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Invokation of BB

Abstract for global admission control -
Providing quality of service (QoS) in large-scale networks like the Internet in- \ l, \
herently needs to deal with heterogeneous network QoS systems. Therefore, the ’ V4 \ RSVP/IntServ

interworking between different network QoS systems is of high importance. In Access Networks

this paper, the interworking with respect to a basic characteristic of network
QoS systems, the time scale of the system, is under investigation. The time scale
of a network QoS system is its speed of reaction to individual requests for dif- IntServ/DiffSery
ferentiated treatment of units of service. A slow time scale system will prefer gqge pevice
requests to arrive with a low frequency and persist unaltered for a substantial pe-

riod of time while a fast one is able to support much higher arrival rates of re- / K —
quests and is thus more amenable for short-lived units of service. Obviously,
when overlaying a slow time scale QoS system over a faster one, there is no
problem. However, and that is a more likely case, for the overlay of a fast time
scale system on a slow one, there is a mismatch to be mediated at the edge be-
tween the two. The technique that is applied at an edge device for this mediation
is calleddecouplingof time scales. Decoupling can also be viewed as aggrega- Figure 1: Combined local and global admission control.

tion of requests in time in contrast to spatial aggregation on the data path. In the

paper we develop an adaptive heuristic scheme to deal with decoupling afRESV messages for each other edge device in a given time period and

| 1 Incoming
Flows

evaluate this scheme by extensive simulations. would query the BB for each of these requests. Then the BB would
have to deal withN x (N-1) x M requests in the same period. Note that

1 INTRODUCTION the problem is not solved by spatial aggregation approaches like, e.g.,

1.1 Motivation [4] or [5] since for each of tht! RESV messages the aggregate would

Different time scales of QoS systems may arise due to different Qogave to be rearranged. I—_|ere a decoupl_ing of the di_ffe_rent time scales is
architectures like RSVP/IntServ (Resource reSerVation Protocol/ Inte?€cessary. The decoupling can be achieved by building “depots” of ca-
grated Services) [1], DiffServ (Differentiated Services) [2], or ATM pacity which stablllzg the f!uct_u_atlons of the “nervous” demand curve
(Asynchronous transfer Mode) [3] being used but may also be due tfﬁ_)r backbone capacity by |_nd|V|duaI requests. _From ano_ther perspec-
different QoS strategies followed by providers even if they employ théiVe: the decoupling technique can also be viewed as introducing a
same QoS architecture. Choosing different QoS architectures as wéPmpined local and global admission control for the DiffServ/BB net-
as different strategies results from serving different needs, e.g., for affoTk- Global admission control is only invoked whenever local admis-
access and backbone provider. An access provider that has a compa? control at an edge device runs out of resources in its capacity
tively moderate load and directly connects to end-systems may favor @POt. This scheme allows to trade off resource efficiency for a more
fast time scale system responding immediately to the end-systems ré@Ple and long-term capacity demand presented to the BB.

quests. A backbone provider that connects access providers respective!Vhile the problem of different time scales is very obvious for the de-

ly offers transit services is generally faced with a drastically higherScribed interoperation of RSVP/IntServ over DiffServ/BB, it also oc-
load of individual transmissions, so that reaction on the time scale ofurS in other scenarios. For example, even in a homogeneous RSVP/

individual requests is usually not possible and a slower time scale syd0tServ case where both, access and backbone providers, use RSVP/
tem needs to be enforced. IntServ, the backbone provider may decide to build up so-called RSVP

When different time scales are in operation in heterogeneous nefdnneéls [6]in which the individual requests from the access regions are
work QoS systems, it is simply not possible to query the underlyingfed' Again, the backbor_1e prOV|d'er can t_ry to remain scalable on the
QoS system each time an overlaid system is altering its state. Here, tff@ntrol path by decoupling the different time scales and not rearrang-
system operating on a faster time scale needs to be smoothed whii¢ the reservations for tunnels whenever an individual request is re-
overlaying it onto a system that operates only on slow time scales. A€1ved by an edge device. The same applies to a backbone provider

realistic configuration for access and backbone providers may be, e.gat operates an ATM network where several individual requests are

that access providers use RSVP/IntServ to suit their customers’ neeg8!lected together in a single virtual circuit.

while a backbone provider uses DiffServ with a Bandwidth Broker NOte that the slow time scale of an underlying QoS system may not

(DiffServ/BB) to allow for some dynamics but on a slower time scale, 8XPress itself in being unable to process requests for QoS at short time
This scenario is shown in Figure 1. scales but by the fact that significant setup costs are incurred for QoS

Here it is also very obvious why a BB is generally not able to reacteduests between different administrative domains. Such a scheme of

to individual RSVP requests that are arriving at edge devices betwee®©S tariffing is an instance where a QoS strategy of a network provid-
access and backbone provider. Because if it did, the BB would need g restricts the capabilities of the employed QoS architecture. A possi-
operate at a throughput of requests that is proportional to the square Bf¢ reason for this may be, e.g., that the charging and accounting
the number of access providers it serves - that is not scalable. To s€¥Stem is not able to deal with a large number of individual requests
this, assume each of edge devices would hawd (new or modified) ~ Since this involves a lot of operational costs.



1.2 Outline 2.2 Some Observations about Complexity
In the next section, a closer and more formal look at the generic probFhe possible set of covers for a CDC is, of course, unlimited without
lem of decoupling time scales for heterogeneous network QoS systenfisrther restrictions being made. One observation is, howeverRiRht
is undertaken. Then solution techniques based on a heuristic adaptatiatways is aight cover. A coveC of a CDCR is called tight iff
scheme are devised and evaluated by simulations, before, at the end,
related work is reviewed and some conclusions are drawn. %‘rc‘i 0{1nY ED %ﬂi 0{1n3 B ©)
O oo 0

2 DECOUPLING TIME SCALES - THE PROBLEM . ) )
i.e., the step heights of the cover are a subset of the step heights of the

AND TS COMPLEXITY CDC that is to be covered. The simple fact tR#'is necessarily tight
2.1 Problem Statement can be seen if one assumes that it is not. In that case it would be possi-
In order to assess the complexity of the decoupling problem, we firsble to lowerR°Pfor a step where it is not tight to the nearegl and it
try to state the problem in a more formal manner. We model capacityvould still be a cover oR but with lower costs (at least ifl > 0),
as one-dimensional here, e.g., a rate resource that may be requestdaich, of course, contradicts the cost-minimality. The space of tight
from a BB for a certain path across a DiffServ domain. This is certainlycovers is restricted as the following theorem states.
simplifying as more capacity dimensions like, e.g., a buffer resourcd heorem 1: The state space complexity for tight covers of a CDC
may be involved. However, the resulting problem can be generalizediith n steps i<0(2"%).

al_beit at the cost of a higher complexity (see [7] for a discussion Ofp.qqf We show this by giving a worst-case example of a CDC with
this). Hence, we can model tikapacity demand curve fer the over-  gionq where the number of strict covers is inde&d Such a CDC is
laid QoS system as a step function either monotonically increasing or decreasing; an example of a mono-
n® tonically decreasing CDC (for= 6) is depicted in Figure 3.
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So,nRis the number of steps herblF;{ siFf aq%R are ths height, the
start and the end of stépFurthermore, we denote = e, —s; i as
the length of step -

From the capacity demand curve (CDC) for the overlaid system, the ) o 1. Time
CDC of the underlying system is derived. A necessary condition onthe ~ Figure 3: Example CDC yielding 2" tight coversif = 6 here).
CDC of the underlying QoS system is thativersthe CDC of the e fyrther on restrict without loss of generality on monotonically de-
overlaid system. A cover of a CDRis simply defined tobe a CD®  ¢easing CDCs. Let(n) be the number of possible tight covers for a

for which R(t) = R(t) Ot. An illustrative example of a CDC and a ecreasing CDC with steps as in Figure 3. We show the statement of

govetr for itis shown in Figure 2. the theorem by induction on the number of steps:
apacity
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Figure 2: Example CDC with a cover. i=o -

For the underlying QoS system, it is assumed that a slow time scale If We assume that step-1 of the CDC that was added for the induc-
is enforced by the introduction of setup costs for requests from thdon step is the first, i.e., the highest one, then the first equation is due
overlaid system. An alternative for enforcing a slow time-scale wouldt© the fact that we have+1 possibilities for the length of this step in a
be to only allow for a certain number of setups in a given period ofStrict cover of this CDC. One is just to prolong it to the end of the CDC.
time. The latter, however, is less flexible and can usually be achievedis alternative is represented by the first addend (the 1), the other al-

by choosing setup costs adequately. ternatives are captured by the sum term, and correspond to prolonging
The cost of a CDQR for an underlying QoS system in a given time the first step to an increasing number of steps of the CDC to be cov-
period ko, t1] is defined as ered, for which the rest can then be covered by the same procedure but

t lesser steps. This allows then to apply the induction assumption, i.e.,

R the theorem’s statement, which eventually confirms the theorem.
c(RIF, U) = Fxn +U><J’R(t)dt 2) -
to So, we see that while strict covers are limiting the space of possible

whereF are fixed setup costs involved for changing the requested caecovers, there is still a huge search space in which the cost-minimal
pacity level andU are variable costs per capacity unit. We assumecover, for which we are naturally striving, may be located.
these parameters do not change in the planning period, although agairll of the discussions so far have silently assumed that the search of
this is easy to generalize [7]. the cost-minimal cover of a CDC could take place under certainty
Under these prerequisites, decoupling of QoS systems with differerdbout this CDC. That is, of course, not the case in general. It would be
time scales can be formulated am@imal-cost CDC covering prob- the case if the overlaid system used only advance reservations (see,
lem i.e. e.g., [8] or [9] for this concept). However, for immediate requests
Find a CDCR for R such that(R|F,U) is minimal. which we are focussing on here, the CDC that is to be covered is not
The cost-minimal cover of a CDC R is denoted 8% known beforehand and for every step of the CDC, a decision has to be



made whether the cover should follow this step or not. In fact, due to Both adaptation modes have three parameters with which a flexible
little experience with real network QoS systems, there is not even atrade-off between adaptation complexity and the cost performance of
established theory for statistical models on how a CDC could look likethe optimum-directed adaptation can be achieved:
although one could argue that some of the models known from teleptt. Thefrequency of adaptatiodetermines how often the adaptation
ony could be applicable to some parameters of the CDC. The parame- of the heuristics parameter is carried out.
ters in question of the CDC are 2. Thetime window of adaptatiodetermines the length of the past
e the step IengthiR , which is a product of the interarrival times of  period that is taken into account for the adaptation.

the individual requests at an edge device and the duration of sucB. The accuracy of adaptationdetermines how thoroughly the

requests, and R parameter space is searched during the optimization problem for
» the step height;” , which corresponds to the aggregate capacity the adaptation.
required to serve the requests. It might seem that the adaptation in performance space does not de-

Especially, the latter parameter is extremely difficult to model as thergoend on the optimum cover to be computed as it is only a constant in
is no practical experience with it. It depends upon which applicationghe objective function. However, if one takes into account the accuracy
are actually using reservations and how widely resource requirementdf adaptation parameters, it is obvious that without the notion of a tar-
are differing for actual reservation-based applications. The first paramget cost to strive for the heuristic, this parameter cannot be set reason-
eter, the step length, might be modeled by markovian models knowably. Thus, in both modes of adaptation the optimal cover for the past
from teletraffic theory [10] as the characteristics might be similar (atCDC directs the adaptation. Therefore the whole scheme is called
least as long as the individual requests correspond to personal comm@DAH (Optimum-Directed Adaptive Heuristic).

nications). However, also for this parameter, there is a certain degre& & M C
of uncertainty whether traditional models fit. ARCHING FOR THE INIMAL OVER
UNDER CERTAINTY

3 ADAPTATION SCHEME FOR DECOUPLING As the ODAH scheme depends heavily on being able to compute the

From the observations of the preceding section, the need for adaptiyg,si-minimal cover for past CDCs, the problem of finding such a cover
heuristic techniques when tackling the decoupling problem under ungor 3 CDC under certainty is investigated in this section. First, an ex-
certainty about the CDC can be derived. The use of heuristic techyaystive search technique to deterministically find the cost-minimal
nigues is necessary since the involved problem is fairly complex evepgyer is presented. This approach, however, is computationally very
under certainty as discussed in the preceding section. Furthermore, @gnensive for CDCs with a considerable number of steps. Therefore an

statistical models for CDCs are generally not available, we argue fopexpensive approximation technique based on the optimal algorithm
the use of adaptation as a way to learn the statistical properties of thg jevised.

system in an on-line fashion. This is also highly useful in an environ-
ment where there are unpredictable, but rather long-term quctuationé'
in the demand for capacity. In general, the adaptation to behavior that
would have been “good” in the past is the best a heuristic technique ¢
do under complete uncertainty about a CDC.

The question what is “good” behavior can be assessed by compari
the outcome of an on-line heuristic with the results of applying a tech- ROP‘(t) =R(t) for t O [SE, eE] with
nique to solve the cost-minimal covering problem for the known CDC
from the past. In the next section, such a technique as well as an inex- 0. R O Ry. mN
pensive approximation is introduced. Hence, let us assume that we k= El O{1.., nﬁ ‘hi = ma%h " {1, n'? Bg ©)
have a technique to solve the cost-minimal covering problem for the . ) . .
CDC of past system behavior. If we further on assume that a para- Furthermore,Flet algplles that the shapes of Fhe right and left side from
metrized heuristich(8) is applied to the on-line cost-minimal cDC the peak, i.e.[sy, SF_] anfle;, e ;] do not influence each other. So,
covering problem, there are essentially two different modes of adaptdf€ question foR"is how far to prolong the peak step to the left and
tion that can be directed by good behavior as achieved by the cost-mifi¢ the right. These observations can be combined into a divide-and-
imal cover of the past CDC: conqger strgtegy to .recurswely.sea.lrch the space of strict covers by the
Adaptation in Action Space. In this mode, the heuristic’s parame- algorlthm given in Flgurg 4, which is denoted OPT. .
ter (vector)0 is adapted such that the behavior of the CDC cover pro- OPT finds the cost_—mlnlmal cover ofa CDC u_nder all cwcumstanceg,
duced by applying the heuristic deviates as little as possible from th?éet itis less Expensive than a total enumeration of the_space of strict
optimal cover with respect to some characteristic as, e.g., the numb&PVers bY using the observation from (6) and by pruning th_e search
of steps of the optimal covers. More formally, if we define the similar- space using a lower bound on the cosis for further prolongations.

ity characteristic of two coverR andSass(R,S) (with higher values of OPT has been implemented in a discrete-event simulation environ-

S(.) representing higher similarity), this means the adaptation problerﬁnem which simulates the overlaylpg of a fast time scale reservation
is system onto a slow one. The environment allows to generate CDCs

max.s(H(8), O) with different statistical properties and to apply decoupling techniques
) ' on these CDCs in an on-line as well as an off-line manner. Using this

whereH(8) andQ represent t_he covers produced by applying heurIStICsimulation environment, OPT has been tested on a number of CDCs in
h(B) and the optimum technique.

Ad ion in Perf S In thi de the heuristi order to obtain a feeling how complex it would be to compute a cost-
aptation in erlormance space. In this mode the heuristics pa- \pinimal cover. An example CDC and the cost-minimal cover that has
rameter (vector® is adapted such that the cost of the cover producecJ;

\ L ; . . . een computed by OPT is given in Figure 5.
by applying the heuristic deviates as little as possible from the optima For the simulated CD®, we have had the following (arbitrary) set-

cover_’s cost. Again, this can be stated formally as tings: nR = 40; hiR 0110 andIiR 0[L6 drawn from uniform ran-

. mln..c(H(e)) ) C(,O) ) ) . dom distributionsF = 25 andU = 1. This yields a cost af(R) = 1809.
Discussions on which mode is better suited to our decoupling probleny,qer these settings the cost-minimal co@as computed by OPT
are postponed until Section 6 when the individual building blocks thas the following characteristic® = 6 andc(0) = 1353. Hence, had
Fhe scheme like the employed _heuris_,tic and_ the teChniql_Je for compugye optimal cover been used for decoupling the two QoS systems as
ing optimal covers have been investigated in more detail. simulated here, about 25% costs could have been saved. The saving in

1 Finding the Optimal Cover

Simply searching the space of strict curves is prohibitively expensive
Theorem 1 states. An observation that can be mad@®fbis that

for the peak step of the regarded CIR1@ takes the same value for the

Iﬁ]eriod of this step, i.e.,



OPT(R, a, b) // R is the CDC, a and b are the start and
/I end times for which to find an optimal cover
if (@a!=b)
find k // as defined in Equation (6)
for | = k-1 downto a
prolong R to the left till step |
leftCost = OPT(R, a, e[l]) + cost for prolongation
if (leftCost < minLeftCost)
minLeftCost = leftCost
left =1
LB = sum of variable costs for steps from a to |
+ cost for prolongation
if (LB > minLeftCost)
break
forr=k+ltob
prolong R to the right till step |
rightCost = OPT(R, a, €[l]) + cost for prolongation
if (rightCost < minRightCost)
minRightCost = rightCost
right=r
LB = sum of variable costs for steps from r to b
+ cost for prolongation
if (LB > minRightCost)
break
return minLeftCost + minRightCost +
(s[right]-e[left))*h[k]*U + F
else
return O;

Figure 4: Algorithm to find cost-minimal cover of a CDC (OP[T).
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Figure 5: Cost-minimal cover computed by OPT.
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lustrates that eveBgn(n) is too large to be searched exhaustively (al-
though the pruning is quite effective on average so that only a small
part of the search space needs to be traversed). So, while the search
space is diminished by the recursive operation of OPT, it is still too
large if the number of steps of the CDC is becoming larger.

An alternative formulation of the problem as an integer program is
given in [7]. This opens up a standard set of operations research tech-
niques to deal with the problem, however, all of these are computation-
ally very expensive in the worst-case. That means, even if they
produce the cost-optimal cover in a reasonable time on average, the ex-
ecution times might vary considerably. This is something the ODAH
scheme cannot deal with as it requires the optimum to be computed fast
for recent past behavior to be able to adapt heuristics best. Therefore,
we go a different way and try to find a good approximation of OPT that
is computationally inexpensive.

4.2 Finding Near-Optimal Covers

In the ODAH scheme the optimum is required to adapt parameters
from heuristics to “good” past behavior. In the preceding section, it has
been shown that the determination of the optimum for a past CDC is
very compute-intensive if the CDC becomes too large in terms of
steps. That means if the time window of adaptation becomes moderate-
ly large, and that is generally desirable in order to take more past be-
havior into account, then it is more suitable to compute an
approximation of the cost-minimal cover for the adaptation of the heu-
ristic instead of the absolute optimum.

So, in this section, an approximation approach to compute the cost-
minimal cover is introduced. It is based on the strategy followed by
OPT but instead of trying all prolongations from a peak step for a cer-
tain part of the regarded CDC, it only compares the cost for prolonging
the level of the peak until the next peak (in both directions certainly)
with the sum of a further setup cdstand the cost of the subsection be-
tween the peaks being calculated by this strategy itself. We call this al-
gorithm NEAROPT. It uses the notion of OPT to cut the problem into
halves wherever possible and always tries only two different choices
for prolongation. To compare exactly those two cases for each step of
the algorithm is motivated by observations of the covers that were pro-
duced by OPT and which mostly used just either of these extremes.

cost, however, is, of course, totally dependent on the cost pararfeter
andU. If F is very high compared tt, then the cost savings can be

SThe detailed working of NEAROPT is given in Figure 6.

considerably higher.

Larger values fonR are generally not possible as ev@h= 40 al-
ready took up to a few seconds on average for the computations from
OPT (on a 400 MHz Pentium-Il processor). That OPT is increasinglyj
expensive to compute can be seen when observing that the average sjze
of the space of coverSy(n) searched by OPT for a CDC withsteps
is recursively defined as (corresponding to the operation of the algo
rithm)

-1 n-1

Nkt , O
n%zaz%m—z%mﬂg
K=19=1 i=k

So(n)

@)

n -1 n-k
1

ot O
153,03 S0 3 Sl

k=IQ=1

NEAROPT(R, a, b) // R is the CDC, a and b are the start and

if (a!=b)

else

/I end times for which to find an optimal cover

find k // as defined in Equation (6)
leftCost = NEAROPT(R, a, e[k-1]) + F
if (leftCost < (e[k-1]-a)*h[K]*U)
prolong R to the left till a
else
leftCost = (e[k-1]-a)*h[k]*U
rightCost = NEAROPT(R, s[k+1], b) + F
if (rightCost < (b-s[k+1])*h[k]*U)
prolong R to the right till b
else
rightCost = (b-s[k+1])*h[k]*U
return leftCost + rightCost + (s[k]-e[k])*h[k]*"U + F

return O;

Figure 6: NEAROPT algorithm.

A comparison o5(n) with Sy(n), the size of the space of tight covers,
for some example values ofis given in Table 1. This is intended to

The following theorem shows that NEAROPT is indeed substantial-

give an illustration of how much is saved by OPT when compared to dy less expensive than OPT and should be easy to compute for all rea-
total enumeration of tight covers. At the same time, of course, it also ilsonable time windows of adaptation.

Table 1: Growth of search spaces.

n 10 50 100 200 500 1000
So(n) |85.6| 1.61e+6| 3.78e+9 2.75e+l4  1.72e+p4
Sr(n) 512| 1.13e+1§ 1.27e+30 1.6le+p0 3.27e+150 1.07e$4301

Theorem 2:NEAROPT has a time complexity @{(n).
Proof: Let C be the time consumed for the operations in a single
NEAROPT call without the time consumed by the recursive calls to
2.43e}35 the NEAROPT subroutine. Then the total timign) for the execution
of NEAROPT on a CDC with steps is given by

T(n) = T(k=1)+T(n-K) + C for somek O {1, n}

(8)



The statement of the theorem is shown by induction on the number of X

steps of the CDC. The induction statement is P o
T(n) =nC (9) 10 Original CDC
Then the induction works as follows I I m— OPT’s cover
n=1: s I I == == NEAROPT's cover
() =C (10) ' |
n - n+1: for somek 0 {1, n+1} 26| I
T(n+1) = T(k=1)+T(n+1-k)+C (11) g L
= (k=1)C+(n+1-K)C+C = (n+1)C -
Of course,T(n) = nC = O(n) and thus the theorem holds.
u 2
So, NEAROPT has linear time complexity and is thus inexpensive to -
compute. The question certainly is how good the results are that can be o = — = — =0
achieved with NEAROPT. Therefore, a simulative comparison of Time

NEAROPT with OPT is done. As a metric for this comparison, we use
the achieved cost saving, denoted by ACS(NEAROPT) and defined as

¢(R)—c(R"°?

Figure 7: Covers computed by OPT and NEAROPT.

t To investigate NEAROPT-K’s potential and to see how different
t) 0[—o, 1] values forK perform, another set of simulations with the same param-
c(R) —c(R°PY eters as above has been performed. The resultin% means of the
opt; ; achieved cost saving for different valuesgfdenoted b CXK in
whereR"°Plis the cover as computed by the NEAROPT algorithm (lat- _ 9 _ _ W , _
er on the ACS(.) metric will also be used for other decoupling heuristhe different scenarios are given in Table 3 (note that NEAROPT-0 is
tics). As above, we usE = 25 andU = 1 for the fixed respectively ~€qual to NEAROPT).

ACY NEAROPY= (12)

variable cost of capacity from the underlying QoS system and draw the
capacity demands; of the overlaid QoS system from a uniform ran-

Table 3: ACS(NEAROPT-K) for different scenarios.

dom distribution over [1, 10]. For the step lendtlof the generated Scenario F Scenario M Scenario |5
CDCs, we use 3 different scenarios, called F, M, and S, for whish HACS(O) 0.97 0.92 0.86
drawn from [1, 3], [1, 6] and [1, 10]. This corresponds to fast, medium, T
and slow fluctuations of the CDC. For all scenarios, we repeat the sim- u S 0.97 0.95 0.92
ulations 100 times./;l'gée samp/i%gweans and standard deviations of the ACS2) 0.08 0.96 0.5
ACS(NEAROPT),u andy , and the average number of steps H ' : :
for the covers produced by OPT and NEAROR?PT andnNEAROPT LS 0.08 0.96 0.95
are given in Table 2.
. . ACY4
Table 2: ACS(NEAROPT) for different scenarios. H @ 0.98 0.97 0.96
Scenario F | Scenario M]  Scenario B pAcss) 0.98 0.97 0.96
pAcs 0.97 0.91 0.87 LACS10) 0.98 0.97 0.96
ACS . .
o 0.002 0.008 0.01 It can be seen that the use of K-repair actually pays off, especially for
nOPT 34 6.1 12.6 scenario S. The experiments also exhibit that small valu&s efg., 3
' : ' or 4, are performing well. Considerably larger valuesKope.g., 10, do
NEAROPT e ' o T
n 3.7 8.3 15.1 not achieve better ACS values. This is, of course, beneficial with re-

) . spect to the efficiency of NEAROPT-K.
From these experiments, it can be seen that NEAROPT performs very |, conclusion, the experiments indicate that NEAROPT-K with

well if the CDC is fluctuating very fast, and behaves worse if the fluc- ¢ 411 values foK is a good approximation technique for finding near-

tuations become slower, though still doing pretty well. This is due tooptimal covers of a known CDC. It is very fast as its time complexity

the fact that for fast fluctuations as in F the problem actually becomeg; jinear in the number of steps of a CDC (for the rather small CDCs in

simpler because it rarely makes sense to change the capacity level agjt gimulations above it could be computed in the ordarsekcs on a
is expensive compared to the time period for which the fixed setugyng_pmHz Pentium-Il processor). So, it can serve as substitute for the
costs can be amortized. Furthermore, it can be noticed that NEAROngtimum calculation within the ODAH scheme if larger time windows

has a tendency to change capacity levels too often for all scenarios. Agz 4 qantation are to be used than the exact technique for determination
tually, when taking a closer look at the covers produced by NEAROPT ¢ ihe cost-minimal cover can accommodate.

and OPT, it was observed that NEAROPT often did not prolong capac-
ity levels for peaks long enough. That often produced situations as d& SMPLE HEURISTIC FOR DECOUPLING -

picted in Figure 7 (indicated by ax), where a small prolongation to THRESHOLDED DEPOT EXCESS

the left or right from a peak would have yielded the optimum IOGhaV'OrSo far, it has been investigated how to compute covers under certainty

(Figure 7_is one partic_ular simulation outcome O.f type scenario S). Thi%bout the CDC that s to be covered, yet the decoupling problem needs
observation led to a simple improvement technlquetfor the cover comy, compute covers under uncertainty. In this section, a very simple, yet
puted by NEAROPT: try to prolong each peakR°Plup toK steps

(of the CDC) to the left and to the right and see if an improvement CarLeasonable heuristic is introduced that deals with the problem under
ncertainty at each single step in time. It is called thresholded depot
be achieved. We call this improvement technique K-REPAIR and th y g P b

S . %xcess (TDE) as it ensures that the capacity depot held for decoupling
combination of NEAROPT and K-REPAIR is denoted as NEAROPT-iS never above a certain threshold.

E'Eg:;g%u_lfse’ dKI;repalr_ 1S anD(n]z algo(;lthm for t?‘ Irxel\?EKAaRn(()jP?rsK’ Note that TDE is to be regarded as an illustrative example for how
and R-repair are periormed sequentially, ) Sparametrized heuristics can be integrated into the ODAH scheme and

time complexity is stllo(n). how they can be improved by this integration. There are certainly



“smarter" heuristics than TDE._ However, the e_rnphasis_is on invegti-_ Table 4: ACS(TDE) for requests with different lifetimes.
gating what results can be achieved by adaptation of a simple heuristic

like TDE (see Section 6). short-lived | medium-lived | long-lived
The exact working of the TDE algorithm is given in Figure 8. A slot- requests request requests
TDE(t, alpha) // R is the CDC and alpha is the ACS
/I the relative threshold parameter UO,1 0.84 0.65 0.36
if (R[t] < alpha*D[t-1] || R[t] > D[t-1])
1= RO ohSs 0.002 0.003 0.005
D[t] = D[t-1]
Figure 8: TDE algorithm. n'PE 0.1, NOPT4 1.8 0.2 0.2
ted time is assumed for TDE and the algorithm is applied in every time uégs 0.71 0.84 0.51

slot. If the CDC rises above the current capacity depot, Dé-1) <
R(t), this change is always followed (assuming that there is enough ca- cé\gs 0.004 0.001 0.004
pacity at the underlying QoS system). Whenever the CDC takes a step '
downward, i.e., iR(t) <R(t-1), TDE checks whether the step is smaller | TDE 05, NOPT4 9.4 23 0.8
than a certain fractiom [0 [0,1] of the old level of the capacity depot

(D(t-1)) and if that is the case, TDE follows this step. ACS

) i _ e 0.19 0.42 0.81
An obvious refinement of TDE could be to always leave a certain :
safety margin between the depot level and the CDC when taking a step ACS 0.003 0.008 0.002
downward. Another would be to integrate some memory about past %09 ' : :
steps ir_]to the decision_ to follow a step or not, which would be particu- ™55~ Nopa 278 168 >y
larly suited to non-stationary CDCs. However, as noted above, here wg N /n : : :

do not want to pursue such refinements any further but stay with theh bsolut . - " v high der of itud
simple TDE as it is. Despite its simplicity, TDE does some reasonablé neae\l/es;Z;e()a) cost saving was extremely high (one order of magnitude

things: It does not increase the capacity depot if there is no need, which . o
is correct since for time-invariant setup costs, as we assume here, th tcan be seen from_the _results that for different Ilfet!mes of req_uests
is no reason to increase a depot without absolute necessity. Further- E performs best with different \{alueg of For short-l!vgd flows, it
more, it gives downward steps a higher probability if the depot is com?® QOOd.tO se ra}ther low, for med|um-||yed requests 't. 1S good to set
parably high to the average level of the CDC. This is intuitively thelt at an intermediate Ievgl and for Iong—_llved requests, it is best chosen
right thing to do since for high levels of the depot there are higherVery high. Furtht_armore, itcan be perceived that wrong values t@m .
chances of wasting capacity and consequently incurring higher cost avea deyastatlng effect for the performance OT TDE. For exaomple, n
Of course, the value of parameteiis crucial for the success of TDE. the short-llvgd reques_ts case setting 0.9 only ylel_ds about 20./0 of
If a is set too high, then TDE is too “nervous”, and will produce too the cost saving pOtem'a!' S0, TDE cannot be cons_ld_ered t _dellver aro-
many changes in the level of the depot and if it is set too low, TDE isbust behavpr if the lifetimes of requests vary. It is interesting to note
t00 “lazy”, and will waste a lot of capacity. that for aI_I I_<|nds of flows_ the value a th_at yields the best results for
TDE exhibits for the ratio of steps for its cover and for the cover of

Again, simulations are used to evaluate the potential of TDE for de- . . ;
g P NEAROPT-4 values fairly close to 2 while the worseroduce ratios

coupling of QoS systems that operate on different time scales. Yet, thi f this. | icul o cl i is th ;
time an attempt is made to use more realistic and significantly Ionge}iar apart from this. fn particuiar, a ratio close to one as Is the case for
DE with a = 0.5 and long-lived requests did not achieve a good re-

CDCs. The CDCs are produced by simulating individual requests with

poisson arrival and exponential holding times. They are thus based o%m' The likely reason for this is that TDE cannot cope with the same

markovian models as known from teletraffic theory. The capacity de_number of steps as NEAROPT-4 FO proqluce a good cover..
The overall result from these discussions is, not surprisingly, that

mand for each individual request is still drawn from random distribu- - .
E alone cannot guarantee to deliver good covers for decoupling

. . . L D

tions as for this quantity there are no known statistical models. In orde L ; ; oo

to assess the covers generated sequentially by TDE, we also app S systems with different tlm_e scales but an |ntegrat_|on in the ODAH
heme to self-control the settingainstead of setting it manually to

NEAROPT-4 to the CDCs in an off-line manner once these are knowr? . g o
(to use OPT as a reference value is computationally infeasible for thd®Me arbitrary value may be a promising direction.

large CDCs we used). The cover produced by NEAROPT-4 is the§ TDE IN THE ODAH SCHEME

used to get an approximate ACS for TDE's covers that is, of course, th this section, the integration of TDE into the ODAH scheme is de-
little bit higher than the correct ACS value. The aggregated results 0écribed and the resulting heuristic, called ODAH-TDE, is evaluated

100 simulations :riggo"(‘j’n in Table 4. o I 4 stand ggain by simulations. This integration is motivated by the previous dis-
Herep, > andoyg enote again the sample means and standafffissions on TDE's sensitivity to the parameter

deviations from the simulations for different vaIuesmfnTDE’ % and . .
nNOPT44re the average number of steps produced by TDE (with pa-1 Embedding TDE in ODAH
rameter) respectively NEAROPT-4. For each simulation 5000 indi- As discussed in Section 3, there are two modes of adaptation in the
vidual requests were generated with poisson arrival=(6) and  ODAH scheme: adaptation in performance space and in action space.
capacity demands drawn randomly from the uniform distribution overn principle, both kinds of adaptation are possible for ODAH-TDE. In
[1,30].* For the lifetime of a request, we simulated three different sceboth cases, we use NEAROPT-K instead of OPT if the time window of
narios with short-, medium and |0ng_|ived flows by drawing from an adaptation is too Iarge for OPT to compute the minimal cover in area-
exponential distribution with parametgr= 40, 100 and 400. In order Sonable time (which is the case in most circumstances).
to model very different time scales for the two QoS systems, we set The adaptation in performance space works by simply adjusting
F = 2000 andJ = 1 for all simulations (note that under these settings TDE’s parametea such that
c(RTPE N —¢(RP) (13)

" Cata, however Smulations indicated thatthe resuts are not very senafiveo 1S Minimized. This minimization is done by a simple recursive grid

these parameters. search [11] through the interval [0,1] for parameteas there is no




simple relationship betweanandc for a more intelligent search to ex- same kind of CDCs generated from different types of requests as in
ploit. Section 5 is used in order to allow for a comparison of ODAH-TDE
For the adaptation in action space, it was decided to use the numbueiith the values for plain TDE given in Table 4. Again, NEAROPT-4 is
of steps as basis for the similarity relation between covers, so that iapplied to the off-line problem under certainty about the generated
this case CDC in order to be able to compute the approximate ACS metric for
TDE, o OPT ODAH-TDE.

. " ) .—F_%Fx " . i (14) Although, we have experimented with both adaptation modes we
is to be minimizedRF is a relaxation factor that compensates for the \gncentrate on adaptation in action space for the simulations here,

observation that TDE cannot produce good covers with the samgince poth modes performed very similar and, as we argued in the pre-
number of steps as OPT respectively NEAROPT-K. In the simulationg.eing section, adaptation in action space is more efficient due to the
below, we always seRF = 2 since experiments showed good results |g¢q compute-intensive adaptation step.
for that value (see also Section 5 for a discussion of this). For the min- The simulations are targeted at evaluating different adaptation pa-
imization in this case we can usg an interpolation search [11] $ince \ameters for ODAH-TDE, in particular different time windows and ad-
andn have a simple relationshipr _ is monotonically increasing gntation frequencies. To limit the possible number of alternatives for
in a. This is, of course, much more efficient than the recursive gridine adaptation parameters, it has been decided to investigate ODAH-
search for the adaptation in performance space mode. TDE algorithms for cases where the time window of adaptation equals
The adaptation parameters for both modes are more or less the samigs reciprocal value of the frequency of adaptation. In these cases, all
so we discuss them together: past information about the CDC is used exactly once fadaptation
Frequency of Adaptation. This parameter determines partially how epochas we call it. So, at the end of an adaptation epoch, the adapta-
expensive the technique is in terms of computational effort because thgyn step is carried out using only the data collected about the CDC
computation of the optimal or even the near-optimal cover is certainlyyithin this epoch. In the simulations ODAH-TDE works with adapta-
much more compute-intensive than the simple TDE algorithm on itjon epochs of 20, 100, 200, 500, and 1000. For an adaptation epoch of
own. So, if the frequency of adaptation is very high, e.g., every timezg ODAH-TDE uses OPT to compute the cost-optimal cover against
period, ODAH-TDE can become a very expensive technique while litywhich the adaptation is performed whereas for the larger epochs
tle new data collected about the CDC may not change the adaptatiqdE AROPT-4 is applied since OPT is computationally infeasible for
process significantly and hence not justify the effort. On the othefhese. In all cases ODAH-TDE starts with= 0.5, and adapts itself in
hand, if the adaptation frequency is too low, then ODAH-TDE may bethe course of time.
too slow to react on changes in the CDC. Hence, a good trade-off be- A in all preceding experiments, 100 simulations each for the differ-
tween computational effort and responsiveness to changes is the targgit adaptation epochs and requests with different lifetimes have been
here. performed, the results of which are given in Table 5.

Tlme Wlndow of Adallpt.at.lon. As weI.I as the frequency 0].( adapta- Table 5: ACS(ODAH-TDE) for requests with different lifetimes.
tion, this parameter is jointly responsible for the computational effort

invested in the adaptation in ODAH as it controls how expensive it is short-lived | medium-lived | long-lived
to compute the “optimal” cover for a certain past period. Moreover, it requests request requests
controls how much past behavior is taken into account for the adapta- ACS
tion process. The larger the time window of adaptation the more past Moo s D e
information is included. However, including too much “old” behavior ACS
is not necessarily helpful because recent behavior might be more rele- O20 0.003 0.004 0.003
vant for the decision on future behavior. On the other hand, if not ACS
enough past behavior is captured, some important information from H100 Lk 2l 2L
the past may be lost. For efficiency reasons of the ODAH-TDE algo- ACS
rithm it is, of course, beneficial to use smaller windows. 0100 0.002 0.001 0.001
Accuracy of Adaptation. This parameter deals with the exactness ACS
of each adaptation step, i.e., how thoroughly the parameter spaze for H200 0.93 0.92 0.91
is searched during the minimization problems sqlved _at eackl adapta}’- GACS 0.001 0.001 0.002
tion step. Extreme accuracy should not be required since a “perfect 200
fitting to past behavior does not necessarily yield better results since ACS
ODAH-TDE is still only a heuristic (in particular as it is based on Hs00 0.92 0.92 0.90
NEAROPT-K for largerK). Furthermore, less accuracy certainly im- ACS
proves the efficiency of ODAH-TDE. Os00 0.004 0.003 0.001
For ODAH-TDE, we use the number of steps of the CDC to be covered ACS

. . . . 1l 0.91 0.91 0.88
as units for the frequency as well as for the time window of adaptation. 1000
This means these parameters are not specified in absolute time but oACS 0.002 0.002 0.001
adapt themselves to the rate of changes of the offered CDC, i.e., adap- 1000 ' ' '

tation takes place often in times of many changes and less often in ACS ACS _
more quiet periods. Thatis a desirable behavior from our point of view.Here, iag~ ando,g~  denote the sample mean and standard devia-
The accuracy of adaptation in ODAH-TDE is measured by the grantion of an approximate ACS (based on NEAROPT-4) in the simula-
ularity of the parameter space farat which the minimization proce- tions for different adaptation epoch& [ {20, 100, 200, 500, 1000}.
dures terminate to search any further (in case they do not succeedAs the results indicate, ODAH-TDE generally achieves a good and
before). In all of the simulations of ODAH-TDE that are discussed inrobust performance over all types of requests especially for medium-
the next subsection, this accuracy was setth 10 size adaptation epochs. For the smallest adaptation epoch of 20, the
. : performance is considerably worse although it is the only one based on
6.2 Simulations for ODAH-TDE OPT. However, the adaptation epoch apparently is too short so that the

Using again the simulation environment for QoS systems with dncfer_adaptation is too sensitive to short-term random effects. This empha-

ent time SCT""eSv this sul_)sectlon eyalu_ates ODAH-TDE's performancgizes the necessity of an approximation technique like NEAROPT-K
for the on-line sequential determination of a cover for a CDC. The



as a substitute for OPT in ODAH-TDE since OPT is computationally8 CONCLUSIONS

infeasible for suitable adaptation epoch sizes.
The slight deterioration for large adaptation epochs may be ex
plained by the rather slow responsiveness of ODAH-TDE for these

This paper has dealt with a largely neglected problem when interwork-
ing heterogeneous QoS systems - the accommodation of different time
scales for QoS systems by decoupling. The decoupling problem has

So, if an unfortunate adaptation ofis done, it has a long lasting im- - oo, formalized in order to analyze its complexity and derive solution
pact on the performance of ODAH-TDE as the next adaptation step 'ﬁpproaches. These approaches are based on the ODAH adaptation

far away.
Anyway, in conclusion the simulation results give evidence that

framework which we devised for that purpose. The ODAH framework
makes use of past knowledge about capacity demands by adapting par-

ODAH represents a robust scheme for heuristically dealing with thPametrized heuristics with the aid of optimal techniques which, howev-

sequential decoupling problem under uncertainty about a CDC. In pa

'8, require perfect knowledge about CDCs. Throughout this paper, we

ticular, it should work well even if flow characteristics as the lifetime have used simulations to verify the performance of our solution ap-
of requests change since it shows good performance for all types of r‘E)'roaches to the decoupling problem. In particular, it has been demon-

quests in the simulations.

strated that a very simple heuristic like TDE could be integrated into

the ODAH scheme resulting in a very robust and still computationally

7 RELATED WORK

feasible solution to the decoupling problem at an edge device between

) ) a fast and a slow time scale QoS system. While the heuristics devel-
The problem of different time-scales of network QoS systems has beeébed in this paper may be enhanced by introducing more empirical

largely neglected in the literature so far. There is some work that deal§a, into the heuristics (once this data is available), we believe that an

with RSVP/IntServ over DiffServ, probably the most important sce-

adaptive scheme as presented here (based on (near-) optimal decisions

nario for decoupling to be applied. For instance, in the IETF, there ig {1 past) may continue to play an important role for the decoupling

work within the ISSLL working group that gives a very comprehensive
framework for RSVP/IntServ over DiffServ and the issues involved

problem.
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