maximum value of n
must be considered to obtain a fully connected network. Furthermore,
we estimate the locations of the 1-hop neighbors, which are required for
selecting sink candidate locations. Without any supporting GPS hardware,
we estimate the locations by using trilateration with the time of arrival
(TOA) method [61]. In TOA, the distances to the nodes are estimated
based on the time spent by the signal transmitted from the sink. The
time spent in transit is converted into the distance travelled to calculate
the distance between a sink and a node. Note that this method is better
suited for outdoor WSNs since signal interference with obstacles causes
lower accuracy. Knowing the estimated distance, we can calculate the
location of a node, which is demonstrated in the subsection on the sink
location selection phase. In SOSP, we need to estimate locations only
for the 1-hop neighbors sets. From this location information, we de�ne a
set of �xed candidate locations for sink placement inside the search space
of the 1-hop neighbors region. Finally, the best candidate is selected for
sink placement. Here, we assume that a mobile sink performs the tasks
of determining the 1-hop neighbor nodes' locations (by doing the TOA
measurements from at least three di�erent positions) and the computation
of the best sink placement for each group. In the following subsections,
we discuss the four operational phases of the SOSP algorithm in detail.

4.5.3. Deployment

During the design phase of WSNs, the designer knows only the number
of sensor nodes and sinks to be deployed. Both sinks deployment and
nodes deployment a�ect the performance of the WSN. The nodes deploy-
ment can be either random or deterministic. In a random node deploy-
ment, sensor nodes are positioned at locations which are not known with
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certainty whereas for a deterministic node deployment, sensor nodes are
manually placed so that their locations are known. Deterministic node de-
ployments are usually only suitable for small-scale WSNs because of cost
issues. Moreover, deterministic node placement has to be careful about
placement errors which we discussed in Chapter 3 for tiling-based node
placement strategies. Due to our interest in large-scale WSNs, in this
work we focus on random node deployments. To illustrate where a ran-
dom node deployment would be inevitable, let us assume that sensor nodes
are distributed by an airplaine, for example, in an environmental monitoring
application.

4.5.4. Grouping

Grouping is an important issue for large-scale WSNs for manageability by
keeping operations local. Although conventional clustering is considered
as a usual way of grouping, we focus on self-organized grouping, which
improves in terms of computation and communication overhead. In order
to build a group, it is necessary to have an inital location which should be a
good starting point for sink placement. Since typical large-scale WSNs are
designed with multiple sinks, it is possible to create groups whose number
corresponds to the number of sinks. Based on this, we initially choose
the sink placement at each CGSC. To minimize the maximum worst-case
delay a sink placement at CGSC produces a fair result as presented in
Figure 4.5.1. So, we �rst place at CGSCs mobile sinks that connect to
their 1-hop neighbor nodes by broadcasting a message. (Any node that
can hear a message from the sink is de�ned as a 1-hop neighbor, also
referred to as a 1-hop distance neighbor.) Upon receiving this message,
the nodes within the sink's transmission range communicate back to their
sink (we use a random send time to avoid collisions for these replies). This
self-organized grouping of neighboring nodes continues to the next hops
up to the set of n-hop neighbors, in which n is set according to simulative
results (provided in Subsection 4.5.8). A priori knowledge of the n-hop
value helps to minimize the energy consumption while keeping the balance
of the group sizes. An example of grouping in a 50-node network with 3
sinks is illustrated in Fig. 4.5.2.
In our algorithm, a node is not allowed to communicate with more than

one sink to avoid nodes' duplication and to maintain a fully connected
network, as shown in Figure 4.5.2. In the grouping phase, if a node is
already in a group it is then owned by that group, although it may have a
link to another group (perhaps, it may even have a lower hop distance to
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Figure 4.5.2.: Grouping for 50-node network with three sinks.

the other sink). For those nodes that act as gateways to other groups, we
have the chance to choose the nearest sink (i.e., the one with shorter hop
distance) during the operation phase. Such gateway nodes are marked
inside an oval in Figure 4.5.2. What is more, this characteristic is very
important for fault-tolerance because a node may take an alternative route
to another sink in case of a node failure inside the local group.
In addition, the determination of the 1-hop neighbors' locations is neces-

sary for the selection of the best sink placement during the grouping phase.
How to determine the locations of the 1-hop neighbors from estimated dis-
tances and the maximum n-hop distances with respect to related factors,
such as the number of sensor nodes, sinks, transmission range, and node
density are discussed in Subsection 4.5.7 and 4.5.8.

4.5.5. Sink Location Selection

The step following the grouping phase is to choose the optimal sink place-
ment. The goal of SOSP is to design an algorithm for the sink placement
which minimizes the maximum worst-case delay. At the same time, the al-
gorithm should have an acceptable computation and communication e�ort
for an on-line operation. Due to these design criteria we focus on the area
near CGSC, especially within the 1-hop neighbor region, for sink location
selection. As we face a large, continuous search space, the computation
time for an on-line operation of SOSP indicates a purely local search. Be-
cause of the continuous search space, we �rst discretize and determine a
set of candidate locations for sink placement.
We propose two methods of a candidate location selection. The �rst

method is based on the discretization of the originally continuous search
space into a �nite search space as described in Subsection 4.4.1, whereas
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sensor node

sink

sink candidate location 

(b)

Figure 4.5.3.: (a) Discretizing of candidate locations among 1-hop neigh-
bors, and (b) �xed candidate locations at circumradius of a
regular octagon.

the latter is based on a �xed set of candidate locations. In order to de-
termine the candidate locations within the 1-hop neighborhood we must
know the 1-hop neighbor node locations that are obtained from the group-
ing phase for both methods. The �rst method simply samples the search
space and chooses a candidate from each indi�erence region as we dis-
cussed in Subsection 4.4.1. Using the sensor nodes' locations and their
transmission ranges, the sampling takes place over all possible regions and
collects a point from each of them. Figure 4.5.3(a) illlustrates all possible
regions for sink placement. From the intersection of the nodes' transmis-
sion ranges we obtain a tesselation of the sensor �eld. If it were for a
global search, the whole space would need to be discretized in that fash-
ion assuming that the nodes' locations and transmission ranges are known
to determine the candidate locations, however, for our purposes we dis-
cretize only the area of the 1-hop neighbors' transmissions intersection.
The candidate locations may vary with respect to the number of neighbors
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and their locations. Although this method con�nes to the 1-hop neigh-
borhood, the computational e�ort for sampling is still pretty high and may
strain the on-line operation of SOSP.
As opposed to the sampling method, we introduce a �xed candidate lo-

cation generation, which has considerably lower communication overhead
and computational e�ort. Again, we focus on the 1-hop neighbors' posi-
tions and their transmission ranges in this method. Instead of sampling
the search space, we place the candidate locations at �xed points inside
the transmission range of each neighbor node. The �xed candidate loca-
tions are placed at the corners of a regular octagon as illustrated in Figure
4.5.3(b). Those points can easily be calculated from the sensor nodes'
locations. We use three-quarters of the node's transmission range as a
distance between the node and the candidate location (circumradius of
octagon). For example, we place a candidate location at 12m distance
(which is three-quarters of our typically assumed 16m transmission range)
from the node at a corner of the regular octagon. The closer this distance
becomes to the transmission range, the better the chance for more 1-hop
neighbors. As illustrated in Figure 4.5.3(b), some candidate locations may
be duplicated with respect to covering indi�erence regions. This is un-
avoidable yet, it must not constitute a drawback since the indi�erence
regions may be di�erent when factoring in 2-hop neighbors. For this rea-
son, we also consider the distance that is as far as possible from the node
location. In this method, the number of the candidate locations depends
only on the number of neighbor nodes. In particular, the total candidate
locations will be eight times the number of 1-hop neighbors if the �xed
candidate is based on a regular octagon shape.
Figure 4.5.4 shows a quantitative comparison between �xed and sampled

candidate locations in the SOSP strategy. We analyze this experiment
based on the assumptions in Section 4.6.1.
As shown in Figure 4.5.4, the �xed candidate location scheme performs

almost as good as the exhaustive sampling scheme. With the advantages of
lower communication overhead and computational expensiveness we opted
for the �xed candidate locations scheme in SOSP.
When knowing the candidate location set for sink placement, we can

start with the sink location selection. We assume that the mobile sink
traverses from one candidate location to another and computes the maxi-
mum worst-case delays which are a function of the routing topology. After
these calculations, the sink location minimizing the maximum worst-case
delay is selected. All of these actions can be done in parallel for each of
the mobile sinks.
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Figure 4.5.4.: Comparison between �xed and sampled candidate locations
in SOSP under 50- and 100-node networks.

4.5.6. Operation

After selecting the best sink location in each group, the sinks are made
stationary at those locations. In fact, it is well conceivable that sink lo-
cations are recomputed from time to time in order to deal with network
changes, which would require the sinks to become mobile again, but we
leave this for Chapter 5. The actual operation of the WSN can now start,
for example, after broadcasting a query to all sensor nodes. A node re-
ceiving the message forwards it to the others until all nodes are reached.
The sensor nodes send back the message to the nearest sink in order to
�x the routing. Nearest here means the lowest hop distance because the
message transfer delay is computed over multi-hop communications. Note
that this could mean a di�erent routing from the grouping phase, where
groups were built independently from one another.
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Algorithm 4.3 summarizes all steps of SOSP.

Algorithmus 4.3 SOSP algorithm.
Given: a circular sensor �eld with known radius and transmission ranges of nodes and
sinks.
De�nitions: initial locations of sinks, Si, where i = 1, 2, ..., k, nodes Nj , where j =
1, 2, ..., N .
1. Deployment Phase
(i) Deploy a random node distribution

2. Grouping Phase
(i) Place k sinks at CGSCs
(ii) Create 1-hop neighbors set for Si by transmitting a signal and whichever node
replies to the signal is collected
(iii) Determine 1-hop neighbors distances from Si and thus locations by using
trilateration with TOA and 3 anchor points
(vi) Group up to n-hop distance (n-value is obtained by simulation)

3. Sink Location Selection Phase
For each group, (k sinks represent k groups)
(i) Determine the �xed candidate locations according to the 1-hop neighbors'
locations set from 2(iii)
(ii) A mobile sink traverses into each candidate location and calculates the maximum
worst-case delay
(iv) Select the best sink, i.e., the one minimizing the maximum worst-case delay

4. Operation Phase
Upon the selection of the best sink from each group,
(i) Allow Nj to connect to the nearest (i.e., the shortest hop distance) sink

(ii) Calculate the maximum worst-case delay

In our algorithm, the only information we need is the �eld size, the
transmission ranges of both sensors nodes and sinks, and the number of
nodes. The step following the random node deployment phase is grouping.
After assigning each node to a group, we can start with the sink place-
ment phase. The �xed assignment of candidate location sets is calculated
based on the location information obtained from the grouping phase. Note
that we only use the location information of 1-hop neighbors. After the
candidate location sets have been determined, a movable sink traverses
from one candidate location to another, computes the maximum worst-
case delay, and �nally picks the location having the minimum value. We
assume that the mobile sink has more than enough energy supply for these
operations. The nodes do not consume considerable amounts of energy
due to the design of SOSP. Upon achieving the best self-organized sink
placement for each group, we can start the operation and then calculate
the actual global maximum worst-case delay. In order to obtain a better
performance, the nodes are allowed to connect to the nearest sink (i.e.,
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the minimum hop distance sink) in SOSP. This approach is helpful for the
worst-case delay performance, since the message transfer delay is strongly
a�ected by greater hop distances and aggregate �ows toward the sink.

4.5.7. Determination of Distances and Locations

While grouping the 1-hop neighbor nodes, the algorithm �rst calculates
their approximate locations from three main approaches to localization:
proximity-based approach, triangulation and trilateration, and scene anal-
ysis [61]. We use the triangulation and trilateration approach that exploits
geometric properties of a given scenario. Using elementary geometry, dis-
tances can be used to derive information about node locations. Trilater-
ation and triangulation methods are based on distances between entities
and angles between nodes, respectively. To estimate the locations on a
plane, at least three non-collinear anchor points are required. Using the
distances (between anchor points and the nodes) and anchor nodes' loca-
tion, the node positions have to be at the intersection point of the three
anchor nodes' transmission ranges. This basic fact is illustrated in Fig. 2.
By moving a mobile sink adequately we can obtain the required anchor
points for SOSP.

In order to apply the (multi-) lateration method, estimates for the dis-
tances from the node to the anchor points are required. This information
can be obtained using Time of Arrival (TOA), Time Di�erence of Arrival
(TDOA), Angle of Arrival (AOA) or Received Signal Strength Indicator
(RSSI) [61]. In our algorithm, we use TOA as a distance estimation tech-
nique. This is also known as the time of �ight method. The TOA exploits
the conversion of the distance from the transmission time, when the prop-
agation speed is known. Upon receiving a small packet from a sender, a
receiver immediately returns the packet to the sender. Assuming the same
forward and backward paths, the sender measures the round trip time and
estimates the distance from this. The distances obtained by TOA are then
used in trilateration to estimate the nodes' locations. We assume that all
computations are done by the mobile sink, and thus do not constitute a
burden for the sensor nodes.

Figure 4.5.5 illustrates the trilateration process for a node location with
3 anchor points. Knowing the locations of three anchor points (xi, yi),
we can estimate the distance di, where i = 1, 2, 3. Using elementary
geometry, we can calculate the location of the node position.
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Figure 4.5.5.: Trilateration with 3 anchor points.

4.5.8. Determination of the n-Hop Values

The purpose of calculating the n-hop values is to determine the maximum
number of hops necessary for grouping without endangering connectivity
of the network. In fact, the determination of the n-hop values is not easily
predictable due to several factors on which it depends, such as the number
of nodes and sinks, transmission range, and node density. Also, the actual
sink location a�ects the value of n. However, a priori knowledge of the
n-hop value helps minimizing energy consumption while keeping balance
between groups with respect to the number of nodes. Actually, it is not a
fundamental necessity to be balanced, and, in fact, in some con�gurations
it might be better to follow the nearest sink rule for routing in order to
minimize the maximum worst-case delay. On the other hand, most of-
ten an unbalanced network produces tra�c hot spots and diminishes the
system performance as well as the lifetime of the WSNs. Therefore, we
analyze the n-hop values under varying parameters and determine typical
n-hop values for small-scale and large-scale WSNs. Simulative results for
n-hop values are shown in the following tables together with their related
factors. We analyze n-hop values with sink to node ratios of 1:50 and
1:100. The results are given as the minimum and maximum n-hop values
over 10 di�erent random node distributions. Having the same ratio of
nodes and sinks, the required n-hop distances are quite stable. Here, we
use the same experimental setup as in Section 4.6.1.
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Table 4.1.: Table of n-hop values with sink to node ratio of 1:50.
nodes sinks txRange density (min,max) n-hop

50 1 16m 0.01nodesm2 (4, 6)

100 2 16m 0.01nodesm2 (5, 6)

200 4 16m 0.01nodesm2 (6, 7)

400 8 16m 0.01nodesm2 (6, 7)

Table 4.2.: Table of n-hop values with sink to node ratio of 1:100.
nodes sinks txRange density (min,max) n-hop

100 1 18m 0.01nodesm2 (6, 8)

200 2 18m 0.01nodesm2 (7, 8)

400 4 18m 0.01nodesm2 (7, 9)

4.6. Experimental Setup and Competitors

4.6.1. Experimental Setup

As a framework for the following discussion, the overall experimental setup
is given in Algorithm 4.4. Sensor nodes are deployed uniform randomly in a
circular network. Depending on the assumption made about the network,
the sink placement strategies are selected. We classify two types of sink
placement strategies according to the sensor nodes' location. For instance,
Monte Carlo can be one of the competitors for GASP under known sensor
nodes' positions. To proceed with such a strategy, candidate locations
have to be calculated according to Subsection 4.4.1. After selecting a sink
placement strategy, the iteration generates the loop body. After placing
nodes and sinks, all nodes in the network are connected and checked with
respect to their connectivity, e.g., whether the network is fully connected
or not. The network is fully connected if any node can communicate
to at least one sink. Next, sensor nodes choose their nearest sink and
calculate the worst-case delay. The GSP and SOSP strategy run only a
single iteration as the sinks are placed at �xed positions though SOSP has
higher computation in sink placement phase. For known positions of sensor
nodes, the iteration continues G generations until a solution is reached.
Finally, the best location which produces the minimum worst-case delay is
selected. From a computational perspective GSP and SOSP are of course
at advantage over the other strategies.
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Algorithmus 4.4 Experimental setup.
1. Deploy uniform random node distribution
2. Sink placement strategy
i. Known positions of sensor nodes

a. Calculate candidate locations
(or)
ii. Unknown positions of sensor nodes

3. Connect all nodes
4. Check connectivity of network
5. Choose the nearest sink
6. Calculate the maximum delay
7. If 2(ii) Done
8. If 2(i) go back to 2
9. Do G generations
10. Select the locations with minimum worst-case delay

All experiments are based on the following assumptions:
The sensor nodes are deployed with a density of 1

100m2 in uniform ran-
dom node distribution fashion over a circular �eld shaped network. The
transmission range is 16m for both sensor and sink nodes. The routing al-
gorithm we use is based on Dijkstra's shortest path algorithm: nodes send
their data to the sink with the shortest distance in hops (with ties being
broken arbitrarily). Under the homogeneous nodes assumption, the token
bucket arrival curves and rate-latency service curves are considered for the
network calculus operations. In particular, for the service curve we use
rate-latency functions that correspond to a duty cycle of 1 %, 5.61 % and
11.5 %2 depending on the network size, since for larger networks a duty
cycle of 1 % results in in�nite delay bounds. For example, a duty cycle of
1 % results in a latency of 1.096 s and a forwarding rate of 258 b/s. In each
scenario, we analyze 10 di�erent node distributions and take the average of
their results to counter random e�ects; in fact, in none of the comparisons
below, 99 % con�dence intervals were even near to overlapping.

4.6.2. Competitors

Optimal Sink Placement (OSP) An exhaustive search of the space of
possible combinations of candidate locations for the sinks to be placed,

2The values are based on a realistic node model of a Mica2 mote running the TinyOS
system (see the CC1000 Radio Stack Manual) [4].
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which we call Optimum Sink Placement (OSP) from now on, as it ensures
to deliver the sink placement with minimal maximum worst-case delay for a
given WSN. In OSP, �rst we determine the candidate locations as discussed
in Section 4.4.1. This will be achieved by sampling all possible regions.
After calculating the candidate locations, we enumerate all combinations
of candidate locations depending on the number of sinks. In this way, we
place the sinks at the optimal combination of candidate locations in order
to minimize the maximum worst-case delay. The OSP strategy can (under
certain restrictions) guarantee an optimal solution but the serious drawback
is that it is very computationally expensive. We will face a combinatorial
explosion since the number of candidate locations are super-exponentially
increasing for a growing amount of nodes. Nevertheless at the end, it gives
an exact, optimal solution. We introduce the OSP strategy not only for the
applications which need an optimal sink placement for the minimization
of the maximum delay but also to compare the performance of a heuristic
GASP strategy. Obviously, the OSP is an upper bound for the GASP
strategy.

Monte Carlo Placement (MCP) Monte Carlo-based search, from now
on just called Monte Carlo Placement (MCP), where a certain number of
purely random sink placements are generated and evaluated with respect to
their maximum worst-case delay. Knowing the set of candidate locations by
discretizing the search space with given nodes' locations and transmission
range, the Monte Carlo strategy places the sinks at random candidate
locations. The MCP can be considered as a lower bound on what can be
expected from GASP. In comparison with GASP, we always make sure that
the MCP evaluates the same number of candidate sink placements. So,
the comparison between the two is fair and as the computational e�ort
is absolutely dominated by the sensor network calculus computations for
the maximum worst-case delays of a given sink placement, the GASP and
MCP have to invest nearly the same computational e�ort.

Random Sink Placement (RSP) This is not an advisable strategy but
it is introduced as a comparison for the other strategies. RSP places sinks
randomly so that the results are also arbitrary, even in the same network.
Hence, RSP is used as a lower bound to compare with the other strate-
gies. RSP is pure random in a network where candidate locations of sink
placement are unknown. The RSP is considered as one of the competitors
for the SOSP strategy. Sometimes, RSP produces acceptable results but
generally it should not be considered for real-time WSN applications.
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4.7. Performance Evaluation of GASP

This section describes the performance evaluation of the GASP strategy.
Using the set of candidate locations under the network with known sensor
nodes' locations, we compare with an optimal sink placement (OSP) and
a Monte Carlo placement (MCP).
The network size is varied from 30 to 500 nodes with a maximum of

7 sinks together with a a duty cycle of 1 % and 5.61 %. With respect
to GASP, we consider population sizes of 40 and 100 and the number of
generations varies from 25 to 400, both of these parameters depending
again on the network size. For MCP, we generate an according number
of random candidate sink placements. For each candidate sink placement
we use a total �ow analysis [116] to compute the maximum worst-case
delay for the whole sensor network. In the next two subsections, we �rst
compare in small-scale networks how far GASP deviates from OSP and
then look at its performance in large-scale networks with MCP as a lower
bound benchmark.

4.7.1. Small-Scale WSNs: Comparison Between OSP
and GASP

In this set of experiments, we analyze the worst-case delay for GASP and
OSP for di�erent, but relatively small network sizes of 30, 50, and 100
nodes. The number of candidate locations for the sinks were about 450,
950, and 2200 for the 30-, 50- and 100-node network, respectively. The
number of sinks we had to place was restricted to 2 sinks, since for the
100-node network this already meant that the OSP strategy had to eval-
uate

(
2200
2

)
= 2418900 di�erent combinations of sink placements where

each evaluation consists of 100 total �ow analyses which are not simple
operations, resulting in a run-time of several days on a typical PC. For
GASP, on the other hand we chose a population size of 40 individuals and
the number of generations was set to 200, resulting in only 8000 di�erent
sink placements that where evaluated in a few minutes. The worst-case
delay results for the best sink placements found by GASP and OSP are
shown in Figure 4.7.1.
As can be observed, GASP performs very well in comparison to OSP:

for the 30- and 50-node network it actually �nds the global optimum,
only for the 100 node case the best sink placement found by GASP lies
slightly above the one found by OSP (8.02 s vs. 7.70 s). That should
be considered a success of the GASP since with a computational e�ort
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Figure 4.7.1.: The worst-case delay comparison of OSP vs. GASP.

that is several orders of magnitude lower than for OSP, it achieves almost
the same quality of solutions. Whether this holds true for larger-scale
scenarios is di�cult to assess as the OSP is prohibitively computationally
expensive. Therefore, in the next subsection, we compare GASP against
MCP in larger-scale networks.

4.7.2. Large-Scale WSNs: Comparison Between MCP
and GASP

The purpose of this set of experiments is to assess the performance of
the GASP strategy in larger WSN scenarios. The question we address is
whether GASP constitutes a more intelligent search strategy than a pure
random search like MCP. In fact, there would even be the possibility that
MCP could outperform GASP. This would be the case if the GA operators
were poorly designed and would mislead GASP in areas of the search space
that are fruitless. So, in a certain sense the following experiments also
validate the design of the GASP operators.
We investigate a 500-node network with up to 7 sinks for 10 di�erent

scenarios, i.e., 10 di�erent node distributions. For each of the scenarios,
this resulted in approximately 13000 candidate sink locations, so that at
maximum the search space becomes as big as

(
13000

7

)
≈ 1.24×1025. On the

other hand for GASP we used a population size of 100 with 100 generations
until termination resulting in 10000 sink placements being evaluated for
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Figure 4.7.2.: The worst-case delay comparison of MCP vs. GASP.

their worst-case delay. As mentioned above, we allow the same amount
of evaluations to MCP. In any case, it is clear that this amount of sink
placement evaluations constitutes only a tiny fraction of the overall search
space.

The results (averaged over the 10 scenarios) of these experiments are
shown in Figure 4.7.2. This analysis shows that GASP performs better
than MCP. For the GASP strategy, the worst-case delay improves from 5.7
to 4.1 to 3.2 to 2.7 to 2.3 to 2.0 for the 2- to 7-sink scenarios, respectively.
For MCP, the worst-case delay improves from 6.6 to 5.0 to 4.2 to 3.3 to
3.2 to 2.5 for the 2- to 7-sink scenarios, respectively. Morevover, at a
con�dence level of 90 %, the con�dence intervals of both strategies do not
overlap for the respective number of sinks, which shows the statististical
signi�cance of the results. The delay di�erence between the two strategies
is roughly 1 s for most cases. One may think that this is not spectacular,
but it should be kept in mind that we are dealing with bounds which usually
cannot be improved by factors. Furthermore, we want to emphasize once
more that the computational e�ort for GASP and MCP is approximately
the same (with GASP exhibiting a run-time penalty being in the fraction
of a percent of the MCP's run-time). This shows that the GA operators do
something sensible as the GA search improves on the pure random search
of MCP.

110



4.8. Performance Evaluation of SOSP

4.8. Performance Evaluation of SOSP

We analyze scenarios of 100, 200 and 500 node networks with 2 − 6 sinks.
For the service curve we use rate-latency functions that correspond to a
duty cycle of 1 % and 11.5 % depending on the network size. Besides, we
use the PMOO network analysis in this experiment.

4.8.1. Performance Comparison of SOSP, GSP, and
RSP under Uniform Node Distribution

At �rst, we evaluate the performance among SOSP, GSP, and RSP strate-
gies. RSP is considered as a baseline for SOSP. The GSP sink placement
is used as an initial sink placement in the SOSP algorithm, so the latter
always has to outperform GSP. Furthermore, SOSP uses movable sinks for
a self-organized network operation and should therefore, have an edge over
GSP in terms of delay minimization.
In fact, as expected, SOSP outperforms GSP and RSP strategies as

shown in Figure 4.8.1. In a 100 node network, the worst-case delay of RSP
has 23.6 s, 18.7 s, 21.5 s, 11.6 s, and 13.2 s for the 2- to 6-sink scenarios,
respectively. We can see clearly that the delay bounds are very chaotic
under a random sink placement. However, the worst-case delay of GSP
improves from 14 to 7.7 to 5.8 to 5.1 to 4.4 s for the 2- to 6-sink scenarios,
respectively. For SOSP, the worst-case delay improves from 8.5 to 5.7
to 4.5 to 4.3 to 3.5 s for the 2- to 6-sink scenarios, respectively. The
delay di�erences between GSP and SOSP vary from 0.8 s to 5.5 s. So, for
example, to provide the same delay performance to SOSP with 4 sinks, 6
sinks for the GSP are required. The di�erence can be seen clearly in RSP
vs. SOSP where SOSP is at least 2.7 times and at most 4.8 times better
than RSP. In our experiments, we noticed that the more sinks, the smaller
the worst-case delay gap between GSP and SOSP strategies.
For 500 nodes, the delay bound of RSP is still quite far from the SOSP

strategy. The worst-case delay of RSP has 17.3 s, 8.9 s, 8.3 s, and 6.5 s for
the 3- to 6-sink scenarios, respectively. Like the 100 node case, SOSP is at
least three times better than RSP. The worst-case delay gaps between the
GSP and SOSP strategies are 1.9 s, 1.2 s, 0.9 s and 0.9 s for 3 to 6 sinks
placement, respectively. The reason for having a small delay gap is the node
distribution pattern and a higher duty cycle. The higher duty cycle results
in a lower latency and a higher forwarding rate, thus resulting in a smaller
message transfer delay. Accordingly, the worst-case delay gap becomes
smaller. But note again that obtaining the same delay performance as
SOSP with 3 sinks would require 6 sinks for GSP.
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Figure 4.8.1.: The worst-case delay comparison of SOSP, GSP, and RSP.

In fact, all investigated scenarios are based on uniform random node
distributions, which is a good �playground� for the GSP strategy. We,
therefore, performed another experiment under non-uniform random node
distribution in the next section in order to check whether SOSP can out-
perform GSP strategy more pronouncedly. We leave out RSP for that
experiment since it is already clear that RSP under a uniform node distri-
bution is quite far away from SOSP strategy.
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Figure 4.8.2.: SOSP vs. GSP in non-uniform network.

4.8.2. Performance Comparison of SOSP vs. GSP
Under Non-Uniform Node Distribution

In the non-uniform random node distribution network, the node density
varies from region to region. Nodes are densely deployed in some regions
but not in all. The sink placement in GSP is �xed at CGSC and does not
depend on the node distribution pattern. Thus, GSP should be expected
to produce higher worst-case delays in non-uniform random node distri-
butions. In contrast to GSP, SOSP should perform well in non-uniform
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random node distributions. Whatever node distribution pattern is applied,
SOSP self-organizes a good sink placement which has a low maximum
worst-case delay. In non-uniform node distributions, some candidate lo-
cations from regions with lower density may provide good candidates for
regions with higher density. This means that candidate locations near re-
gions of higher density can o�oad the respective sink in those regions to
achieve better delay performance. With this �exible movement, SOSP is
very robust against di�erent node distribution patterns.

Figure 4.8.2 shows how SOSP outperforms GSP under non-uniform ran-
dom node distribution. For a fully connected network, the transmission
ranges for both sensor nodes and sink have to be increased in non-uniform
random node distributions. A 22m transmission range is used for 100 and
200 node networks with 1 % duty cycle. We analyze 3 to 6 sinks scenarios
for both networks since 1 % duty cycle results in in�nite delay bounds for
the 200 node network with 2 sinks.

In the 100 node network, the delay gaps improve from 2.4 s, 1.9 s, 1.8 s,
and 1.4 s for 3 to 6 sinks scenarios, respectively. For 200 nodes, the
delay gaps improve from 4.9 s, 2.8 s, 2.9 s, and 2.1 s from 3 to 6 sinks
scenarios. These results show that SOSP considerably outperforms GSP in
non-uniform networks. For example, for both networks SOSP with 3 sinks
outperforms GSP even if that one is given 6 sinks.

4.9. Performance Comparison of SOSP vs.
GASP

Finally, we evaluate the performance of SOSP and GASP, along with the
results for GSP. In particular, we analyze the scenario for a 100 node
network with 4 sinks. We restricted the scenario to 100 nodes due to
the considerable amount of computations for larger networks with GASP.
The comparison is shown in Figure 4.9.1. For the GASP strategy, each
evaluation consists of a population size of 80 individuals and the number
of generations was set to 100, resulting in 8000 di�erent sink placements.
In comparison, SOSP uses about 300 di�erent sink placements for choosing
the best location.

The worst-case delay improves from 5.8s to 4.5s to 4.2s for GSP, SOSP,
and GASP, respectively. The performance of the SOSP strategy is close
to that of the GASP strategy, which can be considered a success.
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Figure 4.9.1.: The worst-case delay comparison among GSP, SOSP and
GASP.

4.10. Tradeo� between Duty Cycle and
Number of Sinks

The lifetime of WSNs is investigated by the tradeo� between duty cycle
and the number of sinks. For ease of computation, we use the GSP strat-
egy for the tradeo� between duty cycle and number of sinks. The same
network parameters as before are used for this experiment. The analysis
also determines how many number of sinks should be placed depending
on a given number of sensor nodes and the desirable maximum worst-case
delay.
We measure WSNs with up to 500 nodes under a varying number of

sinks. To be consistent, the same network is used for all scenarios. Figure
4.10.1 shows the tradeo� between duty cycle and number of sinks for 100,
200, and 500 nodes using the GSP strategy. This experiment conducts a
performance comparison between a single sink placement with higher duty
cycle and multiple sinks with lower duty cycle. The best sink placement is
chosen among 10 di�erent node distributions. Each �gure shows the delay
distribution for a varying duty cycle and number of sinks. Among them,
comparable delay distributions for di�erent duty cycles are chosen. In the
100 nodes network, the worst-case delay distribution of 1 % with 5 sinks
is comparable with 2.22 % with a single sink placement. In the 200 nodes
network, 1 % with 3 sinks can compare with 2.22 % with 1 sink. Then
2.22 % with 4 sinks is similar to 5.61 % with a single sink placement in
500 nodes network. In this comparison, about 80 �ows have in�nite delay
bound. In general, the maximum worst-case delay will be increased if the

115



4. Placing Multiple Static Sinks in Large-Scale, Time-Sensitive WSNs

network is extended and the duty cycle stays the same. Yet, additional sinks
can minimize the maximum worst-case delay, though, of course, incurring
extra costs. However, the more sinks with less duty cycle the longer the
lifetime of the sensor network.
This illustrates that the lifetime of WSNs is approximately doubled with

three to �ve sinks depending on the network size when compared with a
single sink placement with higher duty cycle. On the other hand, it also
illustrates the right number of sinks with respect to the number of nodes,
for example 6 sinks seem to be required for 100 nodes in order to receive
all data within 0 to 5 seconds.

4.11. Discussion and Conclusion

In this chapter, we introduced two sink placement strategies under di�erent
assumptions for a time-sensitive WSN such that the worst-case message
transfer delay is minimized. For known locations of sensor, we developed
a GA-based sink placement. First, we provided a method to discretize the
search space for this optimization problem without losing any information
and thus without harming the optimality of solutions. This discretization
allows to apply classical search techniques. In principle, an exhaustive
search can be performed to �nd the globally optimal sink placement. Yet,
as was demonstrated, this is computationally infeasible and, therefore, we
developed a GA-based sink placement strategy. The performance evalu-
ation of GASP showed that for small-scale networks, the GASP strategy
is very close to the performance of an exhaustive search. For large-scale
networks, it was shown that the performance of GASP is much better than
a pure random search, thus validating the design of the problem-speci�c
GA operations.
In the second part of this chapter, we developed the SOSP algorithm

for unknown sensor node locations. SOSP was inspired by initial sink
placement using GSP and discretization within 1-hop neighbors of initial
sinks, of which we used the respective advantages. In particular, we put
emphasis on the self-organized nature of our sink placement algorithm
without using global knowledge as, e.g., the sensor node locations. We
consider this key for an application in large-scale WSNs. Most importantly,
as we require only information from the 1-hop neighborhood of the initial
sink placement (at CGSC), the algorithm, SOSP, should scale up to very
large WSNs. From the experimental results, it is clear that SOSP clearly
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Figure 4.10.1.: Tradeo� between duty cycle and number of sinks for
di�erent number of nodes in GSP strategy
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outperforms an almost totally scenario-agnostic strategy (GSP) and comes
very close to a global, near-optimal strategy (GASP), which however does
not scale. Therefore, SOSP strategy is shown to be a promising scalable
solution to the sink placement problem under unknown locations of sensors
with low computation and communication overhead. Moreover, we show
how the lifetime of WSNs depends on the number of sinks with a tradeo�
between the duty cycle and the number of sinks.
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5. Planning Sink Trajectories

in Large-Scale,

Time-Sensitive WSNs

5.1. Introduction

Mobility is a mixed blessing for wireless sensor networks (WSNs). On the
one hand, the degree of network dynamics induced by mobile nodes or
sinks may aggravate the design of networking protocols and distributed
algorithms. On the other hand, controlled mobility also creates opportu-
nities [47]. By moving the sink throughout the sensor �eld, the burden
of being a direct neighbor of the sink can be shared among all nodes of
the network and the network lifetime increases. How to achieve a lifetime
prolongation by using mobile sink(s) to collect the data of a WSNs has
already been investigated in many works (e.g., [82, 20, 144, 125]). All of
these leverage on the e�ect that the burden of being close to a sink is
shared over time among all the nodes in the �eld. This alleviates the typ-
ical hot-spot problem, where nodes near the sink drain their battery much
faster than others since they have to relay many data packets for other
nodes. However, by using mobile sinks, in general, the information trans-
fer delay from sensors to sinks increases over that of a proper placement
of a set of stationary sinks. This is simply due to the fact that there is
always a delay-optimal placement of the sinks and if the sinks move away
from it the message transfer delay becomes worse. Clearly, this creates a
problem for time-sensitive WSN applications. So, using sink mobility, we
face a con�ict between lifetime maximization and delay bound minimiza-
tion in large-scale, time-sensitive WSNs. This con�ict shows that these
two goals have to be carefully traded o� against each other when planning
the trajectories of multiple mobile sinks.
In this chapter, we �rst provide a multi-objective optimization problem

formulation for planning the trajectories of multiple mobile sinks, called
OST (Optimal Sink Trajectory). We remark that already the single objec-
tive problem of maximizing network lifetime is known to be NP-hard [81].
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Hence, we relax the OST problem by giving it a geometric interpretation,
and introduce a heuristic framework which we call orbital sink trajectory.
The orbital sink trajectory lends itself to a solution based on the kernel
insight that, for a single sink, the problem is reduced to simply �nding a
minimum enclosing circle, whose circumcenter is the optimal position for
the sink to minimize the maximum Euclidean distance. Extending this in-
sight we propose a geometrically principled approach using a polar grid to
divide the sensor �eld into areas of similar size, each of which is the respon-
sibility of a single sink. In each orbit the sinks are moved synchronously
(e.g., once a day), following a slow mobility approach [84].
We �rst formulate the optimal size for 2 orbits and the optimal number

of sinks on inner and outer orbit are derived in closed form using geometric
arguments. For the case of very large WSNs with many mobile sinks (say
hundreds) the n-orbit model generalizes from the 2 orbits trajectory. While
we base on this work with respect to giving the problem a geometric in-
terpretation, we remark that the n-orbit case is signi�cantly harder. Most
severely, the distribution of K sinks over n orbits leads to a combinatorial
explosion of the search space for the values of K that we require in very
large WSNs. Similarly, the optimal choice of the number of orbits n as
well as the sizing of their radii become very di�cult questions. We address
these questions with a heuristic framework. This is built on a geometric
reduction of the problem, where the two performance characteristics, de-
lay and lifetime, are amalgamated into minimizing the Euclidean distance
between nodes and sinks. The intuition behind this is that both, delay and
lifetime, bene�t from nodes being closer in terms of Euclidean distance to
their assigned sinks.

5.1.1. Contributions

The contributions of this chapter are:

� To the best of our knowledge, we are the �rst to tackle the trajectory
planning problem for multiple mobile sinks in very large WSNs under
lifetime and delay goals.

� We derive a heuristic framework that keeps up its delay and lifetime
performance in very large WSNs as long as a constant node to sink
ratio is retained. (→Section 5.4 and 5.6)

� For the 2-orbit model of the proposed heuristic framework, we pro-
vide a closed form of optimally distributing the sinks and sizing the
orbits. (→Subsection 5.5)
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� A thorough simulative investigation and comprehensive comparison
with alternative approaches inspired by literature is presented.
(→Section 5.7)

5.1.2. Outline

This chapter is organized as follows. Section 5.2 provides an overview of
related work. Section 5.3 describes the network model, the assumptions on
the sinks and nodes, and the original problem formulation for the OST in
order to reveal the structure of the problem. Next, the heuristic framework
and its derivations are presented in Section 5.4. We introduce an orbital
model for the sink trajectories in order to achieve a small distance between
nodes and their sinks, as well as a balanced division of the network area
into cells based on a polar grid area assignment. A closed form of the
optimal sinks distribution and sizing the orbits for 2-orbit model and a
generalization to the n-orbit model are provided there in. The performance
of the orbital sink trajectory for multiple sinks is evaluated and compared
against several alternatives using simulations in Section 5.7. In Section
5.8, we discuss about implementation issues of orbital sink trajectories.
Finally we conclude this chapter in Section 5.9.

5.2. Related Work

In literature, a considerable number of works advocate for using a single
or multiple mobile sinks [20, 21, 28, 121, 82, 85, 92, 144, 29, 105, 129,
136, 44, 125, 76, 153, 42]. The majority of these deal with single sinks
[20, 82, 92, 144, 103, 129, 125, 156, 76] and all of them focus on prolonging
lifetimes. The e�ects on information transfer delay are either completely
neglected or simply observed without taking actions to establish delay as an
objective of equal importance to lifetime maximization. Clearly, the single
mobile sink studies were not conceived with very large WSNs in mind;
however, even the works on multiple mobile sinks usually considered a
rather low number of sinks and nodes and did not investigate the scalability
of the proposed mechanisms. In our work, we target very large WSNs and
strive for high lifetime and low delay simultaneously, which sets us apart
from the current state-of-the-art. Having said that, many of the previous
works have inspired our work and we discuss them now separately:
Sink trajectories can be categorized into random, state-dependent, and

prede�ned. Usage of a random trajectory can, e.g., be found in [28] where
mobile sinks perform a random walk and collect the data from the sensors
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of their assigned clusters trying to achieve a load balancing and lifetime
maximization.

Recently, [20, 129, 92] address state-dependent sink mobility for maxi-
mizing the lifetime of WSNs. In their approaches, the sink trajectory is a
function of a particular network variable, such as, e.g., the state of nodes'
batteries; the sink moves either grid-based [20] or following a straight line
[129]. Though the lifetime performance of such trajectories is good, the
methods assume knowledge of global and dynamic information for deter-
mining the optimal paths and sojourn times, which is a strong assumption
in very large WSNs. In addition to prolonging the lifetime of WSN, a
mobile sink is useful when real-time tra�c with certain end-to-end delay
requirement is involved [8]. If tra�c congestion happens in the network,
most requests for establishing paths for real-time data may be denied or
the deadline miss rate of real-time packets may increase signi�cantly. In
this case, repositioning of the sink is desirable in order to spread the tra�c
on additional hops and increase the feasibility of meeting the timeliness re-
quirement. The authors propose to move the sink near to the most heavily
loaded node. This approach, however, cannot not minimize the maximum
delay.

[44, 127] propose a prede�ned single sink trajectory independent of any
network state such that the sink appears on the same path periodically.
Interestingly, [127] considers a prede�ned trajectory along two concentric
circles separated by 2rtx, where rtx is the transmission range of a node,
with the aim of minimizing the total energy consumption. This is very
related to our polar grid-based trajectory, yet ours is designed for multiple
mobile sinks and takes lifetime as well as delay goals into account. [87]
also proposes a geometrically motivated pre-de�ned trajectory for multiple
sinks where the sinks move on the perimeters of a hexagonal tiling. This is
shown to be bene�cial for lifetime prolongation. Like us they require no a
priori knowledge of node locations which is desirable for very large WSNs,
yet they do not consider delay performance. In contrast to a periodical
movement, the work in [81] proposes a prede�ned sink trajectory where
the sink only appears once at each position along the trajectory. The
author studied the improvement of lifetime prolongation by using a joint
sink mobility and routing scheme similar to [103]. Most of these studies
are concerned with the lifetime prolongation of a WSN, often restricting
to the single sink case.

[101] considered the static sink placement, and the approach is very
related with our sink location selection in our orbital model. In order to
minimize the total energy consumption, in particular, for communication,
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the idea is to locate the sink to a place such that the distance to sensor
nodes is minimized which actually means �nding the minimum enclosing
circle. The sink will then be positioned at the center of the circle. In the
extended work for two-tierd WSNs [102], the authors introduced special
application nodes for the �rst-tier and the sink position is selected among
the application nodes the same way as in the previous approach. In both
works, the authors focus on a single sink location problem. We also apply
the concept of the minimum enclosing circle problem in selecting sink
locations but for multiple sinks. In addition, we intend to minimize both
energy consumption and worst-case delay with this concept.

In addition, some prior works for multiple mobile sinks are [136, 21,
92, 87, 42]. In [136], the authors proposed a number of mobile sinks
trajectories to optimize the lifetime and delay under a given constrained
path. This way, they reduced a large (perhaps in�nite) search space of
sinks' locations into a smaller subset. However, some applications are
not path-constrained in reality. In fact, this constrained path is a special
case of the unconstrained case especially if a sink trajectory is a sequence
of static sinks' locations. The authors of [21] use a linear programming
approach where sinks' trajectories are controlled by the desired metric and
are constrained by a set of pre-computed locations. A very similar approach
of this work can be found in [92]. [42] also presented sink repositioning
for energy e�ciency in WSNs with multiple sinks where the best locations
are computed by LP programming. In [87], a centralized approach based
on mathematical programming to compute the best locations for sinks is
presented. In order to apply their approach, the locations of sensors and
sinks are assumed to be known a priori.

In our work, we tackle the problem of �nding good trajectories for mul-
tiple mobile sinks such that we keep the maximum message delay low and
still achieve a long lifetime. So, delay and energy are traded o� against
each other. Along similar lines, [129] optimizes this trade-o�, too, design-
ing a trajectory for a �data mule� which collects the data from each sensor
node directly [121]. Yet, the data mule approach incurs long latencies and
is generally not applicable in delay-sensitive WSNs. In [144, 103, 81], the
movement of a sink is abstracted as a sequence of a static sink placements
assuming that the time scale of sink mobility is much larger than that of
data delivery; we also follow this assumption of slow mobility (as it has
been coined in [84]) in our work.
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5.3. Network Model and Problem
Statement

In this section, we �rst provide our network model along with some basic
assumptions and, next, state the problem of planning sink trajectories for
multiple mobile sinks as a multi-objective optimization problem. Here,
the intention is to shed light on its basic mathematical structure without
providing a solution approach yet.

5.3.1. Network Model

Let V be the set of sensor nodes with |V | = N ; S is the set of sinks with
|S| = K. For both, N and K we typically assume large scales with N
being on the order of thousands and K up to the order of hundreds. The
reachability between nodes is modelled as a directed graph, G = (V, E),
where V = V ∪ S. For all a, b ∈ V, the edge (a, b) ∈ E exists i� a and b
are within a disc-based transmission range rtx. The sensor �eld is assumed
to be a circular area with radius R.

5.3.2. The Nodes

The nodes are i.i.d. uniformly distributed over the sensor �eld. We assume
the node density (governed by the parameters R and N) to be high enough
to ensure connectivity with high probability (see also Section 5.7). The
nodes are homogeneous with respect to their initial energy E and their
transmission range rtx. Also, the costs for sending and receiving messages
do not di�er from node to node. The amount of data produced by each of
the nodes is the same and follows the same tra�c pattern, e.g., a periodic
data generation. We assume that sensors send L(n) data packets in each
epoch n. The energy consumption for operations other than receiving or
transmitting can be neglected, since for homogenous nodes they consume
the same amount of energy. The nodes are stationary and use multi-
hop-communication to send their data to their assigned sink. This means
the routing topology is actually a forest of sink trees embedded in the
reachability graph G. The assignment of nodes to sinks is further discussed
in Section 5.4.
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5.3.3. The Sink

The sinks are assumed to have no energy constraints. We assume that
the sinks' movement is synchronous, i.e., all sinks move at the same time.
Further, sink movement takes places on relatively long time-scales (e.g.,
once a day), much larger than the time-scale of the message transfer delay
from sensors to sinks (e.g., on the order of seconds). Therefore, we neglect
the time periods when the sinks are actually moving (or being moved) and
the sink mobility is abstracted as a sequence of sinks' locations. At each
location the sinks stay for an equal amount of time, further on called
epoch n = 0, 1, 2, . . . In particular, we also assume that all data is �ushed
from the WSN before a sink movement takes place, i.e., there is no data
dependency between epochs. We further de�ne the following:

� We de�ne the locations of sink s in epoch n as ls(n) ∈ R2, and by
l(n) ∈ R2×K we denote the sinks' placement in epoch n.

� For node to sink assignment, we de�ne xv,s(n) as a binary variable
which is set to 1 if node v is allocated to sink s in epoch n and
0 otherwise. Hence, the overall assignment X(n) in epoch n is a
binary matrix:

X(n) := (xv,s(n))v∈V,s∈S ∈ {0, 1}N×K .

� For a certain assignment X(n) we can de�ne a routing as follows:

PX(n) :=
⋃

v∈V,s∈S : xv,s(n)=1

Pv,s

where, Pv,s is a path from node v to sink s which is described as the
set of edges lying on this path under the assumption of multi-hop
communication.

� We call a sequence of triples(
l(n), X(n), PX(n)

)
n∈N =: Sn

a strategy.

5.3.4. Optimal Sink Placement: Problem Statement

In this setting, we want to simultaneously achieve a low information trans-
fer delay and a long lifetime. Here, we de�ne the network lifetime as the
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time until the �rst node of the network �dies�, i.e., its battery is depleted.
For the delay, we consider the worst-case message transfer delay for the
whole network.
Based on the above de�nitions, we formulate the optimization problem

of �nding sink trajectories for multiple sinks in a WSN with the aim of
minimizing the maximum delay and maximizing the network lifetime T of
the network:

min
Sn

max
v∈V, n∈N

Dv(n)

andmax
Sn

T

subject to:∑
e∈δ−(v)

fn(e)−
∑

e∈δ+(v)

fn(e) = L(n) ∀n ∈ N,∀v ∈ V (5.3.1)

∑
e∈δ+(s)

fn(e) = L(n)
∑
v∈V

xv,s(n) ∀n ∈ N,∀s ∈ S (5.3.2)

∑
s∈S

xv,s(n) = 1 ∀n ∈ N,∀v ∈ V (5.3.3)

T∑
n=0

 ∑
e∈δ−(v)

Etx(e, fn(e)) +
∑

e∈δ+(v)

Ercv(e, fn(e))

 ≤ E ∀v ∈ V

(5.3.4)

where δ−(v) = {e ∈ E|e = (v, w), w ∈ V} and δ+(v) = {e ∈ E|e =
(w, v), w ∈ V}. The function fn : E → R+ describes the amount of data
sent over an edge in epoch n. Equations 5.3.1 and 5.3.2 are �ow balance
equations to ensure that no additional data is produced or any data is lost
at the nodes. Equation 5.3.3 enforces that a sensor node is assigned to
exactly one sink in epoch n. The energy constraint for each node v ∈ V is
de�ned in Equation 5.3.4; here, the total energy consumption for reception
Ercv(e, fn(e)) and transmission Etx(e, fn(e)) up to epoch T , the lifetime
of the WSN, must not exceed the initial energy E for any nodes.
The delay functionDv(n) represents the end-to-end delay characteristics

for the message transfer from node v to its assigned sink in epoch n. At
this point, we still remain abstract about whether, e.g., an average delay
over an epoch or the maximum delay experienced is taken. However,
later on (in the simulations as presented in Subsection 5.7), based on
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sensor network calculus [115], we use a bound on the maximum end-to-
end delay to instantiate Dv(n). In any case, the delay function Dv(n)
is a very complex function. Similarly, we also remain abstract about the
energy functions Ercv and Etx, which are also complex functions, thus
aggravating the problem further. To solve this dual-objective problem one
basically has to answer three questions in each epoch:

1. Sink Trajectories: where should the sinks be positioned?

2. Sink Selection: which sink does a node choose to send its data to?

3. Sink-Tree Routing: which route is the data sent to the sink?

In this chapter, we focus on the planning of the sink trajectories and �hard-
code� the other two questions: for sink selection, each node chooses its
nearest sink with respect to Euclidean distance (within the same orbit,
more details are given in Section 5.4); for the routing we assume shortest
path routing in the reachability graph G, mainly because it is a frequent
case. Yet, even under these restrictions, the problem is still a very hard
one (even strong reductions of it are NP-hard as mentioned above). The
end-to-end delay, as well as the energy consumption, is dependent on the
path between nodes and their sink, as well as any other path interfering
with this one. Hence there is a dependency structure between the end-
to-end delays which is very hard to untangle. In particular, di�erences
in choosing a path for just one node-sink pair, in general, a�ect multiple
end-to-end delays and di�erent level of energy consumption. A last but
not least hardness of the problem stems from the two objective functions
and their con�icting nature.

5.4. Heuristic Framework

In this section, we present our heuristic framework for planning the sink
trajectories in very large WSNs with delay and lifetime goals. Due to its
fundamental hardness, we relax the optimal sink trajectory problem, which
is basically a graph problem, into a geometric problem. This abstraction is
justi�able by the large scale of the WSN as we target it in our work. Basing
on the assumption of a large-scale WSN with a more or less uniform node
distribution we abstract from nodes as such. For the geometric shape of
the sensor �eld we assume it to be a circle, a somewhat arguable, but often
made assumption on this level of abstraction [81]. We brie�y come back
to a discussion about the circular shape in Section 5.8.
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Figure 5.4.1.: An example of a minimum enclosing circle.

Under these abstractions for a geometric problem, the objective of min-
imizing the maximum delay is reduced to the objective of minimizing the
maximum Euclidean distance dv,s(n) = ‖ls(n)−pos(v)‖2 from sink s ∈ S
to node v ∈ V in epoch n; here, pos(v) refers to the position of sensor
node v in the Euclidean space. The rationale behind it is that the delay
(mainly governed by the number of hops) needed to reach a sink is propor-
tional to the Euclidean distance from the nodes to their sinks. Somewhat
more indirectly, we cater for the lifetime maximization by partitioning the
sensor �eld into areas of similar size (per epoch), each of which is under
the responsibility of a single sink. In each epoch, each node is assigned
to the sink of its currently corresponding cell. The intuition behind this is
that each sink is roughly assigned a similar number of sensors per epoch,
thus we can abstract the load assigned to a single sink as the area of
its cell. This geometric interpretation of load and delay is instrumental
in constructing good sink trajectories, because instead of complex delay
and energy functions we can now formulate the problem in terms of the
size of cells and Euclidean distances between nodes and sinks, which are
considerably simpler measures.
Interestingly, for the single sink case, we remark that by simply sub-

stituting the delay function by the Euclidean distance, and neglecting the
energy issues, the OST problem becomes a well-known minimum enclosing
circle problem [123] (we point out, though, that with K circles the prob-
lem remains hard). This problem and its solution by a minimum enclosing
circle is illustrated in Figure 5.4.1. The center of such a circle is the op-
timal placement for a sink in terms of minimizing the maximum distance
between sink and sensor nodes. We recur to this basic insight several times
further on, when we look for optimal positions of sinks in their respective
area.
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Our framework to construct sink trajectories l(n) based on solutions to
the geometric problem consists of the following steps:

1. We assign areas of similar sizes to the sinks (→lifetime maximiza-
tion). In fact, there are di�erent possibilities to achieve this and we
discuss them in the following subsection.

2. After that we calculate the optimal placement of the sinks, such
that the maximal distance of any point in these areas to its sink is
minimized (→delay minimization).

3. Finally we de�ne the sink trajectory for each sink by specifying its
movement to the next position.

5.4.1. The Area Assignment Problem

The area assignment problem is: How to partition a circular network of
radius R in order to achieve areas of similar size with respect to a given
number of sinks K? A �rst and exact solution is an equal sectorization
which has a nice scalability property in terms of handling an increasing
number of sinks K without compromising the equal size of each sector.
No matter how large K is, equal sectorization achieves equally sized areas
by calculating the center angle of each sector as Φ = 2π

K . Figure 5.4.2(a)
shows an example of equal sectorization for a 14 sinks network. Due to
its symmetrical nature, it is su�cient to �nd a minimum enclosing circle
for one of the circular sectors. Although, the equal sectorization achieves
bene�cial properties like scalability, congruity, and simplicity, the area of
each circular sector becomes increasingly narrower for a growing number
of sinks K, which results in relatively large maximum distances to a sink.
In fact, the maximum distance for a point to its sink in a circular sector
is bounded from below by R

2 . This implies that the delay performance
does not improve signi�cantly any more after a certain number of sinks is
reached even if more sinks are available.
Therefore, we introduce an alternative way of partitioning the sensor

�eld, which is designed to improve on minimizing the maximum distance
for a growing number of sinks K. The resulting partition is usually called
a polar grid. The idea is to have multiple concentric circles of radii Ri
where i = 1, 2, ..., n. Figure 5.4.2(b) illustrates a 2-orbit polar grid-based
area assignment for 14-sinks network. In this case, by dividing the circle
into two di�erent parts, the maximum distance between any point to its
sink can be reduced e�ectively and the resulting scheme still can achieve
a balanced area assignment.
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(a) (b)

Figure 5.4.2.: Sinks assignment in (a) an equal sectorization, and (b) a
polar grid.

The following sections describe the detail of the polar grid-based orbital
sink trajectory together with the optimal sink distribution, i.e., how many
of the sinks to place in each orbit, and the optimal sizing of the orbits, i.e.,
the optimal value for the radius of each concentric circle.

5.4.2. Orbital Sink Trajectory

Our heuristic framework is based on an orbital model for the sink trajecto-
ries in order to achieve a small distance between nodes and their sinks, as
well as a balanced division of the network area into cells. In a nutshell, it
works like this: we conceive several circles around the center of the sensor
�eld, with di�erent radii, called orbits; the sinks are placed on these orbits
with regular interspaces and revolve around the center, like satellites move
around the earth (see Figure 5.4.3). For a more detailed presentation of
this n-orbit model, we introduce some de�nitions and notations (see also
Table 5.1):

� We call the innermost orbit the �rst orbit and the outermost orbit
the last or n-th orbit.

� By a sink distribution we refer to how many sinks are placed in each
of the orbits; we denote the number of sinks placed in the i-th orbit
by Ki.

� The orbits and their sinks divide the network area in a polar grid as
illustrated in Figure 5.4.3. The cells within the same orbit have the
same shape and size. The sinks are located in the center of their
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R

Figure 5.4.3.: The n-orbit model.

cells, such that they minimize the maximal Euclidean distance of
any point of this cell to themselves. This center can be calculated
by replacing the cell by a trapezoid (or triangle, in the case of the
�rst orbit) sharing the same corner points as the cell and determining
the center of the minimal enclosing circle of this trapezoid. A formal
proof for the correctness of this intuitive statement can be found in
5.5.

� The polar grid consists of n concentric circles segmenting the sensor
�eld into circular segments as well as ring segments. By Ri (i ∈
1, . . . , n) we denote the radii of the concentric circles, where R1

describes the radius of the circular segments. The ring segments in
the i-th orbit have an outer radius of Ri and an inner radius of Ri−1.
The choice of Ri a�ects both, the number of nodes in a cell and the
maximal distance from any point in the cell to the sink.

� By di, we denote the maximal distance of a point within a cell of
the i-th orbit to its corresponding sink. Further, by ai, we denote
the area of a cell in the ith orbit.

� To preserve the polar grid structure, after each epoch, the trajectories
are constructed by rotating all the sinks by the same angle θ around
the center (thus a θ of 0° or 360° would result in no movement at all).
More complicated trajectories are conceivable: the angles by which
a single sink moves may be di�erent from other sinks, even if they
are in the same orbit and could change from epoch to epoch. Such
trajectories would, however, not preserve the polar grid structure and
be di�cult to analyze. Since we are considering very large networks,
there might be a practical upper bound on the angle θ the sink can
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Table 5.1.: Notations for the orbit model.
R Radius if the network area.

N Number of nodes used.

K Number of sinks used.

L Leftover sinks.

n Number of orbits used.

Ki; i ∈ 1, . . . , n Number of sinks placed in the i-th orbit.

Ri; i ∈ 1, . . . , n Radius of the i-th circle,

constructing the polar grid.

di; i ∈ 1, . . . , n Maximal distance of one point in a cell

of the i-th orbit, to the corresponding sink.

ai; i ∈ 1, . . . , n The area of one cell in the i-th orbit.

θ Movement angle of the sinks between epochs.

move between epochs, simply by the limited distance a real mobile
sink may move between epochs.

The orbit model is �exible, since one can choose di�erent sink distributions
and number of orbits and also form the cells by varying the radii Ri.
Through this �exibility we are able to adress di�erent goals like minimizing
the overall Euclidean distance from any node to its sink or keeping the cells
equally sized. Also the model scales naturally for an increasing number of
sinks by simply increasing the number of orbits.

5.5. Optimization of the 2-Orbit Sink
Trajectory

We �rst present the optimal construction of the 2-orbit sink trajectory
with respect to the optimal sink distribution and sizing the orbits and
will generalize to the n-orbit sink trajectory in the following sections. As
shown in Figure 5.4.2(b), sinks are assigned in the inner circle and in the
annulus of the outer circle to create a polar grid. The �gure illustrates
an example of 14 sinks with K1 = 4 and K2 = 10. Let us de�ne d1
and d2 as the minimal radii of enclosing circles for the sector and annular
segments, respectively, given R1, K1 and K2. Then, the polar grid-based
area assignment problem can be formulated as:

min
0<K1≤K

min
0≤R1≤R

max {d1, d2} . (5.5.1)
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We calculate d1 and d2 from the corresponding minimum enclosing circles.
In the following we assume K1, K2 ≥ 3 to avoid degenerate cases.

5.5.1. Formulation of d1 and d2

There are two types of cells in the polar grid-based assignment scheme:
a sector in the inner circle and an annular segment in the annulus of the
outer circle. The optimal values of K1 and K2 are likely to be unequal in
general, which implies two di�erent center angles θ1 and θ2 for sector and
annular segment, respectively. This is also illustrated in Figure 5.5.1(a)
and (b).

(a) (b)

Figure 5.5.1.: Circumscribed circles of polar grid cells: (a) a sector in the
inner circle, and (b) an annular segment in the annulus.

We �nd the minimum enclosing circle and its radius by approximating
each polar grid cell by a simpler shape. In particular, we determine the
minimum enclosing circles for the isosceles triangle and isosceles trapezoid
for the respective polar grid cells. In Figure 5.5.1(a) and (b), the mini-
mum enclosing circles for the isosceles triangle 4ABO and the isosceles
trapezoid ABDE are depicted, which, in this case, are the circumscribing
circles of the triangle and trapezoid, respectively. In the following we de-
note by h the height in the triangle 4ABO and by x the distance between
the point E of the trapezoid and the center of the line AB.
The minimal distances d1 and d2 are calculated from the respective
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(a) Sector Segment (b) Annular Segment

Figure 5.5.2.: Optimal sink placement inside a sector and an annular seg-
ment with large |AB|2 .

circumscribed circles formulation. Given R1, R, α and β (see Figure 5.5.1
and 5.5.2), the following equations characterize d1 and d2:

d1 =

{
R1

2 sin β for |AB|2 ≤ h
R1 cosβ for |AB|2 ≥ h

(5.5.2)

d2 =

{√
(R−R1)

2+4R1R cos2 α

2 sinα for |AB|2 ≤ x
R cosα for |AB|2 ≥ x

(5.5.3)

Note that for angles 0 ≥ θ1, θ2 ≥ π
2 we always have to consider the

�rst cases of Equations (5.5.2) and (5.5.3). The mathematical proofs of
Equation 5.5.2 and 5.5.3 are given in Appendix A.

5.5.2. Optimal R1 and Sink Distribution K1 vs. K2

Based on the mathematical formulations for d1 and d2, we are able to
evaluate expression (5.5.1). One sees that for a �xed K1 and K2 d1 is a
strictly increasing function in R1 and d2 is a decreasing function in R1.
So we have to compute the intersection of the two functions d1 and d2,
which gives us the optimal value for r, given a combination of K1 and
K2. The global minimum of d2 is equal to R cosα and is achieved at all
R1 ≥ R− 2R cos2 α. So to �nd the intersection of d1 and d2 we need to
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know, where the function d1 intersects with the function given in the �rst
case of Equation (5.5.3). The necessary computations for the case where
we use the �rst case of Equation (5.5.2) for d1 are as follows:

R1

2 sinβ
=

√
(R−R1)

2
+ 4R1R cos2 α

2 sinα

⇒ r1, r2 =
−b±

√
b2 − 4ac

2a

where

a = sin2 α− sin2 β,

b =2R sin2 β(1− 2 cos2 α),

c =−R2 sin2 β.

By evaluating max{d1, d2} at the minimum of the points [r0]+, r1 and r2
we can �nd the minimum for this case.
For the case where we use the second case of Equation (5.5.2) we pro-

ceed similarly:

r1, r2 =
−e±

√
e2 − 4df

2d

r0 = R− 2R cos2 α,

where

d =4 sin2 α cos2 β − 1,

e =2R− 4R cos2 α,

f =−R2.

Again by evaluating max{d1, d2} at the minimum of the points [r0]+, r1
and r2 we can �nd the minimum of max{d1, d2}.
For a given K and R, we can now exhaustively search for the optimal

values of R1 trying all possible combinations of K1 and K2 (the size of
the search space is just K − 5 since we assume K1, K2 ≥ 3). Among
all combinations, we select the best con�guration of K1 and K2 with
respect to the minimum distance of d1 and d2 (using the best R1), thus
implementing Equation (5.5.1).

135



5. Planning Sink Trajectories in Large-Scale, Time-Sensitive WSNs

Figure 5.5.3.: An example of 2-orbit sink trajectory for a 14 sinks net-

work.

5.5.3. Designing 2-Orbit Sink Trajectory

Now, we know the optimal points (i.e., the centers of the minimum en-
closing circles for sector and annular segments) which produce the optimal
d1 and d2. Based on these points, we design circular mobile sink trajecto-
ries. Let rin and rout denote the distances from the center of the network
to the center of the minimum enclosing circles for the sector and annular
segment, respectively, as illustrated in Figure 5.5.3.
For 0 ≤ θ1, θ2 ≤ π

2 ,

rin =
R1

2 sinβ
(5.5.4)

rout = R sinα. (5.5.5)

For π
2 ≤ θ1, θ2 ≤ π,

rin = R1 sinβ (5.5.6)

rout =

√
(R−R1)

2
+ 4R1R cos2 α

4 sin2 α
−R2

1 cos2 α+R1 sinα. (5.5.7)

The trajectories of the sinks basically result from rotating the whole polar
grid in an attempt to keep both, message transfer delay and load per sink,
balanced. Clearly, an interesting parameter is how far we rotate the polar
grid, i.e., which step size we use for each sink when going from one epoch
to the other. Results concerning this step size and a deeper discussion of
its in�uence are provided in Section 5.7.
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Figure 5.5.4.: The maximum Euclidean distances distribution of (a) an
equal sectorization, and (b) a polar grid-based area assign-
ment schemes.

5.5.4. Analytical Evaluation of 2-Orbit Sink Trajectory

Before we delve into a detailed simulative study of our approach, we �rst
analytically compare the equal sectorization and 2-orbit polar grid-based
area assignment schemes with each other. Figure 5.5.4(a) and (b) show
the maximum distance distributions of an equal sectorization- and a polar
grid-based area assignment for R = 100m and a varying number of sinks
K up to 30. Apparently, a polar grid area assignment e�ectively reduces
the maximum distance as K grows. Note that for K ≤ 8 the equal
sectorization is in fact superior to the polar grid. The reason lies in the
restriction of having K1, K2 ≥ 3, otherwise the polar grid should always
be superior, since equal sectorization can be considered a special case of
a polar grid (with K2 = 0 and R1 = R). The results are based on the
optimal choice for R1 and the optimal sink distribution for K1 and K2.
We further show the corresponding optimal sink distribution K1 and

K2 in Figure 5.5.5. Starting from K = 13, the value of K1 is
⌊
K
3

⌋
and

consequently the value of K2 becomes
⌈
2K
3

⌉
. Therefore, the optimal ratio

of K1

K2
becomes 1

2 . In general, the optimal sink distribution is about one
third of the sinks for the inner circle and about two-thirds for the annulus.
Furthermore, the calculation shows that the optimal R1 is converging to
half of the radius R.
We remark that, in general, the polar grid does not achieve a perfectly

equal area assignment. Nevertheless, the di�erences are not too large
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Figure 5.5.5.: The optimal sink distributions (K1 vs. K2) for the 2-orbit
model.

and as discussed in Section 5.7 the polar grid-based orbital sink trajectory
performs favorably with respect to both objectives, lifetime maximization
and delay minimization.

5.6. The General n-Orbit Sink Trajectory

While the optimal sink distribution and sizing the orbits is feasible for the
2-orbit model, going to n orbits, however, will be harder to optimize by
enumeration as the search space for distributing K sinks over n orbits
grows as

(
K−n−1
n−1

)
(allowing orbits to be empty). Similarly, the optimal

choice of the number of orbits n as well as the sizing of their radii become
very di�cult questions. Most severely, the distribution of K sinks over n
orbits leads to a combinatorial explosion of the search space for the values
ofK that we require in very large WSNs. Apart from applying heuristics for
that search, one could strive for a closed-form expression over the maximal
distances in the n-orbit polar grid to avoid this combinatorial explosion.
Hence, a generalization of the 2-orbit model is provided here.
In the following we present two particular orbit models. The �rst has
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the goal of minimizing the maximum Euclidean distance from the nodes
to their sink. The second has the goal of keeping the cells equally sized,
while reducing the Euclidean distances as much as possible. We speculate
to see that equally sized cells are performing better in terms of energy
and the strategy which concentrates on minimizing the maximal distance
is doing better in terms of delay. Further for values of a certain parameter
γ between 1 and 2 we hope to see how the tradeo� between energy and
delay develope. Before we delve into the construction of these two orbit
models we provide an overview about their construction. In a �rst step
we found, by systematically searching the possible sink distributions and
radii Ri, that these follow rather simple rules. In a second step, we search
for the number of orbits, which results in the smallest maximal Euclidean
distance. Up to this point, however, we handle the sinks, as if we could
split them up and place them over several orbits, which is, of course, not
possible. Hence in the last step, we distribute the sinks in such a way, that
they get close to the formulations found in the �rst and second steps.

5.6.1. Minimizing the Euclidean Distance

As mentioned above, we derive two types of orbital sink trajectories. The
�rst has the goal of keeping the maximal Euclidean distance small. This
goal however is hard to achieve, due to a very complex objective func-
tion and a large number of variables. The optimization problem can be
formulated as follows:

min
{Ki:K1+...+Kn=K}

min
0≤Ri≤R

{ max
1≤i≤n

{di}}

with:

d1 =

{
R1 cosβ if K1 = 3

R1

2 sin(π2−
π
K1

) if K1 > 3

and for i > 1:

di =

Ri cosαi if Ri cosαi ≥ x√
(Ri−Ri−1)2+4RiRi−1 cos2(π2−

π
Ki

)

2 sin(π2−
π
Ki

) if Ri cosαi < x

where αi, respectively β, is the angle at A in the triangle ∆ABO and
x is the distance between D and the midpoint on the line between A
and B (see Figure 5.5.1). To solve this problem, we have thoroughly
explored the respective search spaces systematically, to �nd the best sink
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distribution and radii Ri. Due to the high-dimensional search space and
a �ne-grained sub-sampling of it this exploration involved a considerable
amount of computational e�ort (several weeks of run-time on high-end
PCs). The search does not only consist of the continuous parameters Ri
which lie in [0, Ri+1] (with Rn ∈ [0, R]), but also one has to consider a
combinatorially growing amount of possible sink distributions (assuming
orbits can be empty there are

(
K−n−1
n−1

)
distributions).

Denote by K the total number of sinks and by Ki the number of sinks in
the i -th orbit, further assume that n is the number of orbits. By sampling
we have found that the distribution of sinks, which minimizes the maximal
distance in the polar grid, follows roughly the following equations:

Ki = iK1 = K1 + (i− 1)K1; K1 =
2K

n(n+ 1)

5.6.2. Using Equal-Sized Areas

So far we have tried to keep the areas similar sized and then minimized the
overall maximum distance, resulting in this distance being equal in each
cell. In the second type of orbital sink trajectory, we want to keep the
cells equally sized and then minimize the overall maximum distance. Here
we have a closed form for the radii so sampling can be done much faster.
Keeping the notations one sees from the samples that the distribution
follows roughly this equations:

Ki = K1 + 2(i− 1)K1; K1 =
K

n2

n equally sized orbits Let K be the number of sinks which we want to
place in n orbits. The radii of the orbits are given by Ri and the number of
sinks in the orbits are denoted as Ki where i = 1, ..., n, and Rn = R. We
will denote the sink distribution as a vector, such that K = K1 + . . .+Kn

. The following theorem gives a constructive way, how to choose the radii,
such that the cells have equal areas.

Theorem. 5.1: If

R2
i =

R2
1

K1

i∑
k=1

Kk ∀ 2 ≤ i ≤ n
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R2
1 =

R2K1

K

then all cells have equal area.

Proof. Let 2 ≤ i ≤ n be arbitrary, then the area of a cell in the
k -th orbit is given by:

Ai =
π(R2

i −R2
i−1)

Ki
=
πK−11 R2

1(
∑i
k=1Kk −

∑i−1
k=1Kk)

Ki

=
πR2

1

K1
= A1

Where A1 is the area of a cell of the �rst orbit. Further one sees easily
that Rn = R .

To calculate the maximum distance for a given con�guration of sinks
(and by this the radii of the orbits), we need to �nd the minimum enclosing
circle for a trapezoid or a triangle. Often but not always the minimum
enclosing circle coincides with the circumscribing circle. The following
theorem distinguishes if this is the case or not.

Theorem. 5.2: Let ABCD be the trapezoid, spanned by the angle θ and
the radii Ri and Ri−1. Then the radius of the minimum enclosing circle
is given by:

d =


|AB|
2 if |AB|2 ≥ x√
(Ri−Ri−1)2+4RiRi−1 cos2(

π
2−

π
Ki

)

2 sin(
π
2−

π
Ki

)
if |AB|2 < x

Further for the triangle ABO spanned by angle θ and the radius R1, the
minimum enclosing circle is given by:

d =


|AB|

2

2 if |AB|2 ≥ h
r1

2 sin(
π
2−

π
K1

)
if |AB|2 < h

Here x stands for the distance between the mid point of AB and D h for
the height of the triangle ABO , see also the �gures 5.5.1(a) and (b).

Proof. We start for the trapezoid: Clearly if the points C and D lie inside
the circle in E with radius |AB|2 , then also the whole trapezoid lies inside
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this circle. If the distance between E and C is larger than |AB|2 we have
to choose the radius of the circumscribing radius to enclose the trapezoid.
This radius is given by the above formula, as one can easily check. For
the triangle the argument works similar: If the height of the triangle is
smaller than |AB|2 , then the whole triangle lies inside the circle around D

with radius |AB|2 , else we have again to choose the circumscribing radius.
To distinguish between the two cases, we need to calculate the quantities

x and h . By the theorem of Pythagoras we know that

x2 =| EF |2 + | CF |2=| EF |2 +R2
i−1 sin( θ2 ).

The length of | EF | is further given by

| EF |= Ri cos( θ2 )− | OF |= (Ri −Ri−1) cos( θ2 ).

Note that for only three sinks in an orbit we are always in the case that
|AB|
2 is the radius of the minimum enclosing circle, in fact for the trapezoid

this is established by the inequality:

Ri−1(−Ri
2

+Ri−1 < Ri(−
R− i

2
+Ri)

leading to:

x =

√
R2
i

4
− 1

2
RiRi−1 +R2

i−1 <

√
R2
i

4
− R2

i

2
+R2

i

=Ri

√
3

4
=
| AB |

2

However, it is still unclear how to distribute the sinks optimally, such
that a low maximal Euclidean distance is achieved. So we still have to
deal with the combinatorial explosion of possible sink distributions. Also
for this approach we decided to search systematically for the best solution.

5.6.3. Comparing the Two Strategies

The results of these computations for four orbits (for other numbers of
orbits the results look similar) can be found in Figure 5.6.1. As seen in
Figure 5.6.1 the di�erence between the two approaches lies mainly in the
sink distribution. They follow the rules presented in Table 5.2, the dashed
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Four Orbits’ Radii Distribution (MD vs. EA)
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Figure 5.6.1.: Radii and sink distributions for MD and EA.
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Table 5.2.: Comparison of MD and EA Methods.
Minimum Euclidean Distance Equal Sized Area

Sink

distribution

K1
Ki

= 1
i

K1
Ki

= 1
2i−1

Orbits' radii Ri = i · Rn Ri = i · Rn
Relationship of

K, K1,and n
K = K1

n∑
i=1

i K = K1

n∑
i=1

2i− 1

lines in the �gures represent how the sink distribution, for 100 sinks, would
have to look like, if one applies the rule.
Both have a linear increase of sinks in the orbits, but with di�erent

rates. One could see the two strategies as special cases of a more general
approach which distributes the sinks in the following way:

Ki = K1 + γ(i− 1)K1; K1 =
2K

n(nγ − γ + 2)
(5.6.1)

For γ = 1 this results in the approach of minimizing the maximal distance
(further called MD) and for γ = 2 we get the equally sized area approach
(further called EA). (For γ = 0 one gets an equal distribution of sinks over
the orbits.) There are other values for γ imaginable, resulting in hybrid
approaches, however, we will not consider other values for γ in this work.
For the rest of the investigation we set Ri = i · Rn to make further steps
tractable.

5.6.4. Choosing the Right Number of Orbits

Clearly, choosing the right number of orbits is an important factor. In the
smaller scale setting, we found signi�cant gains when going from a single
orbit to a 2-orbit trajectory (see Section 5.5). Hence, in very large-scale
WSNs as we target in this work, we have to �nd out which number of orbits
is optimal. For this purpose, we compute for di�erent number of sinks the
optimal number of orbits by checking through all numbers of orbits from 1
up to 100 for both, MD and EA. How this computation was performed for
a given number of sinks is shown in Algorithm 5.1. The algorithm takes as
inputs, the number of sinks and the value of γ and outputs the number of
orbits, which results in the smallest maximal Euclidean distance between
any point and its allocated sink. The alert reader may notice that the
algorithm takes only the �rst and last orbit into account for calculating
the maximal Euclidean distance. This is due to the following theorem:
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Algorithmus 5.1 Computing the optimal number of orbits.
Inputs: The number of sinks K, the network radius R, and

the parameter γ =

{
1 for MD

2 for EA
.

for n = 1 to 100
1. Compute K1 = 2K

n(γn−γ+2)

2. if (K1 ≥ 3)

2.1. Compute d1 =


R

2n sin(π
2
− π
K1

)
for K1 > 3

R
n
cos(π

2
− π
K1

) for K1 = 3

2.2. Compute

dn = R
n

1
2 sin(π

2
− π
γn−γ+2

)

√
1 + 4(n− 1)n cos2(π

2
− π
γn−γ+2

)

2.3. Compute Dnmax = max{d1, dn}
end

return orbit j such that Djmax = min1≤i≤nD
i
max

Theorem. 5.3: Let K and n be such that 3n(nγ − γ + 2) ≤ 2K, then di
is increasing in i for all i ≥ 2.

Proof. (Sketch, a complete proof can be found in Appendix B) di can be
given by:

di =
R

n

( 1

4 sin2(π
2
− π

(γi−γ+1)K1
)
+ (i− 1)i cot2(

π

2
-

π

(γi− γ + 1)K1
)
)1/2

.

Since di is positive, it is su�cient to show that d2i has a positive derivative,
after factoring out
cos(π2 −

π
(γi−γ+1)K1

) sin(π2 −
π

(γi−γ+1)K1
) ≥ 0, its numerator (the de-

nominator is positive) can be given by

(2i− 1) sin
(
π − 2π

(γi−γ+1)K1

)
− πγ

(γi−γ+1)2K1

(
4(i2 − i) sin(π2 −

π
(γi−γ+1)K1

) + 1
)
.

using a Taylor-Expansion around π for the �rst sum and using that sin(x) ≤
1 for all x, we know that the above expression is larger than zero, if

2π3

3i2K3
1

≤ 1

which is true for all i ≥ 2 andK1 ≥ 3, which is the case by our assumptions
on K and n.
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Table 5.3.: The optimal number of orbits for MD and EA.
MD(#sinks) EA(#sinks) #orbits

3-8 3-11 1

9-18 12-29 2

19-35 30-59 3

36-59 60-98 4

60-90 99-146 5

91-127 147-200 6

128-170 - 7

171-200 - 8

The condition of the lemma is not restrictive, as, for sink distributions
according to Table 5.2, it translates to having at least three sinks per
orbit. Having two or less sinks in one orbit would mean to place them in
the center of the whole sensor �eld as this minmizes the Euclidean distance,
e�ectively wasting a complete orbit. Hence, excluding such cases does not
in�uence the best selection of orbits. The optimal number of orbits for
di�erent number of sinks (up to 200) and for the di�erent approaches are
displayed in Table 5.3.

5.6.5. Distribution of Leftover Sinks

In our rules for the sink distribution we treat the sinks as real numbers.
Of course, they are integral and thus we simply use the following sink
distribution:
K1 =

⌊
2K

n(γn−γ+2)

⌋
; Ki = bK1 + γ(i− 1)K1c

To run the experiments we choose di�erent distributions of the sinks by
the above formula for di�ering γ. However the fraction 2K

n(nγ−γ+2) is not

an integer for every n. In this case we consider b 2K
n(nγ−γ+2)c and get an

distribution which consists of K ′ < K sinks. The remaining K −K ′ have
to be distributed in some fashion which approximates the real values of Ki

. Let L = K −
∑n
i=1Ki 6= 0 be the number of leftover sinks. We deal

with these leftover sinks simply by distributing them over the orbits, in a
greedy fashion, according to the goal of the respective approach. In the
MD case, we place one sink at a time in the orbit which currently exhibits
the maximal Euclidean distance, whereas in the EA case we place the sink
in the orbit which contains the cells with the largest area. Algorithm 5.2
illustrates this procedure.
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Algorithmus 5.2 Handling of leftover nodes for MD and EA.
Inputs: The number of sinks K, the number of orbit n, the network radius R and the

parameter γ =

{
1 for MD

2 for EA
.

Begin:

1. Compute K1 =
⌊

2K
n(γn−γ+2)

⌋
and

Ki = bK1 + γ(i− 1)K1c for i = 2n to 100
2. Compute the leftover nodes L = K −

∑n
i=1Ki

3. while(L 6= 0) do
3.1. if (γ = 1)

3.1.1. Find orbit j such that dj = max1≤i≤n di
3.1.2. Kj++ and L- -
end

3.2. if (γ = 2)
3.2.1. Find orbit j such that aj = max1≤i≤n ai
3.2.2. Kj++ and L- -
end

end

return Ki where i = 1, . . . , n such that K =
∑n
i=1Ki

5.7. Performance Evaluation

In discrete-event simulations, we evaluate the delay and the lifetime perfor-
mance of our heuristic framework by comparing it to three di�erent mobile
sink trajectories and two static sink placement strategies. We use the
DISCO network calculator and MICAz-based energy model as discussed in
Chapter 2.

5.7.1. Competitors

We have realized di�erent competitors to compare our heuristic with. Un-
fortunately, the �eld of multiple mobile sink for very large WSNs is barely
tapped so it was hard to �nd direct competitors. To create competitors
we generalized ideas from other (smaller scale) proposals ([82], [53], [92]).
The competitors are brie�y described in the following; some of them are
illustrated in Figure 5.7.1.

Random Walk Initially, sinks are placed uniformly random in the sensor
�eld. At the start of each epoch, the sinks randomly choose a direction
and step size (ensuring, however, that they do not leave the sensor �eld).
We use this competitor as a baseline and also because it has been discussed
in literature [28].
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Outer Periphery [82] remarks that, in the single sink case, a trajectory
along the periphery of the network optimizes the lifetime by balancing the
load distribution. We generalize this concept by moving each of our sinks
along the cell peripheries, where the cells are formed according to the MD
approach.

Following the Energy (FE) In this strategy, the sinks are placed ran-
domly over the network area for the �rst epoch. For the following epochs,
the K sensor nodes with the highest residual energy left are identi�ed and
the sinks move near to them. We use this one only as a competitor for
lifetime, as its delay peformance is very bad. It is a simple representative
of the group of state-aware trajectories (e.g. [92]).

K-Center Heuristic [53] presents a polynomial 2-approximation for the
NP-hard K-center optimization problem. The competitiveness of the al-
gorithm is illustrated by the result of [56] which shows that if there exists
an δ-approximation with δ < 2 this results in NP = P . The authors
use their algorithm on a fully connected weighted graph, nevertheless the
idea can be carried over to our graph. This is a competitor only for the
worst-case delay, as it performs badly with respect to lifetime due to being
static. It serves as a representative for algorithms based on graph-theoretic
abstractions and is expected to perform very well for delay due to its nice
theoretical properties.

Static MD This takes the same sink distribution as generated by our MD
heuristic, but the sinks are not moving. Instead we run the MD strategy
for a whole set of possible positions and choose the one, which has minimal
delay. This obviously bad lifetime competitor is included to show both, how
the lifetime of the network is increased by mobility as well as its negative
e�ect on delay.

5.7.2. Experimental Setup

Using discrete-event simulations, we evaluate the worst-case delay and
the lifetime performance of our heuristic framework. In the experiments,
nodes are uniformly distributed over a circular �eld with radius R. The
respective network radii are chosen such that always a node density of

1
100m2 is achieved. A 20m disc-based transmission range is used under a
shortest path routing for the sink trees. Token-bucket arrival curves and
rate-latency service curves are considered for SNC operations. In particular,
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Figure 5.7.1.: Competitors: (a) a random walk, (b) an outer periphery
trajectory, and (c) a static MD.

for the service curve we use a rate-latency function that corresponds to a
duty cycle of 1% and it takes 5ms time on duty with a 500ms cycle length
which results in a latency of 0.495 s1. The corresponding forwarding rate
becomes 2500 bps. Initially, the nodes are set to an initial battery level
of 0.1 joule. Packets of 100 bytes length are sent to the corresponding
sinks. Apart from static sinks, all others move synchronously to their next
position between epochs. The MD and EA methods use a movement
angle of θ = 10◦. To compute the energy consumption (Equation 2.6.3),
we use the following data based on [126, 7]. The current consumption is
8.5mA with−25 dBm for distances up to 12.5m, and 9.9mA for distances
between 12.5m and 23m with −20 dBm. For receiving a data packet, a
1 % duty cycle is considered with a current of 19.7mA. A constant voltage
of 3V is used. A transmission data rate of 250Kbps is used, which takes
ttx = 3.2ms for a 100 byte packet.
We analyze the following three scenarios: 1500 nodes with 15 sinks,

5000 nodes with 50 sinks, and 10000 nodes with 100 sinks. So, we keep
a constant node to sink ratio of 100 nodes/sink. For each scenario, we
analyze the energy consumption per epoch, the lifetime and the worst-case
delay. For all experiments, we performed 10 replications and present the
average results from these. For the large majority of results, we obtained
non-overlapping 95% con�dence intervals, so we do not show these in
most of the graphs for reasons of legibility. The static MD and the K-
center heuristic are static sink placements so that we compute the lifetime
based on the overall number of packets transmitted and translate it into an
equivalent number of epochs (using the results from the other methods).

1The values are calculated based on the TinyOS �les CC2420AckLpl.h and
CC2420AckLplP.nc.
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5.7.3. Worst-Case Delay Evaluation

Figure 5.7.2 compares the delay performance of the four mobile sinks and
two static sinks strategies. In all scenarios, the best delay performance is
achieved by the static MD, closely followed by our mobile sinks strategies
EA and MD. As already discussed in Section 5.1, there is a price to pay
for the prolonged lifetime by mobile sinks in terms of delay, yet as we see
here that price is rather low. EA and MD perform almost equally well
with a slight advantage for EA. More importantly, both of them achieve
roughly the same delay performance across the di�erent scenarios and
are thus scalable with respect to delay. For the outer periphery and the
random walk, the assessment is very di�erent: their delay performance
is much worse and also the delay increases with growing network size,
so they do not scale well with respect to delay. Somewhat surprisingly,
the K-center heuristic, which requires a high computational e�ort and
centralized information, is not doing particularly well and is actually slightly
outperformed by the mobile trajectories EA and MD, which indicates again
that their delay performance is very good.

5.7.4. Lifetime Evaluation

The simulation results for the lifetime performance of the competitors are
shown in Figure 5.7.3. The graph shows the total energy consumption
in the sensor �eld over the number of epochs, so the lengths of the lines
indicates the lifetime performance of the respective method. Looking over
all scenarios, MD turns out to be the clear winner with respect to lifetime.
EA basically achieves the same lifetime in the 1500-nodes scenario, but
cannot keep up with MD in the larger scenarios. All other competitors
perform rather poorly: the random walk is a complete failure with a life-
time of 1.5 epochs in the largest scenario; the FE strategy also performs
very bad and does not ful�l the hopes one could have in a state-aware
trajectory (admittedly, it is a simple strategy and more sophisticated state-
aware trajectories could be doing better); the outer periphery strategy is a
little bit better, but at the expense of a high overall energy consumption.
Interestingly, the static MD does not perform too badly, it outperforms FE
and the random walk, which shows that trajectory planning must be done
with care otherwise one could do even worse than a good static strategy.
On the other hand, we can see very clearly the lifetime prolongation e�ect
of using mobile sinks when comparing static MD with the MD sink tra-
jectory: for example, in the 1500-nodes scenario MD achieves 10.8 epochs
whereas static MD achieves only 4.6 epochs.
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Figure 5.7.2.: Delay bound comparison: (a) 1500 nodes and 15 sinks, (b)

5000 nodes and 50 sinks, and (c) 10000 nodes and 100 sinks.
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Figure 5.7.3.: Lifetime comparison: (a) 1500 nodes and 15 sinks, (b) 5000
nodes and 50 sinks, and (c) 10000 nodes and 100 sinks.
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5.7.5. Varying Step Sizes

From the previous experiments, we can clearly see that the orbital sink
trajectory is a promising heuristic for minimizing the worst-case delay and
maximizing the lifetime of large-scale WSNs. In this experiment, we now
investigate the e�ect of varying the step size of the orbital sink trajectory.
In particular, we investigate the e�ect of varying step sizes under the 2-
orbit model. Figure 5.7.4(a) and (b) show the lifetimes of the polar grid
trajectory for di�erent step sizes in a 200 node network with 10 sinks (here
(b) provides a zoom-in for an interesting range of (a)). The interpretation
of the x-axis is as follows: based on the center angle of an annular segment
θ2 = 2π

K2
, the di�erent step sizes are computed as θ2

p , where p represents
the value displayed on the x-axis; this means the x-axis runs from large
step sizes to very small ones. More speci�cally, the optimal value of K2 in
this experiment is 7 (out of 10 sinks) and thus θ2 = 2π

7 and the step size
is varied by letting p = 2k for k = 0, ..., 9.

From this experiment, we can see that the step size has a signi�cant
e�ect in prolonging the lifetime. In particular, it is neither good to move
too much nor too little, but there is a step size that optimizes the lifetime.
For comparison, we also show the performance of a static polar grid-based
sink placement, which basically provides the baseline lifetime performance.
Hence, this shows another time that sink mobility pays o�, but most if
the trajectory is designed carefully (in fact, random walk and equal sec-
torization performed worse than the static polar grid). A zoom-in for the
interesting range of p between 8 and 32, where the optimum step size lies
for this experiment, is shown in Figure 5.7.4(b). As can be observed, the
lifetime behavior is rather chaotic in this range, which hints at the di�culty
of obtaining a closed form for the optimal step size under the polar grid.

Varying step size does not di�er too much for the issue of minimizing
the maximum delay as presented in Figure 5.7.5. The �gure shows the
delay bound of 500 nodes with 10 sinks network under three scenarios: (1)
step size equivalent to the center angle 5 degree, (2) step size equivalent
to the center angle 12 degree, and (3) step size equivalent to the center
angle 16 degree. As shown in Figure 5.7.5, the delay performance is not
sensitive under varying step size and the result remains the same for higher
or lower step sizes.
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Figure 5.7.5.: Delay bounds under three scenarios of di�erent step sizes in
500 nodes with 10 sinks network.

5.7.6. Lifetime vs. Delay and Scalability

In this subsection, we wrap up the previous results by particularly looking at
the combined lifetime vs. delay performance as presented in Figure 5.7.6.
The x-axis represents the delay and the y-axis shows the corresponding
lifetime performance in terms of the number of epochs. The shape and
color of the symbols represents the di�erent strategies and the size of
the symbols encodes the scale of the experiment, i.e., the large symbols
represent the experiments with 100 sinks, while the medium-sized and
small symbols represent the experiments with 50 and 15 sinks, respectively.
By following the path from small to large symbols one can see, how the
strategies scale for larger WSNs. Clearly, the goal must be to stay within
the upper left quadrant of this graph. Only MD achieves this goal, EA
has a problem with respect to lifteime scalability. All other competitors do
not really o�er good lifetime-delay tradeo�s and are at best good in one
of them.
One may even become suspicious about MD for its scalability, because as

can be observed in Figure 5.7.6, there is a certain degradation with respect
to lifetime for it, too. However, the lifetime de�nition that we use here
(when the �rst node dies) somewhat looses its usefulness with an increasing
number of nodes, as it becomes more and more likely that some single node
is in an unfortunate position where its battery is drained much quicker than
for others. Therefore, we provide some more information on the �death�
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process of the nodes in the �eld when we continue network operation after
the �rst node died in Figure 5.7.7 (again the size of the symbols represents
the scale of the scenario). In particular, when we rede�ne lifetime as the
time until which 10% of the nodes have died then we see that MD scales
very well, i.e., it achieves almost the same lifetime in all three scenarios.
In comparison, EA still does not scale that well, though arguably it also
bene�ts from this rede�nition of the lifetime.
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5.8. Discussion

In this section, we want to discuss some relaxations of the assumptions in
our framework and how the geometric interpretation can still be helpful,
thereby pointing out directions for future work:

� what if the shape of the network �eld is not a circle?

While a circular shape network seems a strong assumption in our orbital
sink trajectory, a generalization of a circular shape is feasible for other
extreme shapes such as a very long rectangle. In this case, smaller distor-
tions (linear transformations) of the circular shape would result in ellipsoid
shapes (probably with segments of unequal size within one orbit), which
can still be dealt with a similarly distorted orbit model (mapping the po-
sition of the sinks by the same transformation to the new sensor �eld). A
change of the underlying distance norm would result in completely di�er-
ent shapes, we could think of a squared network area as a circle under the
maximum norm || · ||∞ (similarly one could change to the || · ||1-norm to
handle a rhombus-shaped sensor �eld).

� what if the nodes are not uniformly distributed?

In some networks, there might be clusters of high density and regions with
low density. Here more sinks are needed in the clusters, while the sparse
areas can be handled by less sinks, this could be achieved by altering the
distances the sinks move between the epochs in our orbit model. Slowing
the sinks down, when reaching the clusters would result in accumulating
sinks in that region and speeding them up again, when leaving the clusters,
moves them fast through the sparse areas.

� what if the nodes are non-homogenerous?

The assumption of node homogeneity may be relaxed by going to a three-
dimensional geometric interpretation of the original problem where the
third dimension could capture, e.g., nodes with (initially) higher battery
levels. Clearly, the problem will not become simpler, but based on the
good experience we made with the geometric interpretation of the under-
lying problem, we believe that this could be a winning strategy also for
such advanced problem settings.
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� what if the exact orbital sink trajectory is not feasible in the sensor
�eld?

In fact, the sinks' candidate locations along the orbits are not always fea-
sible in real world applications due to environmental disturbance and ob-
stacles. Under these situations, one may think the sinks' locations as one
of the nodes' locations near the prede�ned sink's location. Nevertheless,
the performance di�erences are not too large since the routing topology
will not change dramatically. Non-concentric, but still periodic (follow-
ing a closed circuit) strategies are imaginable, for example a star shaped
trajectory. As a generalization of the concentric class of strategies one
may hope for further improvement under the assumption of a successful
optimization. In fact, we have experimented with a speci�c (unoptimized)
star-shaped trajectory, yet it was inferior to the polar grid trajectory.

� what if the sinks' movement is not synchronized? How to make the
sinks move?

We de�ned the orbital sink trajectory following a slow mobility approach
(e.g., sinks move once a week). In general, sinks are not energy- and
resource-constrained. Under these conditions, synchronization should al-
ways be feasible by utlizing a synchronization protocol.

� How to achieve the shortest path routing from the node to the des-
ignated sink in each epoch?

Unter a discrete movement of sink (i.e., once a week), the shortest path
routing can be achieved easily. Since the trajectory is prede�ned, the sinks'
locations are already determined during the design phase. Therefore, each
node knows the location of the sink at a given time and can compute the
respective shortest path to its nearest sink. The routing path can be com-
puted after the deployment phase but before the operation phase of the
application. In fact, a more sophisticated but e�cient routing can also be
applied in the orbital sink trajectory.
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5.9. Conclusion

In this chapter, we have proposed a �exible heuristic framework to de-
sign the trajectories for multiple mobile sinks such that a good tradeo�
between a high network lifetime and a low information transfer delay can
be achieved in very large sensor networks. Due to its fundamental hard-
ness, we resorted to a geometric interpretation of the problem for which
we introduced and optimized orbital sink trajectory. The framework uses
an n-orbit model which is based on a geometric rationale that, in large
sensor networks, cell areas and Euclidean distances between nodes and
sinks are good proxy measures for lifetime and delay. Two instances of
the framework are derived: one which focuses on the minimization of the
maximal Euclidean distances (MD), and one which targets to equalize the
area assignment and takes distance minimization as a secondary goal (EA).
Both are compared with several competitors in detailed discrete-event sim-
ulations and show very good lifetime-delay tradeo�s. Especially, the MD
strategy shows a very scalable behavior for its lifetime and delay perfor-
mance when the number of nodes becomes large. In particular, in contrast
to all other methods it keeps up the delay and lifetime values of smaller
scenarios when scaled to larger scenarios under a constant node-to sink
ratio. More abstractly, we believe to have provided strong evidence that
the orbital sink trajectories provide for a natural scalability to very large
sensor networks, if designed carefully.
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6. Summary and Outlook

Recently, large-scale and time-sensitive WSN applications are more and
more demanding and, thus, scalability and delay bound minimization be-
come important design criteria. As long as sensor nodes are dependent
on the limited battery resource, energy-e�cient designs and algorithms
remain essential for lifetime maximization. Hence, we developed design
algorithms for controlling the information transfer delay and the total net-
work lifetime. The design algorithms are concerned with multiple static
and mobile sinks. By simulation, we showed that placing the sinks and
planning the trajectory carefully really pay o�.

In chapter 2, we surveyed related design problems in WSNs. A realistic
energy model and worst-case delay analysis methods are introduced.

In chapter 3, we studied the performance of polygon-based node place-
ment designs for large-scale WSNs under exact and disturbed placement.
Then we introduced and carefully evaluated several node placement strate-
gies for WSNs.

In chapter 4, large-scale and time-sensitive WSNs are designed using
multiple sinks. The goal is to �nd an optimal sink placement. Due to
the hardness of the original problem, heuristic approaches are taken into
account. Under di�erent assumptions, we introduced a GA-based and a
self-organized sink placement for large-scale and time-sensitive WSNs.

In chapter 5, the mobile sink approach is taken into account. We in-
troduced the orbital sink trajectory to simultaneously achieve delay and
lifetime goals. The main idea of orbital sink trajectory is that both, delay
and lifetime, bene�t from nodes being closer in terms of Euclidean distance
to their assigned sinks.
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6.1. Summary of Contributions

In summary, the following are major contributions of the dissertation:

� To the best of our knowledge, we are the �rst to tackle the sink
placement problem and the trajectory planning problem for multiple
sinks in very large WSNs under lifetime and delay goals.

� As static sink placements, we developed a near optimal heuristic
sink placement called genetic algorithm sink placement (GASP) and
a self-organized sink placement (SOSP) algorithm with lower compu-
tation and communication overhead for large-scale and time-sensitive
WSNs. How to �nd the set of candidate locations for sink place-
ment is also contributed by discretizing the original continuous search
space into a �nite search space based on the concept of regions of
indi�erence.

� As mobile sink trajectory, we derive a heuristic framework based on
an orbital model that keeps up its delay and lifetime performance in
very large WSNs as long as a constant node to sink ratio is retained.
For the 2-orbit model of the proposed heuristic framework, we pro-
vide a closed form of optimal distributing the sinks and sizing the
orbits.

� As node placement strategies, we especially studied semi-regular
tiling-based node placements and investigate their performance on
coverage, energy consumption, and worst-case delay. We also con-
tribute the concept of k-coverage map to check all possible coverage
areas which will be useful to analyze the relative frequency of exactly
k-covered points.

� By simulation, the proposed designs and algorithms are thoroughly
investigated and compared with alternative approaches inspired by
literature.
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6.2. Outlook

There is a growing interest from WSNs towards cyber physical systems
(CPSs) for various purposes. As CPSs are basically closed-loop systems
many WSN applications will have to operate under stringent timing require-
ments. If this requirement is not achieved, such time-sensitive applications
become unreliable and unusable. The design algorithms for controlling
the information transfer delay proposed in this dissertation are basically
well suited to CPSs. CPSs, however, is composed of di�erent physical
devices embedded with sensors which can be integrated into networks or
stand-alone devices. It makes more challenges in design problems due to
complex interactions among di�erent physical appliances, continuous dy-
namic network topology, ambiguities in all aspects of cyber and physical
systems, etc. Hence, a possible extension of this dissertation is controlling
the information transfer delay under the heterogeneity of WSNs designs
towards CPSs.
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A. Proofs of Equation 5.5.2

and 5.5.3

The following proofs show the correctness of Equations (5.5.2) and (5.5.3).

Lemma. A.1: For |AB|2 ≤ h, the center of the circumscribed circle of the
isosceles triangle 4ABO minimizes the maximum distance of the sector
ABO (refer Figure 5.5.1(a)).

Proof: Denote the center of the circumscribing circle by C, its radius
by d and the circle itself by Cd. Since |AB|2 ≤ h the minimum enclosing
circle is Cd. Since 4ABO is a subset of the sector, this means that the
minimum enclosing circle for the sector has at least radius d. Hence it
is su�cient to show that the sector lies inside the circle Cd. Again from
|AB|
2 ≤ h we know that C lies inside the triangle, so d ≤ R1. Obviously

C 6= A,B and by this even d < R1 holds. Denote now by ABO the arc
between A and B with its center in O. It is su�cient to show that any
point lying on this arc has distance not bigger than d to C. Denote by D
the intersection between the arc ABO and the line through O and C (see
Figure 5.5.1(a)). Then by the triangle-inequality (for the triangle 4ACO)
holds:

2d ≥ R1 = |OD| = |OC|+ |CD| = d+ |CD|

leading to:
d ≥ |CD|

Suppose now there would exist a point D′ on ABO with d < |CD′|. This
would only be possible if there exists a point D′′ on the arc ABO which
also lies on Cd. Together with A and B this point would be a third inter-
section point between the circles Cd and Or, leading to the equality of the
two circles, especially to d = R1, which is a contradiction to the already
established inequality d < R1. Hence all points of the arc, and by this the
whole sector, lie inside the circle Cd .

165



A. Proofs of Equation 5.5.2 and 5.5.3

Lemma. A.2: For |AB|2 ≤ x, the center of the circumscribed circle of
the isosceles trapezoid ABDE minimizes the maximum distance of the
annular segment ABDE (refer Figure 5.5.1(b)).

Proof: As in the previous proof we know, by the assumption that
|AB|
2 ≤ x, that the circumscribing circle Cd of the trapezoid is the mini-

mum enclosing circle of the trapezoid and its center lies in the trapezoid.
We proceed in the same way as in the previous proof, however here it is
not as easy to see that the radius d of the minimum enclosing circle of
the trapezoid is smaller than R. For that we denote by F the intersection
of the angle bisector of θ2 with the line |DE| (see Figure 5.5.1(b)). The
triangle 4AFO has its largest angle at F , which is for R1 < R larger than
π
2 hence:

R = |OA| > |AF |

A similar argument leads to |AF | > |DF | = |EF |, hence we can �nd an
enclosing circle for the trapezoid around F with radius |AF | < R and by
this the minimum enclosing circle also has a radius d smaller than R. Now
denote again by ABO the arc between A and B with center in O and by
G the intersection between this arc and the line through O and C, where
C denotes the center of the minimum enclosing circle. Then again by the
triangle inequality:

|OC|+ |CA| = |OC|+ d ≥ R = |OC|+ |CG|

hence:
d ≥ |CG|

By the same contradiction as in the previous proof, one can show that the
complete arc ABO lies inside the minimum enclosing circle of the trapezoid.

Lemma. A.3: For |AB|2 ≥ h, the line segment AB of the triangle 4ABO
is the diameter of the minimum enclosing circle (refer Figure 5.5.2(a)).

Proof: In the triangle 4ACO we have at C a right angle, hence: d <
R1. Denote again by D the intersection of the arc ABO and the line
through O and C, then by the triangle inequality we have:

|OD| = |OC|+ |CD| ≤ |OC|+ |CA|
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Knowing that |CD| ≤ |CA| = d we can construct the same contradiction
as in the previous proofs to see that the whole arc ABO lies inside Cd.
By this we know that Cd is an enclosing circle. Since |AB| = 2d we also
know that any enclosing circle has at least radius d, thus Cd is a minimum
enclosing circle.

Lemma. A.4: For |AB|2 ≥ x, the line segment AB of the trapezoid ABDE
is the diameter of the minimum enclosing circle (refer Figure 5.5.2(b)).

Proof: The proof works like the previous one replacing R1 by R and G
taking the role of D.
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B. Proof of Theorem 5.3

Lemma. B.1: Let K and n be such that 3n(nγ − γ + 2) ≤ 2K, then di
is increasing in i for all i ≥ 2.

Proof. Let K sinks be given and let n ≥ 1 such that 3(nγ−γ+2)n ≤ 2K.
Then de�ne as before:

Ri = i
R

n

For the sink distribution we have to think about, what happens, when the
total number of sinks is not such a multiple of K1 that Equation (5.6.1)
is full�lled. We start by de�ning

K1 =

⌊
2K

n(γn− γ + 2)

⌋
and Ki = bK1 + γ(i− 1)K1c

and denote the rest of the sinks by L :

L = K −
n∑
i=1

Ki

Lemma. B.2: The chosen distribution ful�lls:∑
i

Ki = K

Proof. We know that:

∑
i

Ki =
∑
i

iK1 + li = L+
∑
i

iK1 = K

Lemma. B.3: It holds K1 ≥ 3
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Proof. Since 3(γn− γ + 2)n ≤ 2K we have 2K
n(γn−γ+2) ≥ 3 , from which

follows b 2K
n(γn−γ+2)c ≥ 3 .

For calculating the maximal distance d(n) in the polar grid, we would
need to calculate the distances in the orbits di(n) . To calculate these dis-
tances we need to know, if we are considering "short" trapezoids or "long"
trapezoids. The following theorem shows, that we have to consider only
"short" trapezoids in all orbits, which makes the upfollowing calculations
much easier.

Theorem. B.1: For all orbits holds that the resulting trapezoids are short,
i.e.

|AB|
2
≤ x (B.0.1)

Proof. Fix some i and assume �rst that L = 0 , then

|AB|
2

= i
R

n
sin(

π

(γi− γ + 1)K1
)

and

x2 = R2
i sin2(

π

(γi− γ + 1)K1
)− 2RiRi−1 sin2(

π

(γi− γ + 1)K1
) +R2

i−1

Hence (B.0.1) is equivalent to the condition that:

2RiRi−1 sin2(
π

(γi− γ + 1)K1
) ≤ R2

i−1

Which is, by inserting values for the radii, equivalent to the condition:

i− 1 ≥ 2i sin2(
π

(γi− γ + 1)K1
)

1 ≤ i(1− 2 sin2(
π

(γi− γ + 1)K1
) = i cos(

2π

(γi− γ + 1)K1
)

This is ful�lled for all i ≥ 2 and all K1 ≥ 3 , γ ∈ [1, 2] . To give
the maximal distance in the whole polar grid, it su�ces to calculate the
maximal distance in the n -th orbit, if L = 0 :

Theorem. B.2: di(n) is an increasing function in i ≥ 2 for all γ ∈ [1, 2] .
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Proof. We know that:

di(n) =
R(1 + 4(i− 1)i cos2(π

2
− π

(γi−γ+1)K1
))

1
2

2n sin(π
2
− π

(γi−γ+1)K1
)

=
R

n
(

1

4 sin2(π
2
− π

(γi−γ+1)K1
)
+ (i− 1)i cot2(

π

2
− π

(γi− γ + 1)K1
))

1
2

Since di(n) is positive, it is su�cient to show that (di(n))2 has positive
derivative, which is given by:

Di(d
2
i (n)) =

− cos(π
2
− π

(γi−γ+1)K1
) sin(π

2
− π

(γi−γ+1)K1
)( γπ

(γi−γ+1)2K1
)

2 sin4(π
2
− π

(γi−γ+1)K1
)

+
(4i− 2) cos2(π

2
− π

(γi−γ+1)K1
) sin2(π

2
− π

(γi−γ+1)K1
)

2 sin4(π
2
− π

(γi−γ+1)K1
)

−
4(i2 − i) cos(π

2
− π

(γi−γ+1)K1
) sin2(π

2
− π

(γi−γ+1)K1
)( γπ

(γi−γ+1)2K1
)

2 sin4(π
2
− π

(γi−γ+1)K1
)

Since the denominator is larger zero for all i ≥ 2 , K1 ≥ 3 and γ ∈ [1, 2]
we can concentrate on the numerator. Note that we can factor out:

cos(
π

2
−

π

(γi− γ + 1)K1
) sin(

π

2
−

π

(γi− γ + 1)K1
) =

1

2
sin(π−

2π

(γi− γ + 1)K1
) ≥ 0

Hence we have to prove:

(2i−1) sin(π−
2π

(γi− γ + 1)K1
) ≥

γπ

(γi− γ + 1)2K1
(4(i2−i) sin(

π

2
−

π

(γi− γ + 1)K1
)+1)

(B.0.2)
We start with the left side of (B.0.2). Using Taylor-Expansion around π
we have:

(2i−1) sin(π−
2π

(γi− γ + 1)K1
) ≥ (2i−1)

(
2π

(γi− γ + 1)K1
− (

2π

(γi− γ + 1)K1
)4

1

4!

)
the right side of (B.0.2) will be also treated by a Taylor-Expansion around
π :

γπ

(γi− γ + 1)2K1
(4(i2 − i) sin(

π

2
− π

(γi− γ + 1)K1
) + 1)

≤ γπ

(γi− γ + 1)2K1
(4(i2 − i)(

π

(γi− γ + 1)K1
+

π3

3!(γi− γ + 1)3K3
1

) + 1)

Comparing these two expressions we need to show:

(2i− 1)(2(γi− γ + 1)− π3

3(γi− γ + 1)2K3
1

)

≥4γ(i2 − i)(
π

(γi− γ + 1)K1
+

π3

3!(γi− γ + 1)3K3
1

) + γ
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B. Proof of Theorem 5.3

Next we will eliminate the parameter γ by noting that γ ∈ [1, 2] and
hence (γi − γ + 1) ∈ [i, 2i − 1] . The expressions (3) and (4) can hence
be bounded and we can simplify the inequality further:

(2i− 1)(2i− π3

3i2K3
1

≥ 8(i2 − i)(
π

iK1
+

π3

3!i3K3
1

) + 2

Multiplying this by 3i2K3
1 the inequality can be rewritten into a multino-

mial in K1 and i :

12i4K3
1 − i3(6K3

1 + 24πK2
1 ) + i2(24πK2

16K
3
1 )− 6iπ3 + 5π3 ≥ 0

With standard methods of analysis one can show, that this inequality is
ful�lled for each K1 ≥ 3 and i ≥ 2 (see also the next part). Hence (B.0.2)
is ful�lled for all γ ∈ [1, 2] and by this the derivative Di(d

2
i (n)) is positive.

Then, di can be given by:

di =
R

n

( 1

4 sin2(π
2
− π

(γi−γ+1)K1
)
+

(i− 1)i cot2(
π

2
-

π

(γi− γ + 1)K1
)
)1/2

.

Since di is positive, it is su�cient to show that d2i has a positive derivative,
after factoring out
cos(π2 −

π
(γi−γ+1)K1

) sin(π2 −
π

(γi−γ+1)K1
) ≥ 0, its numerator (the de-

nominator is positive) can be given by

(2i− 1) sin
(
π − 2π

(γi−γ+1)K1

)
− πγ

(γi−γ+1)2K1

(
4(i2 − i) sin(π

2
− π

(γi−γ+1)K1
) + 1

)
.

using a Taylor-Expansion around π for the �rst sum and using that sin(x) ≤
1 for all x, we know that the above expression is larger than zero, if

2π3

3i2K3
1

≤ 1

which is true for all i ≥ 2 andK1 ≥ 3, which is the case by our assumptions
on K and n.
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C. The k-Center Heuristic

The k -Center heuristic of Hochbaum and Shmoys will be presented and
modi�ed, such that it �ts our needs. The k -Center heuristic is at its
core a bisection search for the optimal value for the paramter �mid�. The
algorithm chooses with the help of this parameter a set of sinks, if this
set has less than K or just K elements, the parameter �mid� must be
decreased (because we can assume to achieve a better maximal distance,
if we can place more sinks), if the set is larger than K we have to increase
�mid�, since we are using too much sinks. The original algorithm works on
a fully connected, edge-weighted graph, satisfying the triangle-inequality.
Hochbaum and Shmoys algorithm is a 2-approximation, which is best pos-
sible, in the sense that �nding a δ -approximation wit polynomial runtime
and δ < 2 leads to NP = P . Before we explain the algorithm, we need
some notations. We talk of G = (V,E) being a complete graph with edge
weights w the edges are sorted by their weight, this means:

w(ei) ≤ w(ej) ∀ i < j ≤ m = |E|

The graph is stored in adjacency-list-form. This means for each vertex
v the adjacent vertices are listed in increasing edge weight order. We need
two more notations Gi = (V,Ei) , where Ei = {e1, . . . , ei} and ADJi(x)
which is the adjacency list of x in Gi . Next we will present the algorithm
as it can be found in the paper of Hochbaum and Shmoys:
To adapt this algorithm to our purpose we made a few changes. At

�rst our sensor network is not fully connected and on the other side links
have no weights. we solve these two problems by using the euclidean dis-
tances between the nodes as link weight and assume the network to be
fully connected. Further we are not operating an a complete list of edges,
instead each node has its own list, which again contains the neighbours
of the node in the order of increasing edge-weights. for this we denote
by n(v) = (xv,1, xv,2, . . . , xv,N ) the vector of neighbours of v and by
ni(v) = (xv,1, xv,2, . . . , xv,i) the �rst i neighbours of v . Watch out that
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C. The k-Center Heuristic

ni(v) 6= ADJi(v) , in the �rst vector we have pruned the list of v to
i neighbours. In the second vector we have pruned the complete set of
edges to Ei and then take all neighbours of v which are left. A second
change to the original algorithm is, that we are not deleting the neighbours
of the neighbours of v from the set T . Instead we are just deleting the
neighbours of v , which leads to less coordination between the nodes. The
algorithm looks then like Algorithm C.2:

Algorithmus C.1 The k-center heuristic.

Begin:
low:= 1;
high:= m;
if k =| V |
S = V ;
end
while high > low + 1 do

mid:= bhigh+ low
2 c

S := ∅;
T := V ;
while ∃x ∈ T do
S := S ∪ {x};
for v ∈ ADJmid(x) do
T := T −ADJmid(v)− {v};

end
end
if | S |6 k
high := mid;
S′ := S;
end
if | S |> k
low := mid;
end

end
end
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Algorithmus C.2 The k-center heuristic for WSN.

Begin:
low:= 1;
high:= N ;
if k =| V |
S = V ;
end
while high > low + 1 do

mid:= bhigh+ low
2 c

S := ∅;
T := V ;
while ∃x ∈ T do
S := S ∪ {x};
T := T − nmid(x);

First we have to convert the vector to a set at this line.
The set is built simply by collecting all entries of the vector.

end
if | S |6 k
high := mid;
S′ := S;
end
if | S |> k
low := mid;
end

end
end

If the algorithm outputs a set of sinks which has less than K elements,
we place the di�erence of sinks randomly over the network. Note that
as a result of this sink placement, we can bound the maximal euclidean
distance from any node to the nearest sink by maxv∈V {xv,mid}.
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