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Abstract

The ATM as well as the Internet community developed Quality of Service (QoS)
architectures to provide integrated services. It can be assumed that both will play
a certain role in the future and will coexist for quite some time. Presumably, ATM
will be in the backbone, while IP will probably keep its dominance on the desk-
top. Hence, the use of an overlay model for the interaction between the two QoS
architectures is very likely. A crucial component of such a model is the efficient
mapping of RSVP (Resource reSerVation Protocol) as the Internet’s signalling
protocol onto the according ATM mechanisms. Unfortunately, due to the very
different paradigms of the signalling protocols, this mapping is rather difficult.
While other components of the QoS architectures like the QoS models, the man-
agement frameworks, the charging mechanisms, etc. also need to be dealt with
for a complete solution to the problem of overlaying the Internet’s QoS architec-
ture onto that of ATM, we concentrate on the support for RSVP by an ATM sub-
network. In particular, this paper focuses on one of the most contrary
characteristics of RSVP and ATM. This is the support for heterogeneous reserva-
tions by RSVP over the ATM subnetwork, taking into account that ATM only
allows for a homogeneous QoS within a single Virtual Circuit (VC). We present
previous approaches to the solution of this problem and argue for more sophisti-
cated and efficient approaches to manage ATM VCs taking into consideration
ATM tariffs and resource consumption. Furthermore, we discuss how RSVP
should be extended to provide a framework to enable these more flexible VC
management strategies for supporting heterogeneity over an ATM subnetwork.

Keywords: IP/ATM Networks, RSVP, Multicast, Heterogeneous Reservations,
VC Management, Resource Management, Cost Management.
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P to send its messages.
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hitecture in how the state in intermediate systems is real-
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chanisms. However, a possibly major disadvantage may
uch more difficult to achieve than with ATM’s integrated
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er issue is the mapping of the IP multicast model on the
M for multi-party calls. While IP multicast allows for
communication, ATM only offers point-to-multipoint
cast by either meshed VCs or a multicast server.

ogeneous QoS.While ATM only allows for homoge-
VP allows heterogeneity firstly for different QoS levels of
for simultaneous support of QoS and best-effort receivers.
mantics of RSVP and Q.2931 is a major obstacle to sim-
pping of the two. This issue of heterogeneous vs. homo-
us of our paper.
their application depends on the administrative location of the edge devices used
for the mapping of RSVP/IntServ onto ATM.

In the next section, we briefly describe the differences between RSVP/IntServ
and ATM and discuss whether heterogeneous QoS is possible and useful. In Sec-
tion 3, VC management strategies are discussed – we review related work, and
present our own schemes. As argued in Section 4, the currently defined RSVP
traffic control interface is not capable to support NBMA (Non-Broadcast Multi-
ple Access) networks and VC management strategies in particular. In Section 5
we conclude our investigations.

2  Issues in Mapping RSVP/IntServ onto ATM Networks
Before going into the details of heterogeneity support over ATM networks we
want to reconsider which are the most important issues in mapping the Internet
QoS architecture, RSVP/IntServ, onto ATM. There are two main problem areas:
QoS models and QoS procedures. Therefore, the usual approach is to treat them
separately, although there are some decisions which need an integrated view.

2.1  QoS Models

QoS models are the declarative component of QoS architectures, consisting of
service classes and their traffic specifications and performance parameters. The
most salient differences between the QoS models, i.e. the ATM TM 4.0 [1] and
the IntServ specifications ([18], [19]), are:

• packet-based vs. cell-based traffic parameters and performance specifica-
tions,

• the handling of excess traffic (policing): degradation to best-effort vs. tag-
ging or dropping,

• and, of course, different service classes and corresponding traffic and ser-
vice parameters.

These differences have to be overcome when mapping IntServ onto ATM without
losing the semantics of the IntServ specifications. The IETF has proposed some
guidelines for the mapping of the QoS models in [10], but these have been shown
to be arguable in [9].

2.2  QoS Procedures

While it is not easy to map the QoS models of the Internet and ATM, it is even
more difficult to map their QoS procedures onto each other. This is due to the fact
that they are built upon very different paradigms. While the signalling protocols
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 Strategies in Support of Heterogeneity
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2.3  Heterogeneous vs. Homogeneous QoS

RSVP’s heterogeneous reservations concept can, combined with heterogeneous
transmission facilities, be very useful to give various receivers (e.g. in multime-
dia application scenarios) exactly the presentation quality they desire, and which
they and the network resources towards the sender are able to handle. Such trans-
missions demand that the data to be forwarded can be somehow distinguished so
that, e.g., the base information of a hierarchically coded video is forwarded to all
receivers while enhancement layers are only forwarded selectively. This can be
achieved by offering heterogeneity within one (network layer) session or by split-
ting the video above that layer into distinct streams and using multiple network
layer sessions with homogeneous QoS. The latter approach has been studied by
several authors, and found especially in form of RLM [15] wide-spread interest.
Yet, if used widely and potentially even combined with object-oriented [11] or
thin-layered coding schemes (e.g., [20]), this will lead to large numbers of multi-
cast sessions, thus limiting its scalability.

Heterogeneity within one network layer session requires filtering mechanisms
within intermediate systems. Such mechanisms are currently often considered as
costly in terms of performance. However, we believe that with the evolution of
ever faster routers, filtering will be possible at least outside the core area of net-
works and to do it at the network layer will be attractive for reasons such as scal-
ability in terms of number of sessions and also simplification of applications.

The principle choices for an integration of the RSVP and ATM models with
respect to heterogeneous reservations are:

• Ignore the problem and use just one QoS within the ATM subnetwork. As
we will show, this is far from optimal with respect to resource consump-
tion respectively costs if outside of the ATM cloud heterogeneous trans-
missions will exist.

• Change ATM to offer so-called “variegated VCs” where a different
amount of data is forwarded to distinct multicast receivers. This requires
the ability in switches to distinguish among information units (e.g., video
frames). We do not believe that this will be possible on a cell basis in an
efficient and useful way.

• Construct heterogeneous multicast trees from multiple homogeneous
point-to-multipoint VCs. Here, for a certain receiver requesting a specific
QoS it must be decided, e.g., whether one of the existing VCs can be used
for it or whether a new one must be established. Hence, VC management
mechanisms are needed.

We argue for the last alternative to be the most realistic and efficient one.
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Limited Heterogeneity Model. In the limited heterogeneity model (see
Figure 2), one point-to-multipoint VC is provided for QoS receivers while
another point-to-multipoint VC is provided for best-effort receivers. Here, we
assumed that reservation 2 is larger than reservation 1.

Figure 2:The Limited Heterogeneity Model.

A design question of this model is whether the best-effort VC is provided for all
sessions together or one per session. The limited heterogeneity model strongly
restricts RSVP’s heterogeneity model to simply the differentiation of QoS and
best-effort receivers. A further problem is that a single high QoS request can
avoid the setup of a QoS VC.

Homogeneous Model.In the homogeneous model solely one point-to-multi-
point QoS VC is provided for all receivers including the best-effort receivers. The
QoS VC is dimensioned with the maximum QoS being requested. This model is
very simple to implement and saves VC space in comparison to the full heteroge-
neity model, but may waste a lot of bandwidth if the resource requests are very
different. A further problem is that a best-effort receiver may be denied service
due to a large RSVP request that prevents the setup of a branch from the existing
point-to-multipoint VC to that receiver. This is unacceptable to IntServ’s philoso-
phy of always supporting best-effort receivers. The modified homogeneous
model takes that into account.

Modified Homogeneous Model.The modified homogeneous model behaves
like the homogeneous model, but if best-effort receivers exist and if these cannot
be added to the QoS VC, a special handling takes place to setup a best-effort VC
to serve these. Thus it is very similar to the limited heterogeneity model. How-
ever, since the best-effort VC is only setup as a special case it is a little bit more
efficient than the limited heterogeneity model with regard to VC consumption.
On the other hand, it may be argued that best-effort VCs will be needed all the
time, at least in the backbone, and thus it might be cheaper to leave the best-effort
VCs open all the time, i.e., to use the limited heterogeneity model.

Another, quite different architecture for mapping RSVP/IntServ over ATM is
proposed in [16]. With respect to heterogeneity support the authors introduce the:
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the ATM network provider. Therefore, we call it acost-oriented edge
device.

2. The edge device is on the premises of the ATM network (which is now
offering RSVP/IP services to its customer, the IP network provider), as
e.g. for IP network provider 2. Here, the edge device will try to minimize
the resource consumption when taking decisions for VC management.
Thus we call itresource-oriented edge device.

If, for example, IP network provider 1 and the ATM network provider would be
the same administrative entity, then we would have the same situation as for case
2, i.e., a resource-oriented edge device.

While the ATM tariffs are the most important criterion for assessment of dif-
ferent alternatives for VC management decisions in case 1, the local resources
consumed by a VC management strategy should also be taken into consideration,
but rather as a constraint than an optimization criterion.

In most cases, prices will probably correlate positively with resource con-
sumption, however, they will for several reasons not be related directly to them or
in a much coarser granularity. Therefore, from a global perspective, case 2 is
potentially a “better” configuration, because it will tend to use resources more
efficiently than case 1, except if prices are a very accurate representation of the
actual resource consumption. It is difficult to judge today, which configuration
will be more likely. While telecommunication providers try to provide more
value-added services and would thus be interested to operate the edge device,
Internet service providers increasingly tend to use their own backbones instead of
leasing lines from telecommunication providers, so that the edge device and the
ATM network would be on the same premises.

In the VC management algorithms below it is ensured that subnet-receivers get at
least the QoS they requested, but may even get better service and must thus be
prepared to cope with additional data. If some of them cannot cope with the addi-
tional data then these restrictions have to be incorporated as additional con-
straints into the VC management strategies.

3.3  VC Management for Cost-Oriented Edge Devices

We will start considering the problem of supporting heterogeneity over an ATM
subnetwork by VC management strategies for the case of a cost-oriented edge-
device.

3.3.1  Static Case
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bers this should still be possible. Keep in mind that N is the number of different
reservation requests which should be bounded by the number of scaling levels the
data transmission system is able to support (ignoring the possibility that receivers
reserve different QoS levels even without a filtering support by the data transmis-
sion system, since they may accept that some of their traffic is degraded to best-
effort).

Ways to Search the Partition Space

For larger N, the question is whether and how a search in the partition space can
be kept feasible taking into account that the system must provide short response
times (flow setup times are also a QoS issue). There are potentially two alterna-
tives to achieve this:

• giving up the search for the optimal solution and just looking for a “good”
solution using a heuristic to search the partition space, or,

• showing that some parts of the partition space can be excluded from the
search either because it is impossible to find the global minimum there, or
it is at least unlikely (using a heuristic to limit the reasonable partition
space). In the following, we describe an approach for that.

For large N (take e.g. N=15, then one obtains|Sp(15)| = 1,382,938,768 possible
partitions) even a combination of these two techniques might be necessary.

Limiting the Search Space

An example how the characteristics of the price function can simplify the prob-
lem by allowing to limit the search on a sub-space of the complete partition space
(without giving up the search for the optimum) is given by:

Theorem 1: If the price function f is subject to

then the cost-optimal partition popt is an “ordered partition” (see definition
below).

The proof of Theorem 1 can be found in the appendix.

Definition: The partition p = (R1,..., Rn) is called ordered if for all Ri and any k,l
∈ Ri with k < l, it applies that k+1,...,l-1 are also∈ Ri.

The above shows that under the assumptions being made it is possible to restrict
the search on the sub-space of ordered partitions, which gives a considerable
reduction on the number of candidates for the optimal solution. The assumption
about the price function essentially means that the price of adding a receiver to an
existing VC is not dependent on the particular receiver to be added or the already
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in the static case, before taking into account the dynamic
following the same rationale as for cost-oriented edge

c p( ) c Ri( )
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One may argue that even the ordered partition space is too large for higher
values of N. In that case heuristic search methods on the ordered partition space
would be needed. (In the section on resource oriented edge devices we present
such a heuristic which can easily be adjusted for a cost-oriented edge device).

3.3.2  Dynamic Case

Now we take a dynamic view on the problem and investigate VC management
strategies when the set of different receivers is changing in time, i.e., instead of R
we now have Rt with discrete time steps t=0,1,2,...Thus we can view the search
for the cost-optimal partitions of Rt as a series of static case problems, which
however have a certain relationship. This observation leads to the idea of reusing
the approaches for the static case, where the crucial question is how to take the
relationship between the series of static problems into account.

A straightforward, but compute-intensive algorithm could be to always
recompute the statically optimal partition and then make the minimally necessary
changes to the current partition to transform it into the new one.

Besides its high computational complexity this algorithm may potentially
produce a lot of changes in the membership of receivers because it does neglect
the relationship between successive Rt. Such changes of receivers from one
point-to-multi-point VC to the other produce costs, which should be incorporated
into the decision process, i.e., we need to minimize a transformed cost function:

min. c*(p) = c(p) + t(pold, p)

where

t(pold, p) are the costs of transforming the existing partitionpold into the
partitionp.

Both algorithms have the same complexity in principle, but the transformed cost
function c* will likely be amenable to a local search in the neighborhood of the
existing partition, since partitions far “apart” in the partition space get a high pen-
alty from the transformation costs t.

A simple idea for such a local search could be to always try all incremental
“adds”, i.e. either adding the new (or modified) receiver to an existing point-to-
multi-point VC or setting up a new VC for that receiver, and take the one that
minimizes c*.

However, it must be realized that after a certain number of time steps this
algorithm might deviate considerably from the optimum VC management strat-
egy. Therefore, an improvement may be to compute the statically optimal parti-
tion from time to time and compare it to the current partition with respect to the
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Figure 4:Example Network.
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3.4.1  Static Case

The situation is actually very similar to that of cost-oriented edge devices with
the difference that resource consumption is taken as a substitute for the cost func-
tion. If resource consumption can be expressed as a single valued function then,
more or less, the same considerations apply as for a cost-oriented edge device,
although it is very unlikely that assumptions like that of Theorem 1 will apply for
resource consumption functions, since these functions will be much more com-
plex due to their topology-dependence. Moreover, if we really want to make use
of the further information that is available to a resource-oriented edge device (e.g.
by taking part in the PNNI protocol or by static configuration), then different
resources must be taken into account, which again raises the incommensurability
problem. Now we can either treat it as a multi-criteria decision making problem
or we try to find a translation and a weighting between the different criteria. As
mentioned above, we will restrict our considerations to the abstract resources link
bandwidth and VC processing in order to alleviate such complexities.

At first, let us even assume that only link bandwidth is taken into account. A
greedy algorithm that always picks the locally best decision and operates on the
sub-space of ordered partitions would be the following:

k = 1;
V = R;
WHILE (V NOT empty) DO

R[k] = min V;
V = V - {min V};
L’ = INFINITY;
WHILE (V NOT empty) AND (L < L’) DO

H = union(R[k], {min V});
L = link bandwidth consumption of H;
L’ = link bandwidth consumption of R[k] +

link bandwidth consumption of {min V};
IF (L <= L’)

R[k] = H;
V = V - {min V};

k++;

With link bandwidth consumption of a set of receivers we mean the sum of band-
width consumptions per link for the point-to-multipoint VC which would be built
from the edge device to the subnet-receivers, while the rest of the notation is
analogous to the definitions in the section on cost-oriented edge devices (withV

andH as auxiliary sets of subnet-receivers).
The heuristic that is essentially applied by that greedy algorithm is to group

together adjacent requests, where adjacency is defined with respect to topology

and resource requireme
sense to have very diffe
same point-to-multipoin
would waste a lot of ban
unique to a receiver with

To show what results c
example network in Fig
NSF backbone as of 19
edge devices, which eit
pose that the following r

R1 = 10 Mb/s, R2 = 

Applying the algorith
GA={{R1,R2}, {R3,R4},{
consumption of the thre
this to the full heteroge
the homogeneous mod
about 50% more bandw
enumeration shows), G
consumption). Interestin
dominated by GA, i.e., it
tion and VC usage. This
will probably still be a m

The greedy algorith
Consider for example th
the algorithm gives GA

S

0

1

2

3



ce interruptions for the receivers depending on the order
resumably only joining before leaving is a commercially
namics due to modified reservations are affected by the
gy for heterogeneity support in the following way: they
or a fine-grained partition (larger n) than for a coarse-
r n).

spects: RSVP’s Traffic Control Interface
implementation of some of the above or any other VC

in support of heterogeneity over an ATM subnetwork,
nterface (TCI) and the relevant part of the protocol mes-
s specified in ([7],[6]) must be made more flexible than
iolate these standards, because these parts are only infor-
VP merges all downstream requests and then hands the
the traffic control module via the TCI. This leads to two
er ATM, or in general, a NBMA subnetwork with capa-
munication:

ecognizing new receivers,
 the homogeneous QoS model.

ady realized in [7], where it is conceded that the proposed
ta replication takes place in the IP layer or the network

k), but not in the link-layer as would be the case for ATM.
eam requests should not necessarily be merged before
fic control procedures.
ce is needed that supports both, broadcast networks and
the replication can also take place in intermediate nodes
the NBMA subnet. Only such modifications will allow
rt over an ATM network, i.e. different VCs for different
r, even without taking into account heterogeneity support,
odification of the TCI and the message processing rules
re of NBMA networks.
st is received from a new next hop in the ATM network
isting reservation for the session, then according to the
essing rules no actions will be taken, since it is assumed
ithin the same outgoing interface will receive the same
course not the case for an NBMA network like ATM, and
ken to add this new receiver to the existing point-to-mul-

tuation arises when a receiver tears down its reservation.
optimal partition O={{R1,R2},{R3,R4},{R5}} has L(O) = 122 (L(FH) = 132
and L(H)=183 for this configuration).

While for these examples only ordered partitions were optimal, it should be
noted that this is not necessarily the case as the simple example in Figure 5
shows:

Figure 5:Example of an Unordered Optimal Partition.

Suppose that: R1 = 9 Mb/s, R2 = 5.5 Mb/s and R3 = 3 Mb/s.
Then the algorithm gives GA={{R1},{R2},{R3}} with L(GA)=64.5, while

the optimal partition is O={{R1,R3},{R2}} with L(O)=61,5 (L(FH=GA) = 64.5,
L(H) = 63).

We have discussed above how to take into account the VC processing resource in
principle. For the greedy algorithm there is a straightforward extension in order
to incorporate the additional criteria into the construction of a “good” partition.
This would be to change the IF statement at the end of the inner loop into:

IF (L <= L’ + delta) // saves VCs

wheredelta would have to be chosen reasonably in order to force the construc-
tion of larger point-to-multipoint VCs with respect to number of members. It is
certainly not obvious how to choosedelta , so further study of that parameter is
needed.

3.4.2  Dynamic Case

The results for cost-oriented edge devices when considering the dynamic case are
directly applicable to resource-oriented edge devices as well. Again the dynamic
problem can be regarded as a series of static problems, whereby the current parti-
tion should somehow be taken into account when reacting to changes and build-
ing a new partition.

A particular issue for resource-oriented edge devices when considering the
dynamic case is the dynamics of existing reservations. While the changes due to
these dynamics can be treated just like a new receiver joining the session with the
modified reservation and the existing receiver leaving it, these actions should be
minimized since they are either leading to temporary double reservations in the
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s which do not allow point-to-multipoint connections,
a point-to-point connection is needed for each of the

neity model when implementing RSVP over ATM.

tions of this model from our point of view are the inter-
these two cases, where we allow a certain degree of

o that it is possible to take advantage of the VC manage-
rogeneity support. The TCI and the message processing
dent of the number of MGs for a specific flow and the
next hop into a group or another should be taken by the

nd not as part of the RSVP message processing. For
CI and its message processing rules need to be modified

ment strategies in support of heterogeneity, see [17].

nclusion
ted approaches to the efficient solution of one of the diffi-
ping RSVP onto ATM subnetworks, namely the problem
ous reservations across an ATM subnetwork. Since ATM
eous QoS within one connection, we argued for using
ovide different levels of QoS for subnet-receivers that
urces. The management of several VCs per RSVP session
of possible strategies. We introduced some algorithms
sts respectively resource consumption depending on the
f the IP/ATM edge device. Furthermore, we discussed
TCI and the RSVP message processing should be
order to support heterogeneity over an NBMA network

that if heterogeneity turns out to be an interesting feature
ism on the network layer, then different alternatives for

ity over an ATM network can vary considerably with
e consumption and costs. Thus it will be commercially
ood” alternative (preferably the optimal one, if it can be

nly one of the problems of mapping RSVP/IntServ onto
tions for this – much remains to be done. As pointed out
everal other difficult problem areas. For further work in

ng heterogeneity over an ATM network via VC manage-
e interesting to evaluate more quantitatively the effect of
If the LUB (least upper bound) of the other reservations does not change, nothing
will be done with the current processing rules. However, the receiver must be
deleted from the point-to-multipoint VC.

The problem with the current message processing rules and TCI is that, since
they are based upon broadcast mediums, they do not allow any heterogeneity
within a single flow and an outgoing interface. This is due to the fact that broad-
cast networks do not allow for heterogeneity of the transmission anyway. That is
the reason why the LUB of the reservations requested for that interface is com-
puted, thus making downstream merging.

A VC management strategy that supports heterogeneity does not need this down-
stream merging, or at least, no downstream merging of all the next hops in the
interface. A more flexible scheme is necessary, that permits different “Merging
Groups” within a certain interface. This general model includes the current
model, if all next hops are considered as one merging group. AMerging Group
(MG) is defined as the group of next hops with the same outgoing interface,
whose reservation requests for a certain flow should be merged downstream, in
order to establish a reservation (Figure 6).

Figure 6:Merging Groups.

For a single flow and outgoing interface, there may be several MGs. The two
extreme cases are:

a) Only one MG: This is the case when no heterogeneity is allowed within
the interface. Examples of this situation are:

• the homogeneous model when implementing RSVP over ATM,
• the underlying network technology is broadcast (e.g. Ethernet).

b) As many MGs as next hops: this would be the case if each of the next hops
requires a dedicated reservation. Example applications of this are:
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1)) + f(Rj, q(j1)) + (k-m)K(q(j1))
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different cost/resource consumption functions, different topologies, and different
combinations of heterogeneous reservations and how much can be gained by
using an “intelligent” VC management strategy.
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Appendix
Proof of Theorem 1:
Suppose popt = {R1, ..., Rn
..., ik), Rj = {j 1, ..., jv} with
generality we assume jl < 

Now letRi = {i 1, ..., im} a

Thus, we have:

c(Ri) + c(Rj) = f(Ri, q(i1))

= f(Ri, q(i1)) - (k-m)K(q(i

= f(Ri, q(i1)) + f(Rj, q(j1))

< f(Ri, q(i1)) + f(Rj, q(j1))

= c(Ri) + c(Rj)

That means forp = (popt/{

c(p) < c(popt)

which contradicts the co
(under the assumptions



Proof of Theorem 2:
by induction:
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