
1

Towards Unified Tool Support for
Real-time Calculus & Deterministic Network Calculus

Philipp Schon and Steffen Bondorf
Distributed Computer Systems (DISCO) Lab,

University of Kaiserslautern, Germany
email: {schon,bondorf}@cs.uni-kl.de

Abstract—Real-Time Calculus (RTC) and Deterministic Net-
work Calculus (DNC) both provide the tooling to derive worst-
case performance bounds for characteristics of distributed and
networked systems: nodal backlog and communication delay. In
fact, both were derived from a common basis, yet, their respective
evolution let them diverge in various aspects. These are also
reflected in the strengths of current, separate tools for RTC and
DNC. In this paper, we investigate a potential unification of their
tool support. To that end, we provide insights on similarities and
differences, suggestions to exploit and overcome them, as well as
a benchmark showing first benefits of a unified tool.

I. APPLICATION DOMAIN & CHALLENGE

Knowledge about rutime performance is central to the
operation as well as the certification of systems with real-time
constraints. For formal verification, worst-case analyses are
applied. These guarantee to deterministically bound the poten-
tial worst-case behavior of a system w.r.t. certain performance
metrics. In distributed computing and communication systems,
these are foremost the buffer demand of system components
and worst-case execution or traversal times, i.e., delay. Real-
Time Calculus (RTC) [1] and Deterministic Network Calculus
(DNC) [2] are two versatile methodologies that can compute
such bounds. They both employ envelope functions that de-
terministically bound system behavior, i.e., worst-case service
offerings and task or data arrivals, as their principal model.
These so-called curves have been accompanied with opera-
tions. They manipulate curves to compute the aforementioned
worst-case performance bounds [2], [3].

Verification of worst-case performance measures becomes
ever more important for industries like avionics. For instance,
generations of in-cabin network designs by Airbus, formerly
EADS, have been analyzed with RTC (Heterogeneous Com-
munications System [4]) and DNC (AFDX data networks [5]).
Yet, these efforts look rather distinct due to the calculi’s differ-
ent analysis approaches. We illustrate them on the prime freely
available tools: the RTC toolbox [6] and the DiscoDNC [7].

The RTC toolbox aims at modular performance analysis. Its
standard way of usage is via its Matlab frontend. It provides an
abstraction of the calculus operations to components such as
the Greedy Processing Component (GPC). These are crossed
by the resources considered in the analysis. When crossing a
GPC, available service becomes left-over service to be used by
a subsequent component and data arrival constraints become
data output constraints to be fed into another component. In

This work is supported by a Carl Zeiss Foundation grant.

fact, the analysis frontend thus requires to provide the order of
calculus operations by interconnecting components correctly.

The DiscoDNC [7], in contrast, automated the derivation
of the order of the calculus’ operations. It takes a network
model consisting of servers that is crossed by data flows –
both deterministically modeled with service curves and arrival
curves. The order of operations to apply to the curves is then
derived by the DiscoDNC. The tool offers alternative deriva-
tions that consider different analysis principles. Depending on
the analyzed network size, they can vastly increase the quality
of end-to-end delay bounds as well as analysis run times [8].

In this paper, we investigate a potential unification of tool
support for RTC and DNC.

II. MOTIVATION

In the previous section, we have seen that RTC and DNC
have fundamental similarities as well as defining differences.
Our working hypothesis states that there are three basic parts
of each RTC and DNC tool:

1) the curve backend,
2) the algebraic calculus operations, and
3) the analysis framework (e.g., components or networks).

In theory, a specific part should be exchangeable with the
implementation provided by the respective other tool. Then,
a unified tool can be composed to provide the strengths of the
RTC toolbox and the DiscoDNC on demand or simultaneously.
Moreover, work regarding the performance of executing the
analysis itself matured in RTC and DNC [9], [10]. It could
thus immediately improve both with unified tool support.

In this paper, we investigate practical aspects that might
inhibit potential to unify RTC and DNC tools. We initially
focus on part 1) at the very basis of all tools: the curve
implementation. Both, the RTC toolbox and the DiscoDNC
provide a Java implementation of curves, yet, degrees of free-
dom already result in crucial differences and incompatibilities,
as we will show later. As it turns out, isolating this part and
swapping it out is not a simple task. Also note, that among
these tools only the DiscoDNC is open-source software.

Nonetheless, a unification is worthwhile. The DiscoDNC
only implements support for aperiodic, ultimately affine
curves [11] while the RTC toolbox can operate on more com-
plex curves as well, e.g., staircase functions with a periodic
tail. Thus, as a proof of concepts for the benefits of a unified
tool, we aim to integrate the RTC toolbox’s curve backend in
the automated network analyses of the DiscoDNC.



Fig. 1: Structure of the configurable curve backend for the DiscoDNC. The curve factory (upper left side) handles the creation
of RTC or DNC curves according the tool’s configuration. A hierarchy of interfaces (labeled by circled I) determines the curve
shape (ultimative affine, *ultAffine, [11]) and their semantic (ArrivalCurve, ServiceCurve, MaxServiceCurve).
The interfaces are implemented by the DiscoDNC as well as wrappers classes for RTC toolbox (labeled by circled C).

III. PROBLEM STATEMENT

A. Interfacing Functionality of the Curve Classes

We base our work on the latest versions the tools: RTC
toolbox version 1.2.beta.100 and the DiscoDNC v2.3. These
are already modularized according the three basic parts iden-
tified in the previous section. Each tool provides a class to
create and manipulate piece-wise linear curves. Therefore, the
algebraic calculus operations building on the curve classes
should, in principle, be able to operate with either imple-
mentation. However, there is no common interface for curves.
Detailed background regarding classification of curves as well
as closure of algebraic operations applied to curves from the
presented classes can be found in [11]. Yet, the provided
functionality regarding the manipulation of curves differs sig-
nificantly between the RTC toolbox and the DiscoDNC. This
is a result of the different classes of curves they implement
as well as the calculus operations applied to them. I.e., there
is actually an interdependency between the two fundamental
parts 1) and 2) to overcome. Unfortunately, none of the tools
offers a superset of the functionality required by all operator
implementations.

B. Continuity of Curves

As we aim at integration of the RTC toolbox’s curve
backend into the DiscoDNC, we investigated the required but
missing functionality from its point of view. These features
are almost exclusively simple queries for curve properties. Yet,
there is one significant exception: In contrast to the DiscoDNC,
the RTC toolbox does not explicitly store information about
continuity. I.e., there might be spots defined by two linear
segments, at the very end of the support of a first segment and
the start of the support of an immediately following, second
segment. This mostly concerns the staircase curves, yet, also
the token bucket curve used to represent shaped arrivals:

Arrival Curve γr,b(t) =

{
0 t ≤ 0

b+ r · t otherwise

where b denotes the maximum burstiness and r is the maxi-
mum arrival rate of a flow or an event stream. According to the
definition’s case distinction, any γr,b(t) curve is constructed
from two linear segments. The second segment’s support is
(0,∞) and the first segment’s support is (∞, 0], yet, arrivals
for times t < 0 are not relevant to the analysis and thus not
stored. The DiscoDNC’s operations depend on explicit label-
ing of continuity where the curve’s defining segment changes.
In conformity with the DNC literature [3], we decided to
assume left-continuity in case there is no continuity label.

IV. PROPOSED APPROACH AND PRELIMINARY RESULTS

We implemented the following additions and adaptations in
order to be able to swap the curve backend of the DiscoDNC:

• Interface definitions
• Wrapper classes for the RTC toolbox
• Factory pattern for curve creation

The resulting code structure is depicted in Fig. 1. It allows for
the first comparative evaluation of both curve implementation
and substantiates the feasibility of our approach.

A. Interface Definitions and Wrapper Classes

We focused on the curves that can be properly handled by
the DiscoDNC operations, i.e., piece-wise linear, ultimately
affine curves (abbreviated ultAffine). The new interface is
thus called CurveUltAffine and any interface or class
integrating RTC toolbox functionality is suffixed accordingly
in order to reflect this restriction (see Fig. 1).

In detail, we implemented interfaces that define all relevant
curve manipulations and mutuator methods needed by the
DiscoDNC operations. Then, we adapted the DiscoDNC’s
parts 2) and 3), operations and analyses, to work on objects
implementing these interfaces. Thus, we achieved the decou-
pling of parts as envisioned in Section II. Completing this
approach, we implemented interfaces for the specific curves
of RTC and DNC (ArrivalCurve, ServiceCurve, and
MaxServiceCurve derived from generic Curve) as well as
the linear segments that define a curve (LinearSegment).

2



As the RTC toolbox is not open source, we were not able
to implement our newly defined interfaces in it. Instead, we
investigated the possibility to integrate closed-source imple-
mentations by wrapper classes. Wrappers for all curve classes
as well as the linear segments class provide proxy functions
calling the actual functions of the RTC toolbox API. The
RTC toolbox has a single curve class that all wrappers for
use in the DiscoDNC map to. I.e., we can also adjust such
specific differences of RTC and DNC tool implementations.
In the current state of our work, we also block access to the
RTC toolbox’s complex curve constructors because wrappers
only implement the *ultAffine interfaces. Moreover, these
wrappers handle the implicit left-continuity and the problems
arising from it. E.g., the token bucket curve’s spot in the origin
is problematic as curves are supposed to be defined for positive
reals only. All this adds complexity to the code path using the
RTC toolbox backend. Therefore, we benchmark performance
of both curve backends at the end of this section.

B. The Curve Factory
Our goal was to provide a flexible solution to switch

between curve backends by setting a configuration flag. To
do so, we followed the factory method pattern that allows
to create objects without specifying the exact class. I.e.,
the factory checks a global configuration flag and defers
instantiation of objects to the according factory class for either
the RTC toolbox or the DiscoDNC (see Fig. 1, upper left part).
Each curve object’s type is one of the *Curve interfaces the
remaining parts of the DiscoDNC were adapted to work with.

As a first result, we can report that all the DiscoDNC’s func-
tional tests succeed with both curve backends – RTC toolbox
and DiscoDNC. This already shows that we can overcome sig-
nificant differences with sophisticated wrapper classes. Their
impact on performance will be investigated next.

C. A First Benchmark
For the performance benchmark of both curve implemen-

tations, we used the test networks provided in [8]. Due to
their sizes, it becomes impractical to model the proceeding of
the analysis by manually defining and connecting components.
Instead, for each flow in each network, the DiscoDNC derives
the end-to-end delay bound with all three analyses automated
by it: Total Flow Analysis (TFA), Separated Flow Analysis
(SFA), and Pay Multiplexing Only Once (PMOO). As in the
literature [8], we measured the run time of computations on a
dedicated server to ensure reproducibility of results. The entire
network analysis run times are shown in Fig. 2.

Run times of both backends scale similarly with the net-
work size. However, the RTC toolbox’s backend achieves
visibly better run times in larger networks that demand more
curve manipulations. This comes to a surprise as the RTC
is accessed via the performance-degrading wrappers whereas
we directly implemented the interfaces in the DiscoDNC.
Moreover, the DiscoDNC’s curve class is specialized to the
aperiodic, ultimately affine curves used in this benchmark. The
RTC toolbox is not. Its storage for linear segments as well as
their manipulation mapped to by the wrapper are designed to
work with more general classes of curves. Thus, we assume
its code to be more complex as well.

Network size [nodes]

R
un

 ti
m

e 
[m

in
ut

es
]

20 40 60 80 100 120 140 160 180 200 220 240 260

0
60

12
0

18
0

24
0

30
0

● ● ● ● ●
● ● ●

●

●

●

●

●

●

Curve Backend

DNC
RTC

Fig. 2: Run time comparison of the curve backends analyzing
networks given in [8]. While the difference is negligible for
networks up to 100 nodes, better performance of the RTC
toolbox curve backend becomes visible in larger networks.

V. ENVISIONED SOLUTION

In this paper, we could demonstrate feasibility and benefits
of our unification approach. As future work, we will define
interfaces for the remaining classes of curves defined in [11].
Yet, we could already achieve a first goal. The RTC toolbox’s
analysis framework usually sums up component-local delays
to an end-to-end delay. This is comparable with DNC’s TFA
procedure that, however, has been superseded by the end-to-
end analyses SFA and PMOO. Hence, we also made the first
step towards using these analyses with RTC toolbox curves.

Moreover, we want to define the interface between the
algebraic operations of part 2) and the analyses frameworks of
part 3) of the tools. Then, more parts can become exchange-
able. Thus, we hope to be able to create a flexible unified
tool that provides functionality not attainable today, foremost,
an automated DiscoDNC analysis of a network modeled by
periodic RTC toolbox curves not part of the DiscoDNC. This
analysis has the potential to yield the most accurate results
with fastest analysis run times [9], [10].

REFERENCES

[1] L. Thiele, S. Chakraborty, and M. Naedele, “Real-Time Calculus for
Scheduling Hard Real-Time Systems,” in Proc. ISCAS, March 2000.

[2] R. L. Cruz, “A Calculus for Network Delay. Part I: Network Elements
in Isolation and Part II: Network Analysis,” IEEE Transactions on
Information Theory, vol. 37, no. 1, pp. 114–141, January 1991.

[3] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer, 2001.

[4] U. Suppiger, S. Perathoner, K. Lampka, and L. Thiele, “Modular
performance analysis of large-scale distributed embedded systems: An
industrial case study,” ETH Zurich, Tech. Rep. 330, Nov 2010.

[5] J. Grieu, “Analyse et évaluation de techniques de commutation ethernet
pour l’interconnexion des systèmes avioniques,” Ph.D. dissertation,
INPT, 2004.

[6] E. Wandeler and L. Thiele, “Real-Time Calculus (RTC) Toolbox,”
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[7] S. Bondorf and J. B. Schmitt, “The DiscoDNC v2 – A Comprehensive
Tool for Deterministic Network Calculus,” in Proc. ValueTools, 2014.

[8] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of
deterministic network calculus – design and evaluation of an accurate
and fast analysis,” in Proc. ACM SIGMETRICS, 2017.

[9] K. Lampka, S. Bondorf, and J. B. Schmitt, “Achieving efficiency without
sacrificing model accuracy: Network calculus on compact domains,” in
Proc. IEEE MASCOTS, 2016.

[10] K. Lampka, S. Bondorf, J. B. Schmitt, N. Guan, and W. Yi, “Generalized
finitary Real-Time calculus,” in Proc. IEEE INFOCOM, 2017.

[11] A. Bouillard and E. Thierry, “An Algorithmic Toolbox for Network
Calculus,” JDEDS, 2008.

3


