Short Paper: Analyzing FIFO-Multiplexing Tandems
with Network Calculus and a Tailored Grid Search

Alexander Scheffler, Steffen Bondorf

Distributed and Networked Systems
Ruhr University Bochum, Germany

Abstract—Safety-critical applications are increasingly deployed
on shared networks. Among the features of current standards,
there is one prominent, common characteristic: At queuing
locations, different applications’ traffic flows multiplex in a First-
In First-Out (FIFO) fashion. The Network Calculus framework
provides several FIFO analyses for computing a bound on the
end-to-end delay of a data flow. However, tracing FIFO relations
increases the computational cost and an accurate analysis is
typically a slow one. Therefore, we propose a two-step heuristic
in this paper. We devise a new, fast analysis to rank alternative
tandem designs before a more costly analysis is applied to the
top-ranked ones. Our new analysis employs a tailored grid search
to resolve the FIFO effects between flows. Numerical evaluations
show that we create a ranking that is very close to the one by
the accurate yet slower FIFO analysis we base our work on.

I. INTRODUCTION

In this paper, we use Network Calculus (NC) for the
derivation of bounds on a system design’s end-to-end delay.
In general, the NC approach is able to compute bounds if the
network is modeled by curves. More precisely, each flow’s
data has to be upper bounded by an arrival curve « and the
forwarding service of a server has to be lower bounded by a
service curve (3, both non-decreasing and zero in the origin
(see [1]] for details). As service is provided to all the data
queued at a server, a service curve is “shared” by the aggregate
of flows crossing the server. To compute an end-to-end delay
bound of a particular flow, the flow of interest (foi), its service
share needs to be computed, subject to the multiplexing and
queueing discipline. The NC First-In First-Out (FIFO) analysis
is enabled by this left-over service curve theorem [2]:

Theorem 1. Let server S offer service curve 3. Assume flows
foi and fo with arrival curves ayy and oo cross S. Assuming
FIFO multiplexing, the left-over service curve for foi is

h () = [B(t) — az(t — 0)]T - 11450y

with [g(2)]" = supg<.<, 9(2), the indicator function 1{c,nay,
and the free FIFO parameter 6 € R,

In some of our examples we abbreviate the above equation
by 8% = B&gas where we might add an index to the different
Os that arise from “subtracting” cross-flows.

Per application of this theorem, an open parameter 6 > 0
is introduced and needs to be set, which will result in a 8-
specific left-over service curve. Deciding on how to set this
value remains a challenging task since this local decision has
an influence on the global, i.e., end-to-end, delay bound of

Jens Schmitt

Distributed Computer Systems (DISCO) Lab
TU Kaiserslautern, Germany

110

3
8

delay bound

Figure 1. The grid of delay bounds for settings of © = (61, 62) in a 3-server
nested tandem with servers {S1, S2, S3}, the foi crossing S; to S3 and two
crossflows: f1 from Sa2 to S3 and f2 on Ss (Source: [3]], CC BY-SA).

a flow. Most notably, a method called Least Upper Delay
Bound (LUDB) [4] derives all fs and transforms the challenge
to set them into solving several Linear Programs (LPs). We
have implemented the LUDB analysis for feedforward net-
works (LUDB-FF) in the NetworkCalculus.org Deterministic
Network Calculator (NCorg DNC) [5]. Latest work [3] showed
that 95% of the feedforward analysis effort is in solving the
LPs, previous work using a tandem-only tool had observed
a share of 85% [6]. More importantly, LUDB is dissected
in [3]] such that finding the fs can be achieved with a different
method — namely search methods. While [3]] provides a so-
phisticated solution that aims at rivaling LUDB delay bounds
while being faster, we take a different approach here: We aim
at being fast and to (mostly) preserve the relation ({<, =, >})
between delay bounds for any two analyzed tandems (the basic
unit of operation of LUDB). To this end, we instantiate the
framework established in [3] with a different search method,
a grid search (GS) instead of a directed search.

Sampling all combinations of sensible values for all s
basically puts a grid over the problem, see Figure [T} In this
paper, we construct a GS for setting the fs with limited number
of grid points. While this leads to inaccurate delay bounds,
our GS analysis is fast. More importantly, when used to rank
design alternatives, our GS will create a ranking that is very
close to the one LUDB-FF creates. We can thus devise a new
two-step approach consisting of a fast ranking that discards
inferior design alternatives early and is then followed by a
more accurate but slower analysis of the best-ranked designs.

II. FINDING THE NC FIFO PARAMETERS:
A GRID SEARCH ANALYSIS

This section presents our novel grid search analysis, short
GS. We present the method in the context of so-called nested
tandems, i.e., servers that can be represented in a line for which
every pair of flows are either completely included in each
other or have disjoint paths. For example, Figure [2] depicts a
nested tandem. For good performance bounds it is crucial to
apply the Pay Multiplexing Only Once (PMOO) principle [7]
which — for nested tandems — can be briefly summarized
as “concatenation before subtraction”, i.e., apply min-plus
convolution (51 ®fF2)(t) = Oi<1;f<t{51(t—s)+ﬁ2(s)} to service

curves f31, B2 before Theorefn_m However, the principle can
only be achieved for nested tandems. Note that any non-nested
tandem needs to be transformed into nested tandems. For
simplicity, we focus on the latter in the following.

f; ng' f, TT
‘ y ‘[y ‘ f ¥

NN DN

Figure 2. A tandem with 3 servers (1,2, 3) and 3 crossflows f1, f2, f3 that
interfere with the foi in a nested pattern, in short: a nested tandem (Source:
[3], CC BY-SA).

With regard to the exemplary nested tandem in Figure [2
“concatenation before subtraction” can be achieved by the
following computations:

o Left-over service for flow fs: B";" = (3

o Left-over service for flow f3: B{;’ = B2 ® (B3 ©p, 2)

o Left-over service for flow fi: 5]&? =0
and finally by combining these partial curves to

L0 = (B1 ©6, 1) @ [(B2 @ (B3 Ca, 2)) Coy 3]

which is the left-over service curve for the foi.

This order of operations can be conveniently represented
with a nesting tree [4] (see Figure [3). There, the leaf-nodes
represent the servers (with respective service curves) and each
other node represents a certain crossflow (with its respective
left-over curve) except the root which holds the foi. A flow-
node f; is a child of a flow-node f, iff Path(f;) C Path(f,)
and B fi. # fp, f; with Path(f;) C Path(f) C Path(f,) where
Path(f,) in the context of nested tandems can be defined as
set of servers that flow f, crosses.

[BEs = (5% 0, a1) ® (BE" Sy 3)

81y = B2 ® (B S0, 02))

B = By

Figure 3. Nesting tree of the tandem in Figure [2] (Source: [3], CC BY-SA).

B> = By

From this example it is already evident that for nested
tandems and set F, of crossflows with unique paths, we have
exactly | F;| FIFO parameters to set simultaneously in the foi’s
left-over service }0‘: Having derived }6‘}, our GS considers
different settings of these parameters. It starts with the initial
parameter combination © = (61, ...,0,p,|) = (0,...,0). This
results in a left-over service curve 3> and corresponding
delay bound we call d®™™, which subsequent parameter
combinations try to lower by improving how the GS analysis
makes use of the positive impact of FIFO multiplexing has on
the actually analyzed system’s performance.

The natural question that then arises is, which combinations
are worth considering since each parameter 6; is in Rg , 1.e.,
is unbounded, in principle. GS will exclude combinations for
which 6; > d®™™" since applying Theorem (1| with such a
large 6; results in a left-over service curve that has a larger
latency component than d°“™", If so, then one can conclude,
independent of its service rate, that any resulting delay bound
from this service curve will be larger than d®™". Hence,
combinations for which at least one 0; > d™" can be
excludecﬂ Having defined a reasonable range for each 6;
to be set, we now look at how to set them. We interpret
the combination of choices as an |F}|-dimensional space that
we want to search. We partition the space, creating an |F,|-
dimensional grid where each point of the grid sets the values
for all 6;, resulting in a new current delay bound d®™™. In
practice, we approach this as follows: For each 6;, we consider
values between 0 and d*™™ that are equidistant from each
other. Allowing for some flexibility when instantiating GS, the
distance will be sp := dcuirjm where parameter g can be freely
chosen as long as g € N5 ;. We abbreviate these instantiations
as GS-g. GS will consider all possible combinations of these
values, i.e., all grid points, as long as the condition §; < d®*™e
holds. The worst-case complexity can be given by the maximal
number of combinations that will be considered which is
O(g!*=1), so exponential in the number of crossflows on the
nested tandem.

Our GS consists of two algorithms: one to compute the
foi’s left-over service curve 8% on a symbolical level, based
on the nesting tree, and one algorithm to execute the grid
search steps that instantiates 3L% by setting the ;. Last, note

that after every step of setting the 6;, we can simply compute
dCLlI‘I‘eIl[.

Algorithm [l| computes the left-over service curve for the
foi, given a parameter combination ©. It executes a post
order traversal of the nesting tree by using the concatenation
and FIFO left-over service curve Theorem [I] The algorithm
starts with the innermost flow from the left (f; in Figure [2)
according to the nesting tree for which the full service on its
path is available ((3;). Similarly, the algorithm considers the
next innermost flow (f2) which is nested into another crossflow
fs. fs3 gets the left-over service (after “subtracting” f5) at

! Also note that the concatenation of two service curves results in a latency
that is the sum of both curves’ latencies, i.e., the aforementioned argument
holds for any flow’s 6;.

Algorithm 1 Left-over service computation on a nested tan-
dem given a parameter combination

Input i, © Flow, parameter combination

Output 5> Left-over service curve for flow 4

1: procedure COMPUTELEFTOVERSERVICE(Z, ©)
0 t<0
. l.o. _) >~
S (AN
Ve € Children(i)\ F;, :
Bl.o. — 51.0. ® /Bc
Ve € Children(i) N F, :
Lo <~ COMPUTELEFTOVERSERVICE(c, ©)
0.+ O(c)
B (t) + B () @([Be (t) —ac(t—0:)]T1(1>0.))
return 3%

D A

server 3 and full service at server 2 and so on. The algorithm
will result in an end-to-end left-over service curve for the foi.

Algorithm [2] is the actual grid search method for nested
tandems which sets up the different © combinations that will
be tried out to reduce the delay bound d°*™". Although this
method is shown for nested tandems only, it can be used for the
analysis of entire feedforward networks. This can be achieved
by replacing the nested LUDB analysis given in [3] with our
Algorithm [2| We restrain from doing so in this paper, as the
delay bounds derived with GS are not competitive in absolute
terms, yet, as we show later, they are very useful for a ranking
of design alternatives.

Algorithm 2 Grid search on a nested tandem

Input i, © Flow, parameter combination
Output > Left-over service curve for flow 4

1: procedure GS(¢,©)

2 for (0; < 0;0; < dV"";0; < 0; + sp) do

4 if i == |F;| then

5: Lo < COMPUTELEFTOVERSERVICE(foi, ©)
6 d + hdev(ay, BE2) > horizontal deviation
7 if d < dCUl’l‘Cl’lt then

8 dCuI’I‘Cl’lt — d

9 ﬁl.o. — %_g.

10: else

11 GS(i+1,0)

122 return '

Note that although a higher value for g of the GS algorithm
tends to deliver better delay bounds in most cases (see Section
[M), we now show how two different settings for g, i.e., g1 and
go relate to guarantee delay(GS-g;) > delay(GS-gs).

Lemma 1. Let g1,92 € Noy with k- (g1 — 1) = go — 1 for
k € N. Then, delay(GS-g1) > delay(GS-g2) holds.

Proof. Let gi1,92 € Nsj with k- (g — 1) = go —
1 for ¥ € N. For GS-¢g;, note that each 6; €

[0 1 dcurrent 2 dcurrent

1gi—1 Y1 oy B2 deurrent] Similarly, for GS-

g1—1

) 1 current __ 2 jcurrent g2—1 jcurrent
go, we have 0; € [0,—9271d 7grld ,...,grld]
k- (!]1 71:):92 —1 [1 dcurrent 2 dcurren[

k(g1*1) dcurrenl

’E 9171 7E 1—1 70 k g171]'
Hence, every 6;(GS-g1)= ﬁdcm@m with a € NN [0, g1 — 1]
can be mapped to a 6;(GS-g2)= %dcum‘/m withb=a -k €
NN [0,g2 — 1]. Hence {O|GS-g1} C {O|GS-g2} and thus

delay(GS-g1) > delay(GS-gs). H

III. EVALUATION
Experimental Setup

Our GS implementation is released as part of the NCorg
DNC v2.8.1. All results were measured on a Lenovo Think-
Station P620 with AMD Threadripper PRO 3955WX CPU
(multithreading, frequency scaling) running Ubuntu 20.04.2
and OpenJDK 16. LPs were solved with IBM CPLEX v20.1.

For our evaluation we created 2086 unique nested tandems
with random crossflow interference pattern. The idea is first to
create a random tree which will be interpreted as a nesting tree.
Then we derive a tandem with nested crossflow interference
from the tree. I.e., we reverse the actual analysis steps for
tandem generation. Our dataset is available onlineﬂ

Per such random nested tandem we choose a random
number n of tree nodes € [1,40] and a random maximum
degree € [1,n — 1]. After creating the respective tree, it might
happen that a non-leaf node only has one child that is a non-
leaf node, too — these nodes would lead to two flows having the
same path on the nested tandem. As such flows are aggregated
during the analysis, we merge them into a single non-leaf node
as depicted in Figure []

Merge (u,v)

3 TW =2

Figure 4. Merging of nodes to get a valid nesting tree: u is a non-leaf node
that has only one child, v, which is a non-leaf node, too since it has a non-
empty subtree T;(v) # (). Hence, both nodes can be merged. P is the parent
node of u, but it has 2 (or more) children so it can’t be merged with u since
its path is different.

Next, we will interpret the nesting tree as nested tandem
where the number of servers as well as the path of the
crossflows is already set (by the nesting tree).

As arrival curve «; for flow ¢ we use the token-bucket shape
Yoi,0:(t) = (05 4 pi - 1) - 1{z>0y with burst o; = 1 and rate
pi; = 1. For node j’s the service curve we use the rate-latency
shape fr, g, (t) = R; - [t — T3] with [z]T = max(0,z). We
use a zero latency (T; = 0) and theZ rate I2; is set to achieve

pi
jePath(f;)

a utilization of 95%, i.e., R; = 00F

2https://github.com/alexscheffler/dataset—itc2022

o
80—% GS-2
- Gs-3
- as-4

Order Deviation [%]

10 15
Tandem Length [Server]

(a) Ranking deviation compared to LUDB-FF.

1e+03-

)

() |

£ 1e+00 -

= i

c i

o L -5~ SFA-FIFO

[0) i |

o) ; GS-2

o 1

Q 1e-03 ‘ GS-3

< i H
- : | =% GS-4
§ § LUDB
i ‘ i ‘ i
0 5

20

10 15
Tandem Length [Server]

(b) Average analysis runtime to compute a delay bound. (y-axis in log scale)

Figure 5. Ranking deviation w.r.t. LUDB-FF and computation runtimes of all analyses. GS-2 and GS-3 are generally faster than LUDB-FF yet not necessarily

less precise in ranking design alternatives.

Numerical Results

For each length, we consider all the tandems in our dataset
having that length and rank them according to their delay
bound. L.e., we assume that the system designer has a fixed
amount of servers but some flexibility regarding the flow paths.
The most precise analysis we consider is LUDB-FF and we
investigate how good the other, less precise but also less costly,
analyses are in ranking these tandems.

Figure [5(a)] depicts how far off the rankings of GS and
SFA-FIFO are compared to LUDB-FF. The order deviation
is defined as the difference in positioning of the top-ranked
tandem by LUDB-FF compared to the other analyses, i.e.,

Apos;#u?;lc(lgg;rflfked). We can see that the ranking by SFA-
FIFO is rather coarse with a maximal order deviation of up
to 93% while GS is more suitable for this task. The reason
for this is due to the fact that SFA-FIFO basically computes
output arrival curves for the cross-traffic at each server while
GS (and LUDB-FF) make use of the concatenation theorem
as much as possible. In other words, GS (and LUDB-FF) do
not have to compute any output arrival curves for cross-traffic
in nested tandems. The preciseness in ranking by GS also
depends on the parameter g which tends to increase with larger
g as Figure [5(a)] suggests. A larger g causes a denser grid and
thus more © combinations will be evaluated. However, this
is only a trend since a higher g does not directly imply that
the © combinations will be a superset. We have presented a
formal statement for which pairs of (g1, g2) a proper superset
is achieved (see Lemma m) In fact, for our set of tandems
in 23.59% cases GS-3 delivers a better delay bound than GS-
4. Hence, we can already observe some outliers where GS-4
leads to a worse top-ranking than GS-3 (see Figure [5(a)| with
tandem length 12 for example). Also note that the requirements
for Lemma |1| are not met for g; = 3 and go = 4 since 2 { 3.
However, we can apply it in case of g1 = 2 and g € {3,4}.
That’s why GS-2 is not able to provide better bounds than
GS-3 or GS-4.

Having seen that we can accurately rank alternative designs

w.r.t. LUDB-FF, we now shift our focus to the runtime of
these analyses. Figure [5(b)| shows the average runtime of each
analysis per tandem of a certain length. LUDB-FF is the most
costly analysis since it optimizes the O setting — for the best
delay bound for which several LPs have to be solved. The
next computation-intense analysis is GS which needs more
computation time the higher the parameter g since then more
combinations will be considered (which is upper bounded by
g/F=! with |F,| being the number of crossflows with distinct
paths in the nested tandem). If the GS parameter g is set high,
especially in large tandems with many crossflows, then we
can observe that the runtime is even worse than LUDB-FF. In
our dataset we experience this for GS-4 and tandem-lengths of
length 15 or larger. On the other hand, GS-3 is considerably
faster than LUDB-FF while still providing a good ranking
with an order deviation of only up to 19.45%. The fastest
analysis is SFA-FIFO since it fixes any occurring 6; to a locally
derived value (i.e., no concatenation of subsequent servers),
so neither a search nor an optimization for these values takes
place within the SFA-FIFO analysis. The case where SFA-
FIFO gets outperformed by GS-2 in large tandems (length 19
and beyond) can be explained by the recursive backtracking
scheme in SFA-FIFO that is required to compute arrival curves
for the crossflows on the tandem (again, due to not making
use of concatenation).

All in all, we recommend using LUDB-FF as analysis for
ranking when the tandems are short with a length of up to 6
nodes — for our dataset, it took, on average, less than s to
compute the delay bound of a tandem for a fixed length in
this range. For larger tandems up to length 8§ (11) one can
use GS-4 (GS-3) with a ranking quite close to LUDB-FF. For
more than 11 nodes we recommend GS-2 to obtain a fast yet
still reasonable ranking.

Compared to the approach to run LUDB-FF for all design
alternatives, our ranking with a fast GS, followed by a single
LUDB-FF analysis, results in a favorable overall runtime.
What remains is the question as to why we do not propose

GS as the sole analysis that derives the delay bound. For GS-
4, Figure [5(b)] already gives a clear answer as its runtime is
not outperforming LUDB-FF significantly. For GS-2, GS-3,
and SFA-FIFO, we shift our attention to the delay bounds
for an answer. Figure [6] shows the delay bound differences of
the top-ranked tandem by a certain analysis compared to the
LUDB-FF-top-ranked tandem’s delay bound?}

<.

82,1000 =~ SFA-FIFO

c 1

2 5004 es-2

g | e~ GS-3

0] |

0O 600 =% GS-4

o : ‘

S :

3 400—3

@

& 200

© i

[a] :

(O " ; ; ; : f 1 ;

| ' | ' I ' I ' |
0 5 20

10 15
Tandem Length [Server]

Figure 6. Delay bound deviation of the top-ranked tandems compared to the
LUDB-FF-top-ranked tandem’s delay.

We can observe that the delay bound deviation of SFA-FIFO
[L], [3)] (that does not convolve before subtraction) compared
to LUDB-FF increases with increasing tandem length. This is
due to the fact that SFA-FIFO effectively cuts the crossflows at
each server while LUDB-FF makes use of the concatenation
theorem. It then needs to compute output arrival curves for
crossflows on the nested tandems which results in less accurate
delay bounds. Moreover, LUDB-FF optimizes the © setting
for the whole nested tandem simultaneously while SFA-FIFO
sets each 6; only with local knowledge (see [S] for details)
which further tightens the LUDB-FF bounds. Both contribute
to the increasing gap between both analyses in longer tandems.
SFA-FIFO should not be used due to its largely overestimated
delay bounds or only for very small tandems up to length
4 where the delay bound of the top-ranked compared to the
LUDB-FF-top-ranked can already be up to 57%.

Concerning GS, remember that it shares the “concatenation
before subtraction”-approach with LUDB-FF such that their
significant difference lies in the values for 6; eventually chosen
for the delay bound derivation. For the smallest possible g = 2,
GS brings down the maximal SFA-FIF gap from more than
1000% to 192% which tends to get reduced further for higher
values of g. However, the GS results are still above the LUDB-
FF delay bounds by more than one order of magnitude. Hence,
we propose a two-stage approach in this paper for fastest and

3The delay bound deviation is defined as relative delay bound between the
LUDB-FF delay bound of the top-ranked tandem ranked by LUDB-FF and
the respective analysis’ delay bound of the top-ranked tandem (ranked by the
respective analysis).

4Note that our sample size for tandem length 23 is naturally only a fraction
of all possible tandems of that length, 5.1 - 10~ 19% to be precise which is
considerably smaller than 1.3-10717% (length 22) for example. For a larger
sample, we expect to not see the drop as in Figure [6] but an even larger
deviation.

most accurate bounds by combining the GS-based ranking
with an LUDB-FF analysis of the best ranked alternative.

IV. CONCLUSION

This paper discusses the exploration of network design
space w.r.t. delay bounds and with First-In First-Out (FIFO)
multiplexing at the queuing locations in the network. We
benchmark several Network Calculus (NC) analyses for that
task, showing that none fulfills our wish for a fast and accurate
ranking. The fast analysis SFA-FIFO resulted in a ranking
deviation of up to 93% to the most precise analysis of interest
in our evaluation, LUDB-FF. l.e., there is almost no correlation
from best to worst tandem when compared to the LUDB-FF-
ranking. Therefore, we contribute a new analysis for ranking
of tandems called GS.

GS’s ranking of alternatives is close to the one by LUDB-
FF — we achieve a worst-case order deviation of no more
than 41% — while GS is considerably faster. Moreover, the
precision of the ranking with GS can be tuned with a parameter
g which comes with exactly the tradeoff we are aiming at:
Increasing g tends to yield a better ranking but at the cost
of a larger analysis runtime. Our numerical evaluation reveals
that values for ¢ in the range of 2-4 are most suitable for
striking a reasonable balance between quality of the ranking
and runtime.

Future Extensions

The presented GS-ranking can be easily interfaced with
other analyses. For example, if the delay bound itself becomes
important yet the computational demand needs to be kept
at bay. Then, LUDB-FF can analyze the n > 1 alternatives
that were ranked top by GS. Le., the tradeoff between delay
bound tightness and effort can be steered via the n parameter.
Similarly, top n alternatives can be used to create good quality
training sets of restricted size for, e.g., reinforcement learning
applied to finding flow prolongations [8].

REFERENCES

[1] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of deterministic
queuing systems for the internet. Springer LNCS, 2001, vol. 2050.

[2] R. L. Cruz, “SCED+: Efficient management of quality of service guar-
antees,” in Proc. of IEEE INFOCOM, 1998.

[3] A. Scheffler, J. B. Schmitt, and S. Bondorf, “Searching for upper delay
bounds in FIFO multiplexing feedforward networks,” in Proc. of RTNS,
2022.

[4] L. Lenzini, E. Mingozzi, and G. Stea, “A methodology for computing
end-to-end delay bounds in FIFO-multiplexing tandems,” Performance
Evaluation, vol. 65, no. 11-12, pp. 922-943, 2008.

[5] A. Scheffler and S. Bondorf, “Network calculus for bounding delays in
feedforward networks of FIFO queueing systems,” in Proc. of QEST,
2021.

[6] L. Bisti, L. Lenzini, E. Mingozzi, and G. Stea, “Estimating the worst-
case delay in FIFO tandems using network calculus,” in Proc. of ICST
Valuetools, 2008.

[7] J. B. Schmitt, F. A. Zdarsky, and 1. Martinovic, “Improving performance
bounds in feed-forward networks by paying multiplexing only once,” in
Proc. of GI/ITG MMB, 2008.

[8] F. Geyer, A. Scheffler, and S. Bondorf, “Tightening network calculus
delay bounds by predicting flow prolongations in the FIFO analysis,” in
Proc. of IEEE RTAS, 2021.

	Introduction
	Finding the NC FIFO Parameters: A Grid Search Analysis
	Evaluation
	Conclusion
	References

