
Pay Bursts Only Once Holds for

(Some) Non-FIFO Systems

Jens B. Schmitt, Nicos Gollan, Steffen Bondorf, Ivan Martinovic

Distributed Computer Systems (DISCO) Lab, University of Kaiserslautern, Germany

Abstract—Non-FIFO processing of flows by network nodes
is not a rare phenomenon. Unfortunately, the state-of-the-art
analytical tool for the computation of performance bounds in
packet-switched networks, network calculus, cannot deal well
with non-FIFO systems. The problem lies in its conventional
service curve definitions. Either the definition is too strict to
allow for a concatenation and consequent beneficial end-to-end
analysis, or it is too loose and results in infinite delay bounds.
Hence, in this paper, we propose a new service curve definition
and demonstrate its strength with respect to achieving both finite
delay bounds and a concatenation of systems resulting in a
favorable end-to-end delay analysis. In particular, we show that
the celebrated pay bursts only once phenomenon is retained even
without any assumptions on the processing order of packets. This
seems to contradict previous work [15]; the reasons for this are
discussed.

I. INTRODUCTION

A. Motivation

In the recent past, network calculus [6], [13] has shown

promise as an alternative methodology, besides classical

queueing theory, for the performance analysis of packet-

switched networks. It is being used as a basic tool for attacking

several important network engineering problems: most promi-

nently in the Internet’s Quality of Service proposals IntServ

and DiffServ, but recently also in other environments like,

e.g., wireless sensor networks [10], switched Ethernets [18],

Systems-on-Chip (SoC) [5], or even to speed-up simulations

[11], to name a few. Unfortunately, it comes up short in a basic

aspect: its delay bound calculation depends on a strict FIFO

processing of work units within the flow under analysis. This

issue about how to deal with a possible non-FIFO processing

within a flow is largely unexplored (and sometimes may be

even overseen in applications). In the next subsection, we

provide an overview of the rather little previous work we

could find on this. In this paper, we are concerned with the

scheduling within a single flow under analysis, so we deal with

the questions when work units are processed by a node and

in which order. The first question about how a node provides

its capacity to a flow is flexibly answered by the network

calculus concept of service curves, the second question has

so far always been answered rigidly by assuming a FIFO

processing order. The goal of this paper is to provide a more

flexible answer to this. In the following, we provide some

arguments why besides being of theoretical interest this issue

should be addressed.

Assuming that the work units of a flow under analysis are

processed in FIFO order constitutes a logical break for a worst-

case methodology as we discuss now. Assume a flow traverses

a system. The real delay1 for a work unit input at time t and

output at time t′ is simply defined as

rd(t) = t′ − t.

Any processing order other than FIFO results in an increase

of the worst-case real delay. This can be seen by the following

argument: Assume at time t0 a work unit which experiences

the worst-case real delay is input to a FIFO system. Now

assume we can change the processing order of work units.

If the work unit is further delayed by scheduling work units

that arrived later, then certainly the real delay of that work

unit under the new processing order will be worse. Processing

that work unit earlier will make its new real delay rd′(t0)
smaller, yet, the work unit which was processed just ahead of

the above work unit is now leaving the system when the above

work unit would have left; however, that work unit has arrived

at time t1 ≤ t0 such that the new real delay of that work unit

rd′(t1) is higher than or equal to the one from the FIFO worst-

case work unit, i.e., rd(t0) ≤ rd′(t1). So, in this sense FIFO

can be viewed as a best-case assumption (with respect to the

worst-case delay) on the processing order of the flow under

analysis. Therefore, it can be seen as consistent with a worst-

case methodology to release the FIFO processing assumption.

Additional motivation to deal with non-FIFO processing

comes from real-world scenarios like, e.g., packet reorder-

ing by Internet routers, link-level retransmissions in wireless

networks, or content-dependent packet scheduling in wireless

sensor networks. For example, in several studies of Internet

traffic it has been shown that packet reordering is a frequent

event (see for example [2]). According to these studies this

is due to a growing amount of parallelism on a global (use

of multiple paths) as well as on a local (device) level. In

particular, for scalability reasons high-speed routers often

contain a complex multi-stage switching fabric which cannot

ensure to preserve the order of arrivals at its output. This is

due to a common design trade-off where FIFO service at the

input queues is relaxed in order to avoid head-of-line blocking

by choosing from a set of packets in the input queue (often

some window-based scheme is used).

So, from a methodological as well as an application per-

spective there is a clear motivation for an investigation on

how network calculus can be extended towards an analysis

without any FIFO assumptions.

1The word real is chosen for the purpose of contrasting it to the virtual
delay, later on defined as delay under FIFO processing of a flow.



B. Related Work

There is surprisingly little existing work on the treatment

of non-FIFO systems in the context of network calculus.

Remarkably, in his pioneering paper [7], Cruz briefly showed

how to derive a delay bound for a single work-conserving

server under a general scheduling assumption (comprising any

non-FIFO processing order) based on the observation that the

maximum backlogged period can be bounded given that traffic

is regulated. Similar results can also be found in [6]. Yet, the

multiple node case as well as more general server models are

not treated therein.

In [12], Le Boudec and Charny investigate a non-FIFO

version of the Packet Scale Rate Guarantee (PSRG) node

model as used in DiffServ’s Expedited Forwarding. They show

that the delay bound from the FIFO case still applies in the

single node case while it does not in a two node case. They

leave more general concatenation scenarios for further study.

In [17], the problem of computing tight delay bounds for

a network of arbitrary (non-FIFO) aggregate multiplexers is

addressed. The tightness of the bounding method is shown

by sample path arguments. Yet, in contrast to the problem

setting in this paper, a FIFO assumption on the processing

order within a flow is made and non-FIFO behavior is only

allowed between flows. Bouillard et al. recently provided more

advanced and general results for the same setting in [4], still

basing on FIFO processing per flow.

To the best of our knowledge, the only previous work that

also tries to derive end-to-end delay bounds without any FIFO

processing within the flow under analysis assumption was done

by Rizzo and Le Boudec [15]. They investigate delay bounds

for a special server model, non-FIFO guaranteed rate (GR)

nodes, and show that a previously derived delay bound for GR

nodes [8] is not valid in the non-FIFO case (against common

belief). Furthermore, they derive a new delay bound based on

network calculus results. Their delay bound does not exhibit

the nice pay bursts only once phenomenon any more. Based

on sample path arguments they argue that their bound is tight

and thus conclude “pay bursts only once does not hold for

non-FIFO guaranteed rate nodes”. In contrast, we show that

non-FIFO systems may still possess a concatenation property.

This puzzling contradiction is discussed in detail in Section V,

since it is a subtle issue that needs to be resolved thoroughly.

II. PRELIMINARIES ON NETWORK CALCULUS

Network calculus is a min-plus system theory for determin-

istic queuing systems. A detailed treatment of network calculus

can be found in [6] and [13].

As network calculus is built around the notion of cumu-

lative functions for input and output flows of data, the set

F of integer-valued, non-negative, and wide-sense increasing

functions passing through the origin plays a major role:

F =
{

f : R
+ → N0, ∀t ≥ s : f(t) ≥ f(s), f(0) = 0

}

.

In particular, the input function F (t) and the output function
F ′(t), which cumulatively count the number of work units that

are input to, respectively output from, a system S, are in F .

Throughout the paper, we assume in- and output functions to

be continuous in time and discrete in space unless specified

otherwise. We assume work units of equal size, which is

convenient for some of the discussions with respect to the

processing order of work units. Arbitrarily, we assume in- and

output functions to be left-continuous. There are two important

min-plus algebraic operators:

Definition 1: (Min-plus Convolution and Deconvolution)

The min-plus convolution and deconvolution of two functions

f, g ∈ F are defined to be

(f ⊗ g) (t) = inf
0≤s≤t

{f(t − s) + g(s)} ,

(f ⊘ g) (t) = sup
u≥0

{f(t + u) − g(u)} .

With these definitions, let us now turn to the performance

characteristics of flows:

Definition 2: (Backlog and Virtual Delay) Assume a flow

with input function F that traverses a system S resulting in

the output function F ′. The backlog of the flow at time t is

defined as

b(t) = F (t) − F ′(t).

The virtual delay for a work unit input at time t is defined as

vd(t) = inf {τ ≥ 0 : F (t) ≤ F ′(t + τ)} .

So, this is the point where a FIFO assumption “sneaks” in

network calculus as far as delay is concerned, because rd(t) =
vd(t) for all t only under FIFO processing of the flow. We

use the usual network calculus terminology of the so-called

virtual delay in contrast to the real delay as defined above

(see Section I-A). Next, the central network calculus concepts

of arrival and service curves are introduced:

Definition 3: (Arrival Curve) Given a flow with input func-

tion F , a function α ∈ F is an arrival curve for F iff

∀t, s ≥ 0, s ≤ t : F (t) − F (t − s) ≤ α(s) ⇔ F = F ⊗ α.

A typical example of an arrival curve is given by an affine

arrival curve γr,b (t) = b + rt, t > 0 and γr,b (t) = 0, t ≤ 0,

which corresponds to token-bucket traffic regulation.

Definition 4: (Service Curve – SC) If the service provided

by a system S for a given input function F results in an output

function F ′ we say that S offers a service curve β iff

F ′ ≥ F ⊗ β.

If F is left-continuous and β is continuous, this is equivalent

to the following condition

∀t ≥ 0 : ∃s ≤ t : F ′(t) ≥ F (s) + β(t − s).

A typical example of a service curve is given by a so-called

rate-latency function βR,T (t) = R(t − T ) · 1{t>T}, where

1{cond} is 1 if the condition cond is satisfied and 0 otherwise.

Also, nodes operating under a delay-based scheduler and

guaranteeing that a work unit arriving at any time t will leave

the node at time t′ ≤ t + T for some fixed T > 0, i.e.
∀t ≥ 0 : rd(t) ≤ T , are known to provide a service curve

δT = ∞ · 1{t>T}. We also call these bounded latency nodes.



Using those concepts it is possible to derive tight perfor-

mance bounds on backlog, virtual delay and output:

Theorem 1: (Performance Bounds) Consider a system S
that offers a service curve β. Assume a flow F traversing the

system has an arrival curve α. Then we obtain the following

performance bounds:

backlog: ∀t : b(t) ≤ (α ⊘ β) (0) =: v(α, β),

virtual delay: ∀t : vd(t) ≤ inf {t ≥ 0 : (α ⊘ β) (−t) ≤ 0}

=: h (α, β) ,

output (arrival curve α′for F ′): α′ = α ⊘ β.

One of the strongest results of network calculus is the con-

catenation theorem that enables us to investigate tandems of

systems as if they were single systems:

Theorem 2: (Concatenation Theorem for Tandem Systems)

Consider a flow that traverses a tandem of systems S1 and

S2. Assume that Si offers a service curve βi to the flow. Then

the concatenation of the two systems offers a service curve

β1 ⊗ β2 to the flow.

Using the concatenation theorem, it is ensured that an end-to-

end analysis of a tandem of servers achieves tight performance

bounds, which in general is not the case for an iterative per-

node application of Theorem 1. In particular, a linear scaling

of performance bounds in the number of traversed queues

is achieved and also referred to as pay bursts only once

phenomenon in [13].

III. CONVENTIONAL NETWORK CALCULUS AND

NON-FIFO SYSTEMS

In this section, we investigate how existing network calculus

can cope with non-FIFO systems. The crucial aspect is the

node model. We start with the typical service curve model as

defined in the previous section and turn to other node models

like strict and adaptive service curves, only to find out that all

of them encounter problems under non-FIFO processing.

A. Using Service Curves (SC) for Non-FIFO Systems

As the SC definition bears the advantages that many sys-

tems belong to that class and that it possesses a concatenation

property, it is tempting to apply it also in the case of non-FIFO

systems. Yet, the following example shows that it is impossible

to bound the real delay in non-FIFO systems based solely on

the SC definition:

Example 1: (SC Cannot Bound the Real Delay) Assume a

single node system S which offers a rate-latency service curve

β = β2,1 to a flow F which is constrained by an affine arrival

curve α = γ1,0. Now assume the flow to be greedy, that means

F = α and the server to be lazy, that means F ′ = F ⊗ β.

Thus, we obtain

F ′ = α ⊗ β = γ1,0 ⊗ β2,1 = γ1,0 ⊗ γ2,0 ⊗ δ1

= (γ1,0 ∧ γ2,0) ⊗ δ1 ≤ γ1,0 ⊗ δ1 < γ1,0 = F.

Hence, ∀t ≥ 0 : F ′(t) < F (t), or equivalently, ∀t ≥ 0 : b(t) >

0, which means the system remains backlogged at all times.

Therefore, without any assumptions on the processing order

a certain work unit can be kept forever in the system under

these circumstances. Thus, the real delay of that work unit

is unbounded. Note that using the standard FIFO processing

assumption, we can of course bound the real delay of the

system by ∀t ≥ 0 : rd(t) = vd(t) ≤ 3
2 .

From this example, we see that the SC property is too weak

as a node model for analyzing non-FIFO systems. Therefore,

it is sensible to look for more stringent node models as is done

in the following subsection.

B. Using Strict Service Curves (S2C) for Non-FIFO Systems

A number of systems provide more stringent service guar-

antees than captured by SC, fulfilling a so-called strict service

curve [13] (also known as strong service curve [1] and related

to the universal service curve concept in [14]).

Definition 5: (Strict Service Curve – S2C) Let β ∈ F .

System S offers a strict service curve β to a flow, if during

any backlogged period of duration u the output of the flow is

at least equal to β(u). A backlogged period of duration u at

time t is defined by the fact that ∀s ∈ (t − u, t] : b(s) > 0.
More formally, S offers a strict service curve β to a flow iff

∀t ≥ 0 ∧ ∀u ≥ 0 ∧ (∀s ∈ (t − u, t] : b(s) > 0) :

F ′(t − u) ≥ F ′(u) + β(t − u).

Note that any node satisfying S2C also satisfies SC, but

not vice versa. For example, a bounded latency node does

not provide its service curve δT as a strict service curve. In

fact, in a continuous time and space model for in- and output

functions, it does not provide any S2C apart from the trivial

case β = 0 [13] (for a discrete space model with unit packets,

a (very low) strict service curve can be derived for a bounded

latency node as β1/T,T ). On the other hand, there are many

schedulers that offer strict service curves; for example, most of

the generalized processor sharing-emulating schedulers (e.g.,

PGPS [14], WF2Q [3], or round robin schedulers like SRR

[9], to name a few), offer a strict service curve of the rate-

latency type. More generally, all nodes providing some form

of capacity guarantee can be captured by S2C.

Now for bounding the real delay under S2C: In fact, as

was already shown by Cruz [7] (and can also be found in [6]

(Lemma 1.3.2)), the intersection point between an arrival and

a strict service curve constitutes a bound on the length of the

maximum backlogged period and thus also a bound on the

real delay for such a system:

Theorem 3: (Real Delay Bound for Single S2C Node)

Consider a system S that offers a strict service curve β.

Assume a flow F traversing the system has an arrival curve

α. Then we obtain the following bound on the real delay:

rd(t) ≤ sup{s ≥ 0 : α(s) ≥ β(s)} =: i(α, β).

So, the situation has improved in comparison to the SC case:

Based on the single node result one can conceive, for the

multiple node case, an iterative application of Theorem 3

together with the output bound from Theorem 1 (note that for

the latter we only require SC). More specifically, if a tandem



of n S2C non-FIFO nodes, each providing a strict service

curve βj, j = 1, . . . , n, is to be traversed by an α-constrained

flow then a bound on the real delay can be calculated as

rd(t) ≤
n
∑

j=1

i(α ⊘

j−1
⊗

k=1

βk, βj).

Setting for example βj = βR,T , j = 1, . . . , n and α = γr,b

this results in

rd(t) ≤
n(b + RT ) + n

2 (n − 1)rT

R − r
(1)

Here, we see the typical drawback of additive bounding

methods, with the burst of the traffic being paid n times as

well as a quadratic scaling of the bound in the number of

nodes [13]. The key to avoid this behavior is to perform an

end-to-end analysis based on a concatenation theorem. Yet, as

is known S2C does not possess such a concatenation property

(an example can be found in [16]). The problem is due to the

fact that there may be a system backlogged period but some of

the subsystems are not backlogged. Another way to view this,

is that the backlogged period of a composite system cannot

be bounded based on the individual systems providing a strict

service curve.

So, from this discussion we can conclude that S2C is too

strict as a concept in order to allow for tight bounds under non-

FIFO processing, since it possesses no concatenation property

for the multiple node case. Now, since SC is too loose and

S2C too strict, it is sensible to look for some intermediate

node model.

C. Using Adaptive Service Guarantees for Non-FIFO Systems

The so-called adaptive service guarantee, introduced in the

context of window flow control systems [1], is a node model

that is known to be falling in between SC and S2C in a certain

sense.

Definition 6: (Adaptive Service Guarantee – ASG) If the

service provided by a system S for a given input function

F results in an output function F ′ we say that S offers an

adaptive service guarantee
(

β̃, β
)

iff ∀t ≥ 0 :

F ′(t) ≥ sup
s<t

{(

F ′(s) + β̃(t − s)
)

∧ inf
u∈[s,t]

{F (u) + β(t − u)}

}

(2)

ASG enables to bound the virtual delay based on the backlog

of a flow (delay-from-backlog bound), something that can also

be done under S2C but not under SC. In contrast to S2C,

however, ASG has a concatenation property (albeit a bit more

complex). So, this makes it interesting because in this sense

it lies in between SC and S2C. Yet, unfortunately, it cannot

bound the real delay without assuming FIFO processing of

the flow under analysis (an example showing this weakness

is provided in [16]). Hence, ASG suffers from the same

deficiency as SC with respect to bounding the real delay,

though it is a stronger guarantee but in a sense that does not

help here.

D. Discussion and Some Remarks

To sum up, we started with the service curve (SC) definition

as the standard network calculus node model, yet found it

too weak to bound the real delay under non-FIFO processing.

Next, we tried a more stringent node model, the strict service

curve (S2C). Actually, under S2C a single-node bound on the

real delay can be given. However, S2C has no concatenation

property, thus impeding a true end-to-end delay analysis.

Hence, we were looking for a node model falling in between

SC and S2C. Adaptive service guarantees (ASG) are lying

in this intermediate area. They have some properties similar to

strict service curves but still possess a concatenation property.

Unfortunately, as we demonstrated they do not provide a

bound on the real delay. So they are too weak, again.

All these variants of node models are based on min-

plus algebraic definitions, which effectively means nodes are

characterized by the amount of work they guarantee to do

in certain intervals (the intervals for which this is specified

differ). In fact, there is a “dual world” of max-plus algebraic

definitions for node models. Known models of this category

are so-called guaranteed rate (GR) nodes [8] and packet-scale

rate guarantees (PSRG) [13]. These work by guaranteeing

certain delivery deadlines to work units, which they are

assigned when arriving at a node. Since these deadlines are

in absolute time, these node models can always provide a

bound on the real delay (given a finite input at each point

in time). Their concatenation properties are derived based on

equivalence theorems with min-plus algebraic counterparts. In

particular, GR is equivalent with SC (modulo packetization)

and PSRG is equivalent with ASG (modulo packetization)

(see chapter 2 and 7 of [13] for details). However, the crucial

point here is that these equivalences are only applicable for

FIFO systems and are actually shown not to be applicable for

concatenation of non-FIFO systems in [13], [12]. Thus, GR

and PSRG have no known concatenation properties under

non-FIFO processing. In fact, the delay bound derived for non-

FIFO GR nodes in [15] is an additive bound based on iterative

application of per-node delay bounds. This is discussed in

more detail in Section V.

The bottom line of this discussion is that we need a new

node model: it should

1) allow for calculating a bound on the real delay without

FIFO processing order assumptions, and, yet, also

2) have a concatenation property, and thus be min-plus

based, in order to avoid loose additive bounds.

IV. SUFFICIENTLY STRICT SERVICE CURVES

In this section, we introduce a new node model called

sufficiently strict service curves (S3C). This node model

allows to efficiently bound the real delay over a tandem of

non-FIFO systems using a concatenation result. We show that

there are actually systems conforming to this new node model

and provide numerical examples for the superiority of S3C-

based delay bounds over conventionally derived delay bounds

(based on S2C).



A. The New Service Curve Definition

Central to the new service curve definition is the notion of

a maximum achievable dwell period (MADP).

Definition 7: (Maximum Achievable Dwell Period) Given

a system S, the maximum achievable dwell period at time t,

denoted as D(t), is the length of the interval [to(t), t], i.e.,
D(t) = t− to(t), where to(t) is the arrival time of the oldest

work unit in the system at time t under all possible processing

orders. If the system is empty at time t, then by definition

to(t) = t and D(t) = 0.
Some comments on this definition of the MADP are appro-

priate:

• A tacit assumption is that changing the processing order

of work units does not affect the output function F ′ of the

system. This is true under identically sized work units (as

assumed in this paper) and a continuous data model with

infinitesimally small work units. The definition would

require more elaboration if discrete, but variable size

work units were considered. We leave this for further

study.

• The term “all possible processing orders” in the definition

may warrant some further clarification. For min-plus

algebraic node models, which only provide guarantees on

the amount of work done over specific intervals, possible

processing orders amount to all permutations of work

units that ever share a buffer.

An example for an MADP should be illustrative: For a work-

conserving constant rate server with a single buffer, the MADP

at time t equals the backlogged period at time t; consequently,

to(t) equals the start of the last backlogged period. The

processing order that achieves the MADP for such a simple

buffer is LIFO. However, the MADP of a tandem of work-

conserving servers can be shorter than the backlogged period

of the overall system, which is anyway generally unbounded.

Now using the notion of the MADP, the new service curve

definition can be introduced:

Definition 8: (Sufficiently Strict Service Curve - S3C)

Given a system S with input function F and output function

F ′, β ∈ F is a sufficiently strict service curve (S3C) iff

∀t ≥ 0 : F ′(t) ≥ F (t − D(t)) + β(D(t)).

Note that S3C implies SC.

B. Properties of S3C

Now we show that the S3C definition achieves for non-

FIFO systems the two attractive features known from conven-

tional network calculus with FIFO systems: a bound on the

delay, yet now on the real instead of the virtual delay, and a

concatenation property. These two properties of S3C allow to

recover the celebrated pay bursts only once phenomenon in

the non-FIFO case.

1) S3C Can Bound the Real Delay: First we show that

S3C allows to bound the real delay:

Theorem 4: (Real Delay Bound for an S3C System) Con-

sider a system S that offers a sufficiently strict service curve

β. Assume a flow F traversing the system has an arrival curve

α. Then we obtain the following bound on the real delay:

rd(t) ≤ sup{s ≥ 0 : α(s) ≥ β(s)} = i(α, β).

Proof: As above we denote the MADP at time t by

D(t) and the arrival time of the oldest possible work unit

(corresponding to D(t)) by to(t). We can make the following

observation for the backlog of the system at time t:

b(t) = F (t) − F ′(t)

= F (t) − F (to(t)) − (F ′(t) − F (to(t)))

≤ α(D(t)) − β(D(t)).

Here, we used the arrival curve as well as the S3C property

from the assumptions. This relation implies that

α(D(t)) ≥ β(D(t)) + b(t).

This now allows to bound the MADP at time t, by the

following observation:

D(t) ≤ sup{0 ≤ s ≤ t : α(s) ≥ β(s) + b(t)}

≤ sup{0 ≤ s ≤ t : α(s) ≥ β(s)}

≤ sup{s ≥ 0 : α(s) ≥ β(s)}

= i(α, β).

Since the bound is independent of t, it applies for all t and,

furthermore, since a bound over all MADPs is also a bound

for all real delays, the proof is completed.

So, like S2C, S3C is strong enough to enable a finite bound

on the real delay, in contrast to SC and ASG.

2) S3C Has a Concatenation Property: Now we show that

S3C also has a concatenation property. The concatenation

property is not as simple to achieve as for SC and some

restrictions apply. To make these restrictions clearly visible

and demonstrate where they are required, we develop the

concatenation result in a modular fashion, from a set of

lemmas, which eventually result in a concatenation theorem

for S3C.

We use the following notation, assuming a tandem T of n

systems S1, . . . ,Sn:

• t
(i)
o (t): the (local) arrival time of the oldest possible work

unit at time t for system Si,

• t
(1,...,n)
o (t): the arrival time (at S1) of the oldest possible

work unit at time t for the tandem T ,

• To(t) := t
(1)
o

(

t
(2)
o

(

· · · t
(n)
o (t)

))

.

The first lemma states a basic concatenation rule for a tandem

of S3C nodes:

Lemma 1: Consider a flow with input function F that

traverses the tandem T . Assume that each system Si offers

a sufficiently strict service curve βi, i = 1, . . . , n to the flow.

Denoting the output function of T as F ′, we obtain

F ′ (t) ≥ F (To(t)) +

(

n
⊗

i=1

βi

)

(t − To(t)) .

The proof of Lemma 1 is relatively straightforward, though

notationally somewhat cumbersome and can be found in [16].



Note that Lemma 1 is close to the concatenation property

we desire. What is further required is how the arrival times

of the oldest possible work units in each of the systems are

related with the arrival time of the oldest possible work unit

in the overall system. More technically, we need to show that

t
(1,...,n)
o (t) = To(t). This is done in the next two lemmas.

Lemma 2: Assuming a tandem T of n systems S1, . . . ,Sn,

it applies that

t(1,...,n)
o (t) ≥ To(t).

The proof of Lemma 2 can be done via an induction over the

individual systems and can be found in [16].

So far, we made no specific assumptions about the systems

Si. Yet, for the last step we now need to make a further

assumption: We assume each of the systems to have a common

waiting room for the work units that await service at that

system. A common waiting room (c.w.r.) in this context

implies that the scheduling of a node is free to choose any

of the backlogged work units for being processed next. This

is, for example, the case if a single buffer is used at a node.

Lemma 3: Assuming a tandem T of n systems S1, . . . ,Sn,

each with c.w.r., it applies that

t(1,...,n)
o (t) ≥ To(t).

The proof depends on the c.w.r. assumption as it constructs

a sequence of scheduling decisions that result in a work unit

that arrived at To(t). Again, the proof can be found in [16].

The following theorem sums up what is a consequence of

Lemma 1, 2, and 3:

Theorem 5: (Concatenation Theorem for a Tandem of n

S3C Systems) Consider a flow with input function F that

traverses a tandem T of n systems S1, . . . ,Sn. Assume that

each Si has a c.w.r. and offers a sufficiently strict service curve

βi to the flow. Then the tandem T offers a sufficiently strict

service curve
⊗n

i=1 βi to the flow F .

Proof: Simply combine Lemma 2 and 3 to find that

t
(1,...,n)
o (t) = To(t). Enter this into Lemma 1’s statement and

we obtain (denoting the output function after T as F ′ again)

F ′(t) ≥ F
(

t(1,...,n)
o (t)

)

+

(

n
⊗

i=1

βi

)

(

t − t(1,...,n)
o (t)

)

= F
(

t − D(1,...,n)(t)
)

+

(

n
⊗

i=1

βi

)

(

D(1,...,n)(t)
)

,

where D(1,...n)(t) denotes the MADP of the tandem T .

We point out that the concatenation needs to be performed in

one step because after the concatenation we generally have

no c.w.r. for the overall system and thus Lemma 3 is not

applicable any more. This is also why we have to prove all

these statements in generality for n systems, so we can apply

them together in one step. Nevertheless, we now have both

properties we strived for: S3C provides a real delay bound

and has a concatenation property under the further assumption

of a c.w.r. at the individual systems. The c.w.r. assumptions

should not be a strong limitation in practice as the modeling

starts with simple components for which this assumption is

usually met by using a single buffer for the backlogged work

units at such components. Based on the concatenation theorem

a complex system can be constructed. For such a complex

system, the c.w.r. assumption will not and does not need to

hold any more since the bound on the real delay from Theorem

4 does not depend on that assumption.

3) Pay Bursts Only Once Holds for Non-FIFO S3C Tan-

dem: By combining the results from Theorem 4 and 5, we

can, for the case of a tandem of n non-FIFO nodes, each

providing an S3C βj , j = 1, . . . , n, which is traversed by an

α-constrained flow, derive a bound on the real delay as

∀t ≥ 0 : rd(t) ≤ i



α,

n
⊗

j=1

βj



 .

Looking at the same special case as in Section III-B, i.e.,

βj = βR,T and α = γr,b, we obtain the following

∀t ≥ 0 : rd(t) ≤
b + nrT

R − r
+ nT,

which generally improves considerably on the additive bound

based on S2C from Section III-B. We can perceive again

the pay bursts only once phenomenon as the burst term

appears only once as well as a linear scaling in the number

of nodes. We provide some more quantitative observations in

Subsection IV-D. Yet, before doing so, we first want to answer

an important question: ...

C. Are There Any Systems Providing S3C ?

Admittedly, the definitions of the MADP and consequently

S3C are somewhat peculiar, raising the question whether there

are any systems actually satisfying S3C. In fact, it is hard to

directly verify that a system provides S3C. Instead, we show

that S2C nodes with c.w.r. provide S3C.

Proposition 1: A node with c.w.r. providing an S2C β also

provides β as S3C.

Proof: First, we show that the MADP is identical to

the length of the backlogged period for S2C with c.w.r.

Let us define the backlogged period at time t as B(t) =
sups≤t {t − s : ∀u ∈ (s, t] : b(u) > 0} . That D(t) ≤ B(t) is

clear from the renewal character of an empty system just

before t − B(t), so there can be no more work units in the

system with an arrival time earlier than t−B(t). Further, under
the assumption of c.w.r., it is clear that LIFO is a possible

processing order and results in an arrival time for the oldest

work unit of t − B(t). Thus D(t) ≥ B(t), and altogether

D(t) = B(t). Now as the S2C guarantee applies to any

backlogged periods, it also applies for (t − B(t), t]. Further
using that t − B(t) is the start of the last backlogged period

before t, i.e. F (t − B(t)) = F ′(t − B(t)), we obtain

F ′(t) ≥ F ′(t − B(t)) + β(B(t)) = F (t − D(t)) + β(D(t)),

which constitutes β as S3C.

So, the question whether there are any systems providing

S3C can be answered positively, because many schedulers are

known to provide S2C and thus also provide S3C if c.w.r is

satisfied.



2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Delay bound [s]

P
o
s
s
ib

le
 u

ti
liz

a
ti
o
n

S3C
S2C

Fig. 1. Possible maximum utilizations for a target delay bound under S2C
and S3C.

D. Numerical Examples

To give some feeling for the improvements achievable by

using the S3C-based end-to-end delay analysis compared

to a node-by-node bounding based on S2C we provide a

numerical example when applying the results for admission

control purposes. In addition, we demonstrate what cost is in-

curred for releasing the FIFO assumption. For these numerical

experiments we use simple settings: As arrival curve for the

flow to be analyzed we assume a token bucket γr,b, where

we set b = 5[Mb] and vary the rate r to achieve a certain

utilization; for the service curves of the nodes to be traversed

we use a rate-latency function βR,T with R = 20[Mbps] and
T = 0.01[s]. We assume n = 10 nodes to be traversed by the

flow under analysis.

1) Worst-Case Admission Control: A comparison between

S3C and S2C-based bounding methods when used in admis-

sion control is provided in Figure 1. Here, the acceptable

utilizations for a given delay bound are shown for both

methods. This information can be used to decide how much

traffic can be admitted. As can be clearly seen, the S3C-based

method outperforms the S2C-based method by far, especially

for lower delay bounds.

2) FIFO vs. Non-FIFO Delay Bounds: In another numer-

ical example, we investigate the cost of releasing the FIFO

assumption in terms of delay bounds. For that purpose, we

vary the utilization by increasing the sustained rate of the

flow under analysis (while at the same time scaling the bucket

depth accordingly). As can be observed from Figure 2, only for

higher utilizations there is a significant difference between the

FIFO and non-FIFO delay bounds (at least for the S3C-based

bound). The bottom line is that only for highly utilized systems

it is necessary to enforce a FIFO behavior, as far as delay

bounds are concerned. For systems with lower utilizations,

optimizations such as for example link aggregation or multi-

stage switching fabrics do not incur a high cost in terms of

worst-case delay bounds.

E. Simulations

We have built a queueing model for discrete-event simu-

lations using OMNeT++, in order to test some actual system

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0

4
0

6
0

8
0

1
0
0

Utilization

D
e
la

y
 b

o
u
n
d
 [

s
]

S3C
S2C

FIFO

Fig. 2. FIFO vs. non-FIFO delay bounds depending on the utilization of the
system.

behavior against our bounds. To that end, we implemented sev-

eral queue management strategies: FIFO, LIFO, Shortest-In-

System (SIS), and windowed random (RND(w)). SIS always

selects the packet with the latest arrival time to the overall

system. RND(w) chooses randomly, but restricted to the first w

packets from a FIFO buffer, mimicking typical optimizations

for core Internet routers with high-speed switching fabrics to

avoid head-of-line blocking.

1) Experimental Design: We simulate a tandem of n

servers, each equipped with a single buffer; each server is

TDMA-like with On and Off periods of duration t
(i)
on and

t
(i)
off , respectively; during an On period each server sends at

rate C(i); each server applies one of the queue management

strategies mentioned above to select the next packet eligible

for service. For the analytical derivation of the bounds, we can

abstract server i as S3C with β
C(i)/

“

1+t
(i)
off

/t
(i)
on

”

,t
(i)
off

.

We use a Markov-Modulated On-Off source with rates λ for

the On-Off and µ for the Off-On transition, as well as a data

rate P while in state On. Furthermore, the source is regulated

by a token bucket γr,b before entering the network.

The factor values corresponding to the simulation results

in the next subsection can be found in Table I. The primary

factor in these experiments is the utilization, which is varied by

using different token bucket rates. For all factor combinations

and all queue management strategies 100 simulation runs were

performed; the results below report the average of the observed

worst-case delays over these 100 replications.

2) Results: In Figure 3, the observed worst-case delays

for all queue management strategies as well as the analytical

worst-case delay bounds under FIFO and non-FIFO processing

are displayed (for a utilization of 50%), from left to right in

ascending order. We can observe that the non-FIFO bound

is never violated. In contrast, the FIFO bound is actually

violated by all queue management strategies (apart from FIFO,

of course, which is slightly smaller); in particular, it is already

violated by RND(2). We also see that SIS is closest to the

non-FIFO bound and performs worse than LIFO. Clearly, the

RND(w) delays deteriorate with increasing window size, and

for w = 8 we are roughly at two third of the non-FIFO bound.



Factor Value

n 10

C(i)
200

p

s

t
(i)
on 0.02 s

t
(i)
off

i = n : 0.02 s, else t
(i)
off

= t
(i+1)
off

− 0.002 s

λ 20
1
s

µ 20/3
1
s

P 100
p

s
r 10, 20, . . . , 90 p

s
b 20 p

TABLE I
FACTOR VALUES FOR THE SIMULATION EXPERIMENTS.

Fig. 3. Worst-case delays for different queue management strategies.

The effect of varying the utilization of the system is shown

in Figure 4. Here, we only show the results for SIS and

RND(2) as well as the analytical bounds. As we can observe

SIS exhibits the same growth behavior as the non-FIFO bound

and stays close up to high utilizations, though the gap tends to

become larger. RND(2) is pretty insensitive to the utilization,

but violates the FIFO bound for all utilizations.

V. A NOTE ON “PAY BURSTS ONLY ONCE DOES NOT HOLD

FOR NON-FIFO GUARANTEED RATE NODES” [15]

In Section IV, we established that the “pay bursts only once”

phenomenon also holds for non-FIFO systems. This seems to

be in sharp contrast to a literature result by Rizzo and Le

Boudec [15]. They claim (in their article’s title) that “pay

bursts only once does not hold for non-FIFO guaranteed rate

nodes”. While they use a different server model, guaranteed

rate (GR) nodes, some schedulers can be abstracted as both,

GR or S3C, and thus it is important to resolve this contra-

diction, as for such nodes only one statement can be true.

A. The Result from [15]

Some preliminaries are necessary: A guaranteed rate (GR)

node is a server that guarantees an upper bound on the

departure time of any given packet of a flow by limiting

the deviation of its departure time from a hypothetical FIFO

constant rate server. To that end, it uses the concept of a

guaranteed rate clock (GRC) for any given packet pj of length

lj , where pj is the jth packet arriving at the node, A(pj) its

arrival time, and R the server’s allocated rate for the flow

under analysis:

GRC(pj) =

{

0, j = 0
lj
R + max

{

A(pj), GRC(pj−1)
}

, j > 0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Utilization

W
C

 d
e

la
y
 [

s
]

Non−FIFO bound

SIS

RND(2)

FIFO bound

Fig. 4. The effect of utilization on worst-case delays.

A GR node guarantees that any packet pj is delivered by the

time GRC(pj) + e, where the error term e depends on the

actual packet scheduling algorithm.

Note that a GR node does not need to be FIFO, though its

definition restricts its non-FIFO behavior. Possible reorderings

of packets are restricted to packets leaving early with respect

to their deadline. For this reason, a delay bound can be derived

for a GR node even if it is not assumed to be FIFO. However,

in order to concatenate several GR nodes one draws upon their

equivalence with SC in the FIFO case [13]. Therefore, in [15],

an additive delay bound based on the per-node delay bound

for non-FIFO GR nodes is derived. More specifically, under

a token-bucket arrival curve γr,b and assuming a propagation

delay τ i between nodes i and i + 1 as well as a maximum

packet size lmax, the bound in [15] for a tandem of n GR

nodes with equal service rate R is given as

d[15] = n
b

R
+

rlmaxn (n − 1)

2R2
+

r

R

n
∑

k=1

k−1
∑

i=1

ei+

n
∑

i=1

(

ei + τ i
)

.

As can be seen, the burst is paid n times and a quadratic

scaling in n is incurred, as it is typical for additive bounding

methods. [15] claims that the bound is tight in general and

thus concludes that “pay bursts only once does not hold for

non-FIFO GR nodes”.

B. The Bound From [15] Is Not Tight

A counter-example on the tightness of the bound in [15] can

be constructed by assuming constant rate servers and choosing

the following parameters: n = 2, R = 1, ei = 0, r = 0, b = 2,
τ i = 0, and all packets being of unit length. Then d[15] = 4.
However, it can be seen that dtight = 3 is a valid delay bound

for that scenario: In the worst case, the two packets of the flow

arrive at the same time and one is served within one time unit

and immediately transferred to the second node; the second

packet is served in another time unit while the first is served

by the second node; now the second node is free to serve the

second packet in another time unit, amounting for the second

packet in 3 time units delay altogether. Changing the order of

the packets cannot matter here, as they are arriving at the same



0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1
0

Utilization

D
e
la

y
 b

o
u
n
d
 [

s
]

+ + + + + + + + + + + + + +
+

+

+

+

+
+ S3C

[15]

Fig. 5. Comparison of delay bounds from S3C and [15]. The parameter
settings are: R = 20, T = ei

= 0.01, τ i
= 0, r = ρR, b =

r
2
, unit packets

for a tandem of n = 10 servers (i.e., lmax = 1), with ρ being the utilization.

time anyway. Any spreading of the two packets can only result

in a lower delay. This example can be generalized to a series of

n ≥ 2 nodes, where the tight delay bound dtight = n + 1, but
d[15] = n b

R = 2n. This shows that the delay bound from [15]

is not tight in the general case. In their tightness proof, Rizzo

and Le Boudec make the following assumption: “In order to

simplify the notation, we assume that r = R ...” Under this

assumption their delay bound is actually tight, yet for any

scenario with r < R, it is not. A more detailed discussion

about this issue is provided in [16].

In contrast, using S3C allows to calculate the tight delay

bound: We use βstair(t) := ⌊t⌋ as S3C; for the concatenation

of n nodes we have
⊗n

i=1 βstair = βstair ⊗ δn−1; thus we

obtain dS3C = i(γ0,2, β
stair ⊗ δn−1) = n + 1.

C. Comparison with S3C-based Bounds

In principle, comparing the bound from [15] with an S3C-

based one is like a comparison between apples and oranges.

On the one hand, a GR node is less stringent with respect to

giving a guarantee about the work being done in a specific

time interval, on the other hand, a GR node allows for much

less reordering between work units. Nevertheless, we provide

a comparison between the two bounding methods for the

following sample scenario: Assume we are given a tandem

of PGPS servers (each with a single buffer) guaranteeing a

rate R with latency T = ei; such nodes can be abstracted as

GR as well as S3C nodes (because they are S2C with c.w.r.).

Then Figure 5 provides a numerical example comparing the

respective delay bounds. Up to a very high utilization, S3C

yields less conservative bounds than [15]. Only at a utilization

of 95% the increased potential for reordering due to large

backlogs outweighs the benefits of the concatenation-based

S3C bound. Whether a concatenation-based bound can be

found under the non-FIFO GR model remains open.

VI. CONCLUSION

It was our goal to extend the scope of network calculus

towards non-FIFO systems, as it is theoretically interesting,

methodologically consistent, and useful in real-world applica-

tions. It turned out that existing service curve definitions are

not satisfying under non-FIFO processing of a flow: they are

either too loose to enable any bounding or too strict to allow

for an efficient end-to-end analysis. Therefore, we introduced

a new service curve definition, S3C, which allows to bound

the delay and at the same time enables an efficient end-to-

end analysis. By some numerical examples, we showed that

the new analysis based on S3C is clearly superior to existing

methods; by simulations, we validated the bounds against

actual system behavior. Remarkably, S3C allows to recover

the pay bursts only once phenomenon for non-FIFO systems.

ACKNOWLEDGEMENTS: We are very grateful to Markus

Fidler for insightful comments on an early version of this

paper. This work is supported by an Individual grant from

the German Research Foundation (DFG).

REFERENCES

[1] Rajeev Agrawal, R. L. Cruz, Clayton M. Okino, and Rajendran Rajan.
A framework for adaptive service guarantees. In Proc. of Allerton Conf.,
pages 693–702, 1998.

[2] J. C. R. Bennett, C. Partridge, and N. Shectman. Packet reordering is not
pathological network behavior. IEEE/ACM Trans. Netw., 7(6):789–798,
1999.

[3] J. C. R. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair
queueing. In Proc. IEEE INFOCOM, pages 120–128, March 1996.

[4] A. Bouillard, L. Jouhet, and E. Thierry. Tight performance bounds
in the worst-case analysis of feed-forward networks. In Proc. IEEE

INFOCOM, pages 1–9, March 2010.
[5] S. Chakraborty, S. Kuenzli, L. Thiele, A. Herkersdorf, and P. Sagmeister.

Performance evaluation of network processor architectures: Combining
simulation with analytical estimation. Computer Networks, 42(5):641–
665, 2003.

[6] C.-S. Chang. Performance Guarantees in Communication Networks.
Telecommunication Networks and Computer Systems. Springer-Verlag,
2000.

[7] R. L. Cruz. A calculus for network delay, Part I: Network elements in
isolation. IEEE Trans. Inf. Th., 37(1):114–131, January 1991.

[8] P. Goyal, S. S. Lam, and H. M. Vin. Determining end-to-end delay
bounds in heterogeneous networks. Multimedia Syst., 5(3):157–163,
1997.

[9] C. Guo. SRR: An O(1) time complexity packet scheduler for flows in
multi-service packet networks. IEEE/ACM Trans. Netw., 12(6):1144–
1155, December 2004.

[10] Petr Jurcik, Anis Koubâa, Ricardo Severino, Mário Alves, and Eduardo
Tovar. Dimensioning and worst-case analysis of cluster-tree sensor
networks. ACM Trans. Sen. Netw., 7:14:1–14:47, September 2010.

[11] H. Kim and J.C. Hou. Network calculus based simulation: theorems,
implementation, and evaluation. In Proc. IEEE INFOCOM, March 2004.

[12] J.-Y. Le Boudec and A. Charny. Packet scale rate guarantee for non-fifo
nodes. In Proc. IEEE INFOCOM, pages 23–26, June 2002.

[13] J.-Y. Le Boudec and P. Thiran. Network Calculus A Theory of

Deterministic Queuing Systems for the Internet. Number 2050 in Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Germany, 2001.

[14] A. K. Parekh and R. G. Gallager. A generalized processor sharing
approach to flow control in integrated services networks: The single-
node case. IEEE/ACM Trans. Netw., 1(3):344–357, June 1993.

[15] G. Rizzo and J.-Y. Le Boudec. Pay bursts only once does not hold for
non-fifo guaranteed rate nodes. Performance Evaluation, 62(1-4):366–
381, 2005.

[16] J. Schmitt, N. Gollan, S. Bondorf, and I. Martinovic. Pay
bursts only once holds for (some) non-fifo systems. Technical
Report 378/10, University of Kaiserslautern, Germany, July 2010.
http://disco.informatik.uni-kl.de/publications/SGBM10-1.pdf.

[17] J. Schmitt, F. Zdarsky, and M. Fidler. Delay bounds under arbitrary
aggregate multiplexing: When network calculus leaves you in the lurch...
In Proc. IEEE INFOCOM, April 2008.

[18] T. Skeie, S. Johannessen, and O. Holmeide. Timeliness of real-time IP
communication in switched industrial ethernet networks. IEEE Trans.

Ind. Inf., 2(1):25–39, February 2006.


